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Regularity of solutions for a sixth order nonlinear parabolic
equation in two space dimensions

by Changchun Liu (Changchun)

Abstract. We consider an initial-boundary problem for a sixth order nonlinear para-
bolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type esti-
mates and Campanato spaces, we prove the global existence of classical solutions for the
problem in two space dimensions.

1. Introduction. In this paper, we investigate the sixth order nonlinear
parabolic equation

(1.1)
∂u

∂t
−div

[
m(u)

(
k∇∆2u+∇

(
−a(u)∆u− a

′(u)

2
|∇u|2+h(u)

))]
= 0,

in a two-dimensional bounded domain Ω ⊂ R2 with smooth boundary, where
k > 0, a(u) = γ1u

2 + γ2, and γ1 > 0, γ2 > 0 are constants ([GG]). From
physical considerations, we prefer to consider a typical case of the volumetric
free energy H(u), that is, H ′(u) = h(u), in the following form ([GG, PZ]):

(H1) H(u) = (u+ 1)2(u2 + h0)(u− 1)2.

The equation (1.1) is supplemented by the boundary value conditions

(1.2) u|∂Ω = ∆u|∂Ω = ∆2u|∂Ω = 0, t > 0,

and the initial value condition

(1.3) u(x, 0) = u0(x).

The equation (1.1) is a sixth order parabolic equation which describes the
dynamics of phase transitions in ternary oil-water-surfactant systems [GG,
GK, GK2]. Here u(x, t) is a scalar order parameter which is proportional to
the local difference between the oil and water concentrations. The surfactant
has the property that one part of it is hydrophilic and the other lipophilic
is called the amphiphile. In the system, almost pure oil, almost pure water
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and microemulsion which consists of a homogeneous, isotropic mixture of oil
and water can coexist in equilibrium.

During the past years, only a few works have been devoted to sixth-order
parabolic equations in general [BF, EGK1, EGK2, FK, KEMW, LT]. Pawłow
and Zajączkowski [PZ] proved that the initial boundary value problem for
(1.1) with m(u) = 1 admits a unique global smooth solution which depends
continuously on the initial datum. F. Bernis and A. Friedman [BF] have
studied the initial boundary value problem for the thin film equation

∂u

∂t
+ (−1)m−1∂x(f(u)∂2m+1

x u) = 0,

where f(u) = |u|nf0(u), f0(u) > 0, n ≥ 1, and proved the existence of
weak solutions preserving nonnegativity. J. W. Barrett, S. Langdon and
R. Nuernberg [BLN] considered the above equation with m = 2. A finite
element method was presented which was proved to be well posed and con-
vergent. Numerical experiments illustrated the theory.

Recently, Evans, Galaktionov and King [EGK1, EGK2] considered the
sixth-order thin film equation containing an unstable (backward parabolic)
second-order term

(1.4)
∂u

∂t
= div[|u|n∇∆2u]−∆(|u|p−1u), n > 0, p > 1.

By a formal matched expansion technique, they showed that, for the first
critical exponent p = p0 = n+1+4/N for n ∈ (0, 5/4), where N is the space
dimension, the free-boundary problem with zero-height, zero-contact-angle,
zero-moment, and zero-flux conditions at the interface admits a countable set
of continuous branches of radially symmetric self-similar blow-up solutions
uk(x, t) = (T − t)−N/(nN+6)fk(y), y = x/(T − t)1/(nN+6), where T > 0 is the
blow-up time. Some other results can be found in [JM, L, SP].

Our main purpose is to establish the global existence of classical solu-
tions under much general assumptions. The main difficulties in treating the
regularized problem are caused by the nonlinearity of the principal part and
the lack of maximum principle. The key step is to get a priori estimates on
the Hölder norm of ∆u. The method used in [PZ] seems not applicable to the
present situation. Our method is based on uniform Schauder type estimates
for local in time solutions in the framework of Campanato spaces. For this
purpose, we require some delicate local integral estimates rather than the
global energy estimates used in the discussion of the Cahn–Hilliard equation
with constant mobility.

Now, we state the main results of this paper.

Theorem 1.1. Assume that

(H2) m ∈ C1+α(R), m(s) ≥M1, |m′(s)|2 ≤M2m(s),
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where M1,M2, α are positive constants, and u0|∂Ω = ∆u0|∂Ω = ∆2u0|∂Ω
= 0. Then the problem (1.1)–(1.3) admits a unique classical solution u ∈
C6+α,1+α/6(QT ) for any smooth initial data u0, where QT = Ω × (0, T ).

This paper is organized as follows. We first present in Section 2 a key
step, yielding a priori estimates on the Hölder norm of solutions, and then
give the proof of our main theorem in Section 3.

2. Hölder estimates. As an important step, in this section we give
Hölder norm estimates on local in time solutions. From the classical ap-
proach, it is not difficult to conclude that the problem admits a unique
classical solution local in time. So it is sufficient to find a priori estimates.

Proposition 2.1. Assume that (H1), (H2) hold, and u is a smooth so-
lution of the problem (1.1)–(1.3). Then there exists a constant C, depending
only on the known quantities, such that for any (x1, t1), (x2, t2) ∈ QT and
some 0 < α < 1,

|u(x1, t1)− u(x2, t2)| ≤ C(|t1 − t2|α/6 + |x1 − x2|α),(2.1)

|∇u(x1, t1)−∇u(x2, t2)| ≤ C(|t1 − t2|1/12 + |x1 − x2|1/2).(2.2)

Proof. We set

F (t) =
�

Ω

[
k

2
(∆u)2 +

a(u)

2
|∇u|2 +H(u)

]
dx.

Integrating by parts and using the equation (1.1) itself and the boundary
condition (1.2), we see that
dF (t)

dt
=

�

Ω

[
k∆u∆ut + a(u)∇u∇ut +

a′(u)

2
|∇u|2ut + h(u)ut

]
dx

=
�

Ω

[
k∆2u− a(u)∆u− a′(u)

2
|∇u|2 + h(u)

]
∂u

∂t
dx

= −
�

Ω

m(u)

[
k∇∆2u+∇(−a(u)∆u− a′(u)

2
|∇u|2 + h(u))

]2
dx ≤ 0.

On the other hand, we have�

Ω

|∇u(x, t)|2 dx ≤ ε
�

Ω

(∆u)2 dx+ C(ε)
�

Ω

u2 dx.

By the Young inequality

u2 ≤ εu6 + C1ε, u4 ≤ εu6 + C2ε.

Combining the above inequalities and using a(u) = γ1u
2+ γ2, γ1 > 0, yields

sup
0<t<T

�

Ω

u2 dx ≤ C,(2.3)
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sup
0<t<T

�

Ω

|∇u|2 dx ≤ C,(2.4)

sup
0<t<T

�

Ω

(∆u)2 dx ≤ C.(2.5)

By the Sobolev imbedding theorem,

sup
QT

|u| ≤ C,(2.6)

sup
0<t<T

�

Ω

|∇u|q dx ≤ C, 2 ≤ q <∞.(2.7)

Multiplying both sides of the equation (1.1) by ∆2u and then integrating
the resulting relation with respect to x over Ω, after integrating by parts,
and using the boundary condition, we derive

1

2

d

dt

�

Ω

(∆u)2 dx+
�

Ω

km(u)|∇∆2u|2 dx

=
�

Ω

m(u)a(u)∇∆u∇∆2u dx+ 2
�

Ω

m(u)a′(u)∇u∆u∇∆2u dx

+
1

2

�

Ω

m(u)a′′(u)|∇u|3∇∆2u dx−
�

Ω

m(u)h′(u)∇u∇∆2u dx.

Using the Hölder inequality and (2.6), we obtain

1

2

d

dt

�

Ω

(∆u)2 dx+
�

Ω

km(u)|∇∆2u|2 dx

≤ k

2

�

Ω

m(u)|∇∆2u|2 dx+ C
�

Ω

|∇∆u|2 dx+ C
�

Ω

|∇u|4 dx

+ C
�

Ω

|∆u|4 dx+ C
�

Ω

|∇u|6 dx+ C
�

Ω

|∇u|2 dx.

It follows by using the Gagliardo–Nirenberg inequalities (noticing that we
consider only the two-dimensional case)( �

Ω

|∇∆u|2 dx
)1/2

≤ C1

( �

Ω

|∇∆2u|2 dx
)1/6( �

Ω

|∆u|2 dx
)1/3

,

( �

Ω

|∆u|4 dx
)1/4

≤ C1

( �

Ω

|∇∆2u|2 dx
)1/12( �

Ω

|∆u|2 dx
)5/12

.

By (2.5) and (2.7), we have

1

2

d

dt

�

Ω

(∆u)2 dx+
�

Ω

km(u)|∇∆2u|2 dx ≤ k

2

�

Ω

m(u)|∇∆2u|2 dx+ C.
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Hence

(2.8)
� �

QT

m(u)|∇∆2u|2 dx dt ≤ C.

(2.3) and (2.4) imply that

(2.9) |u(x1, t)− u(x2, t)| ≤ C|x1 − x2|α, 0 < α < 1.

Integrating the equation (1.1) over Ωy × (t1, t2), where 0 < t1 < t2 < T ,
∆t = t2 − t1, Ωy = (y1, y1 + (∆t)1/12)× (y2, y2 + (∆t)1/12), we see that

(2.10)
�

Ωy

[u(z, t2)− u(z, t1)] dz

=

t2�

t1

y2+(∆t)1/12�

y2

[F1(y1 + (∆t)1/12, y, s)− F1(y1, y, s)] dy ds

+

t2�

t1

y1+(∆t)1/12�

y1

[F2(y, y2 + (∆t)1/12, s)− F2(y, y2, s)] dy ds

=

t2�

t1

(∆t)1/12[F1(y1 + (∆t)1/12, y2 + θ∗1(∆t)
1/12, s)

− F1(y1, y2 + θ∗1(∆t)
1/12, s) + F2(y1 + θ∗2(∆t)

1/12, y2 + (∆t)1/12, s)

− F2(y1 + θ∗2(∆t)
1/12, y2, s)] ds,

where

m(u(x, s))

(
k∇∆2u+∇

(
−a(u)∆u− a′(u)

2
|∇u|2 + h(u)

))
(x, s)=(F1, F2).

Set

N(s, y1, y2)

= (∆t)1/12[F1(y1 + (∆t)1/12, y2 + θ∗1(∆t)
1/12, s)− F1(y1, y2 + θ∗1(∆t)

1/12, s)

+ F2(y1 + θ∗2(∆t)
1/12, y2 + (∆t)1/12, s)− F2(y1 + θ∗2(∆t)

1/12, y2, s)].

Then (2.10) is converted into

(∆t)1/6
�

I=(0,1)×(0,1)

[u(y + θ(∆t)1/12, t2)− u(y + θ(∆t)1/12, t1)] dθ

=

t2�

t1

N(s, y1, y2) ds.
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Integrating the above equality over Ωx, we get

(∆t)1/3(u(x∗, t2)− u(x∗, t1)) =
t2�

t1

�

Ωx

N(s, y) dy ds.

Here, we have used the mean value theorem, where x∗ = y∗ + θ∗(∆t)1/12.
Hence by the Hölder inequality and (2.5), (2.6), (2.8), we get

|u(x∗, t2)− u(x∗, t1)| ≤ C(∆t)α/6, 0 < α < 1.

Again multiplying both sides of (1.1) by ∆3u and integrating the result-
ing relation with respect to x over Ω, integrating by parts, and using the
boundary condition, we have

1

2

d

dt

�

Ω

|∇∆u|2 dx+
�

Ω

km(u)(∆3u)2 dx+
�

Ω

km′(u)∇u · ∇∆2u∆3u dx

−
�

Ω

[2(m(u)a′(u))′ + 3m(u)a′′(u)]|∇u|2∆u∆3u dx

−
�

Ω

m(u)a(u)∆2u∆3u dx−
�

Ω

[2m(u)a′(u) + (m(u)a(u))′]∇u∇∆u∆3u dx

− 2
�

Ω

m(u)a′(u)(∆u)2∆3u dx−
�

Ω

(m(u)a′′(u))′|∇u|4∆3u dx

+
�

Ω

(m(u)h′(u))′|∇u|2∆3u dx+
�

Ω

m(u)h′(u)∆u∆3u dx = 0.

The Hölder inequality and the assumption (H2) yield∣∣∣ �
Ω

m′(u)∇u∇∆2u∆3u dx
∣∣∣

≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C
�

Ω

|m′(u)|2

m(u)
|∇u|2|∇∆2u|2 dx

≤ 1

16

�

Ω

m(u)(∆2u)2 dx+ CM2

�

Ω

|∇u|2|∇∆2u|2 dx

≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ CM2

( �

Ω

|∇u|8 dx
)1/4( �

Ω

|∇∆2u|8/3 dx
)3/4

.

It follows by using the Gagliardo–Nirenberg inequality (noticing that we
consider only the two-dimensional case)( �

Ω

|∇∆2u|8/3 dx
)3/8

≤ C1

( �

Ω

|∆3u|2 dx
)13/32( �

Ω

|∆u|2 dx
)3/32

,
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and by (2.7),∣∣∣ �
Ω

m′(u)∇u∇∆2u∆3u dx
∣∣∣ ≤ 1

8

�

Ω

m(u)(∆3u)2 dx+ C.

Again using (2.3) and the Hölder inequality, we have∣∣∣ �
Ω

[2(m(u)a′(u))′ + 3m(u)a′′(u)]|∇u|2∆u∆3u dx
∣∣∣

≤ C
�

Ω

|∇u|4|∆u|2 dx+
1

16

�

Ω

m(u)(∆3u)2 dx

≤ C
�

Ω

|∇u|8 dx+ C
�

Ω

|∆u|4 dx+
1

16

�

Ω

m(u)(∆3u)2 dx.

Using the Gagliardo–Nirenberg inequality, we have
�

Ω

|∆u|4 dx ≤ C1

( �

Ω

|∆3u|2 dx
)1/4( �

Ω

|∆u|2 dx
)7/4

.

By (2.5), we obtain∣∣∣ �
Ω

[2(m(u)a′(u))′ + 3m(u)a′′(u)]|∇u|2∆u∆3u dx
∣∣∣

≤ 1

8

�

Ω

m(u)(∆3u)2 dx+ C.

Similarly, we get∣∣∣−2 �

Ω

m(u)a′(u)(∆u)2∆3u dx
∣∣∣ ≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C,

∣∣∣− �

Ω

[2m(u)a′(u) + (m(u)a(u))′]∇u∇∆u∆3u dx
∣∣∣

≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C,∣∣∣− �

Ω

m(u)a(u)∆2u∆3u dx
∣∣∣ ≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C,∣∣∣− �

Ω

(m(u)a′′(u))′|∇u|4∆3u dx
∣∣∣ ≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C,∣∣∣ �
Ω

(m(u)h′(u))′|∇u|2∆3u dx
∣∣∣ ≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C,∣∣∣ �
Ω

m(u)h′(u)∆u∆3u dx
∣∣∣ ≤ 1

16

�

Ω

m(u)(∆3u)2 dx+ C.
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Summing up, we have
d

dt

�

Ω

|∇∆u|2 dx+ C1

�

Ω

(∆3u)2 dx ≤ C2.

By Gronwall’s inequality, we obtain�

Ω

|∇∆u|2 dx ≤ C, 0 < t < T,(2.11)

� �

QT

(∆3u)2 dx dt ≤ C.(2.12)

Similar to the discussion above, we have

(2.13) |∇u(x1, t1)−∇u(x2, t2)| ≤ C(|x1 − x2|1/2 + |t1 − t2|1/12).

3. Proof of the main result. This section is devoted to the proof of
Theorem 1.1. The key step is the Hölder estimate for ∆u. We divide the
argument into the following propositions.

Proposition 3.1. If u, ∇u are Hölder continuous in the interior of QT ,
then u is classical in the interior of QT .

We consider the following linear problem:
∂u

∂t
−∇∆(a(x, t)∇∆u) +∇∆(b(x, t)∇u) = ∇∆~F,(3.1)

u|∂Ω = ∆u|∂Ω = ∆2u|∂Ω = 0,(3.2)
u(x, 0) = 0.(3.3)

Here we do not specify the smoothness of the given functions a(x, t), b(x, t)
and ~F , but simply assume that they are sufficiently smooth. Our main pur-
pose is to find a relation between the Hölder norm of the solution u and
a(x, t), b(x, t), ~F .

The crucial step is to establish estimates on the Hölder norm of u. Fix
(x0, t0) ∈ Ω × (0, T ) and define

ϕ(ρ) =
� �

Sρ

(|u− uρ|2 + ρ6|∇∆u|2) dx dt (ρ > 0),

where

Sρ = Bρ(x0)× (t0 − ρ6, t0 + ρ6), uρ =
1

|Sρ|

� �

Sρ

u dx dt

and Bρ(x0) is the ball centred at x0 of radius ρ.
Let u be the solution of the problem (3.1)–(3.3). We split u on SR into

u = u1 + u2, where u1 is the solution of the problem
∂u1
∂t
− a(x0, t0)∆3u1 + b(x0, t0)∆

2u1 = 0, (x, t) ∈ SR,(3.4)
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u1 = u,
∂u1
∂n

=
∂u

∂n
, ∆u1 = ∆u, x ∈ ∂BR(x0),(3.5)

u1 = u, t = t0 −R6, x ∈ BR(x0),(3.6)

and u2 solves the problem
∂u2
∂t
− a(x0, t0)∆3u2 + b(x0, t0)∆

2u2(3.7)

= −∇∆[(a(x0, t0)− a(x, t))∇∆u]
+∇∆[(b(x0, t0)− b(x, t))∇u] +∇∆~F, (x, t) ∈ SR,

u2 = 0,
∂u2
∂n

= 0, ∆u2 = 0, (x, t) ∈ ∂BR(x0),(3.8)

u2 = 0, t = t0 −R6, x ∈ BR(x0).(3.9)

By classical linear theory, the above decomposition is uniquely determined
by u.

We need several lemmas on u1 and u2.

Lemma 3.1. Assume that

|a(x, t)− a(x0, t0)| ≤ aσ(|t− t0|σ/6 + |x− x0|σ), (x, t) ∈ BR(x0)× JR(t0),

|b(x, t)− b(x0, t0)| ≤ bσ(|t− t0|σ/6 + |x− x0|σ), (x, t) ∈ BR(x0)× JR(t0),
where JR(t0) = (t0 −R6, t0 +R6). Then

sup
(t0−R6,t0+R6)

�

BR(x0)

u22(x, t) dx+
� �

SR

|∇∆u2|2 dx dt

≤ CR2σ
� �

SR

|∇∆u|2 dx dt+ CR2σ
� �

SR

|∇u|2 dx dt+ C sup
SR

|~F |2R5.

Proof. Multiply the equation (3.7) by u2 and integrate the resulting re-
lation over (t0 −R6, t)×BR(x0). Integrating by parts, we have

1

2

�

BR

u22 dx+a(x0, t0)

t�

t0−R6

ds
�

BR

|∇∆u2|2 dx+b(x0, t0)
t�

t0−R6

ds
�

BR

(∆u2)
2 dx

=

t�

t0−R6

ds
�

BR

[a(x0, t0)− a(x, t)]∇∆u · ∇∆u2 dx

+

t�

t0−R6

ds
�

BR

[b(x0, t0)− b(x, t)]∇u · ∇∆u2 dx

+

t�

t0−R6

ds
�

BR

~F∇∆u2 dx.
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Noticing that∣∣∣ t�

t0−R6

ds
�

BR

[a(x0, t0)− a(x, t)]∇∆u∇∆u2 dx
∣∣∣

≤ ε
� �

SR

|∇∆u2|2 ds dx+ Cεa
2
σR

2σ
� �

SR

|∇∆u|2 dx ds,

and ∣∣∣ t�

t0−R6

ds
�

BR

~F∇∆u2 dx
∣∣∣ ≤ ε � �

SR

|∇∆u2|2 dx ds+ CεR
5 sup |~F |2,

we hence obtain the estimate and the proof is complete.

Lemma 3.2. For any (x1, t1), (x2, t2) ∈ Sρ,

|u1(t1, x1)− u1(t2, x2)|2

|t1 − t2|1/6 + |x1 − x2|
≤ C sup

(t0−ρ6,t0+ρ6)

�

Bρ(x0)

(|∇u1(x, t)|2 + ρ4(∆u1)
2) dx+ C

� �

Sρ

(∆2u1)
2 dx dt.

Proof. By the Sobolev imbedding theorem, for any (x1, t), (x2, t) ∈ Sρ
we have

(3.10)
|u1(x1, t)− u1(x2, t)|2

|x1 − x2|
≤ C sup

(t0−ρ6,t0+ρ6)

�

Bρ(x0)

(|∇u1(x, t)|2 + ρ4(∆u1)
2) dx.

Integrating the equation over Ωy × (t1, t2), where 0 < t1 < t2 < T , ∆t =
t2 − t1, Ωy = (y1, y1 + (∆t)1/12)× (y2, y2 + (∆t)1/12), we see that
�

Ωy

[u1(z, t2)− u1(z, t1)] dz

=

t2�

t1

y2+(∆t)1/12�

y2

[G1(y1 + (∆t)1/12, y, s)−G1(y1, y, s)] dy ds

+

t2�

t1

y1+(∆t)1/12�

y1

[G2(y, y2 + (∆t)1/12, s)−G2(y, y2, s)] dy ds

=

t2�

t1

(∆t)1/12[G1(y1 + (∆t)1/12, y2 + θ∗1(∆t)
1/12, s)

−G1(y1, y2 + θ∗1(∆t)
1/12, s) +G2(y1 + θ∗2(∆t)

1/12, y2 + (∆t)1/12, s)

−G2(y1 + θ∗2(∆t)
1/12, y2, s)] ds,
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where

a(x0, t0)∇∆2u1(x, s)− b(x0, t0)∇∆u1(x, s) = (G1, G2).

Similar to the proof of Proposition 2.1, integrating the above equality
over Ωx, we get

|u1(x∗, t2)− u1(x∗, t1)|

≤ C|t1 − t2|1/6
[ � �
Sρ

(∆2u1)
2 dx dt+

� �

Sρ

(∆u1)
2 dx dt

]
,

where x∗ = y∗ + θ∗(∆t)1/12. This and (3.10) yield the desired conclusion.

Lemma 3.3 (Caccioppoli type inequality).

sup
(t0−(R/2)6,t0+(R/2)6)

�

BR/2(x0)

|u1(x, t)− (u1)R|2 dx+
� �

SR/2

|∇∆u1|2 dx dt

≤ C

R6

� �

SR

|u1(x, t)− (u1)R|2 dx dt,

sup
(t0−(R/2)6,t0+(R/2)6)

�

BR/2(x0)

|∇u1|2 dx+
� �

SR/2

|∆2u1|2 dx dt

≤ C

R6

� �

SR

|∇u1|2 dx dt ≤
C

R8

� �

S2R

|u1(x, t)− (u1)R|2 dx dt,

sup
(t0−(R/2)6,t0+(R/2)6)

�

BR/2(x0)

|∆u1|2 dx+
� �

SR/2

|∇∆2u1|2 dx dt

≤ C

R6

� �

SR

|∆u1|2 dx dt,

where

(u1)R =
1

|SR|

� �

SR

u1 dx dt.

Proof. For simplicity, we only prove the first inequality, since the other
can be shown similarly. Choose a cut-off function χ(x) defined on BR(x0)
such that χ(x) = 1 in BR/2(x0) and

|∇χ| ≤ C/R, |D2χ| ≤ C/R2,

|D3χ| ≤ C/R3, |D4χ| ≤ C/R4.

Let g ∈ C∞0 (t0,∞) with 0 ≤ g(t) ≤ 1, 0 ≤ g′(t) ≤ C/R6 and g(t) = 1
for t ≥ t0 − (R/2)6. Multiplying (3.4) by g(t)χ6[u1(x, t) − (u1)R] and then
integrating the resulting relation over (t0 −R6, t)×BR(x0), we have
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t�

t0−R6

g(s) ds
�

BR(x0)

∂u1
∂t

χ6[u1(x, t)− (u1)R] dx

− a(x0, t0)
t�

t0−R6

g(s) ds
�

BR(x0)

∆3u1χ
6[u1(x, t)− (u1)R] dx

+ b(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

∆2u1χ
6[u1(x, t)− (u1)R] dx = 0.

It follows by integrating by parts that
1

2

�

BR(x0)

g(s)χ6|u1(x, t)− (u1)R|2 dx

+ a(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

∇∆2u1∇[χ6[u1(x, t)− (u1)R]] dx

− b(x0, t0)
t�

t0−R6

g(s) ds
�

BR(x0)

∇∆u1∇[χ6[u1(x, t)− (u1)R]] dx

=
1

2

t�

t0−R6

g′ ds
�

BR(x0)

χ6|u1(x, t)− (u1)R|2 dx.

Thus
1

2

�

BR(x0)

g(s)χ6|u1(x, t)− (u1)R|2 dx

+ a(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

χ6|∇∆u1|2 dx

+ b(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

χ6(∆u1)
2 dx

+ a(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

[18χ5∇χ∆u1∇∆u1

+ (18χ5∆χ+ 90χ4|∇χ|2)∇u1∇∆u1
+ (6χ5∇∆χ+ 90χ4∇χ∆χ+ 120χ3|∇χ|2∇χ)(u1(x, t)− (u1)R)∇∆u1] dx

+ b(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

[12χ5∇χ∇u1∆u1

+ (30χ4|∇χ|2 + 6χ5∆χ)(u1(x, t)− (u1)R)∆u1] dx

=
1

2

t�

t0−R6

g′ ds
�

BR(x0)

χ6|u1 − (u1)R|2 dx.
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By the Cauchy inequality, we have∣∣∣18 t�

t0−R6

�

BR(x0)

g(s)a(x0, t0)χ
5∇χ∆u1∇∆u1 dx ds

∣∣∣
≤ 1

4
a(x0, t0)

t�

t0−R6

�

BR(x0)

g(s)χ6|∇∆u1|2 dx ds

+ C

t�

t0−R6

�

BR(x0)

g(s)χ4|∇χ|2(∆u1)2 dx ds,

∣∣∣ t�

t0−R6

�

BR(x0)

g(s)a(x0, t0)(18χ
5∆χ+ 90χ4|∇χ|2)∇u1∇∆u1 dx ds

∣∣∣
≤ 1

4
a(x0, t0)

t�

t0−R6

�

BR(x0)

g(s)χ6|∇∆u1|2 dx ds

+ C

t�

t0−R6

�

BR(x0)

g(s)χ4|∆χ|2|∇u1|2 dx ds

+ C

t�

t0−R6

�

BR(x0)

g(s)χ2|∇χ|4|∇u1|2 dx ds

and∣∣∣ t�

t0−R6

�

BR(x0)

g(s)a(x0, t0)(6χ
5∇∆χ+ 90χ4∇χ∆χ+ 120χ3|∇χ|2∇χ)

· (u1(x, t)− (u1)R)∇∆u1 dx ds
∣∣∣

≤ 1

4
a(x0, t0)

t�

t0−R6

�

BR(x0)

g(s)χ6|∇∆u1|2 dx ds

+
C

R6

t�

t0−R6

�

BR(x0)

(u1(x, t)− (u1)R)
2 dx ds.

Similarly, we obtain∣∣∣12 t�

t0−R6

�

BR(x0)

g(s)b(x0, t0)χ
5∇χ∇u1∆u1 dx ds

∣∣∣
≤ 1

4
b(x0, t0)

t�

t0−R6

�

BR(x0)

g(s)χ6(∆u1)
2 dx ds

+ C

t�

t0−R6

�

BR(x0)

g(s)χ4|∇χ|2|∇u1|2 dx ds,
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and∣∣∣ t�

t0−R6

�

BR(x0)

g(s)b(x0, t0)(30χ
4|∇χ|2 + 6χ5∆χ)(u1(x, t)− (u1)R)∆u1 dx ds

∣∣∣
≤ 1

4
b(x0, t0)

t�

t0−R6

�

BR(x0)

g(s)χ6(∆u1)
2 dx ds

+
C

R6

t�

t0−R6

�

BR(x0)

(u1(x, t)− (u1)R)
2 dx ds.

Notice that
t�

t0−R6

�

BR(x0)

g(s)χ4|∇χ|2|∇u1|2 dx ds

= −
t�

t0−R6

�

BR(x0)

g(s)(u1(x, t)− (u1)R)∇(χ4|∇χ|2∇u1) dx ds

= −
t�

t0−R6

�

BR(x0)

g(s)(u1(x, t)− (u1)R)χ
4|∇χ|2∆u1 dx ds

+
1

2

t�

t0−R6

�

BR(x0)

g(s)(u1(x, t)− (u1)R)
2∆(χ4|∇χ|2) dx ds

≤ 1

4
b(x0, t0)

t�

t0−R6

�

BR(x0)

g(s)χ6(∆u1)
2 dx ds

+
C

R6

t�

t0−R6

�

BR(x0)

(u1(x, t)− (u1)R)
2 dx ds.

Combining the above expressions yields

�

BR(x0)

g(s)χ6|u1(x, t)−(u1)R|2 dx+
1

2
a(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

χ6|∇∆u1|2 dx

+ b(x0, t0)

t�

t0−R6

g(s) ds
�

BR(x0)

χ6(∆u1)
2 dx

≤
t�

t0−R6

g′ ds
�

BR(x0)

χ6|u1 − (u1)R|2 dx+ C

t�

t0−R6

�

BR(x0)

χ2|∇χ|4|∇u1|2 dx ds
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+ C

t�

t0−R6

�

BR(x0)

χ4|∆χ|2|∇u1|2 dx ds

+ C

t�

t0−R6

�

BR(x0)

χ4|∇χ|2(∆u1)2 dx ds

+
C

R6

t�

t0−R6

�

BR(x0)

(u1(x, t)− (u1)R)
2 dx ds

≡
t�

t0−R6

g′ ds
�

BR(x0)

χ6|u1 − (u1)R|2 dx+ C(I1 + I2 + I3 + I4).

As for I1, we get

I1 = −
t�

t0−R6

�

BR(x0)

u1∇(χ2|∇χ|4∇u1) dx dt(3.11)

= −
t�

t0−R6

�

BR(x0)

χ2|∇χ|4u1∆u1 dx dt

−
t�

t0−R6

�

BR(x0)

∇(χ2|∇χ|4)u1∇u1 dx dt

≤ ε1I3 + C

t�

t0−R6

�

BR(x0)

|∇χ|6u21 dx dt

+
1

2

t�

t0−R6

�

BR(x0)

D2(χ2|∇χ|4)u21 dx dt

≤ ε1I3 + CI4.

As for I2, we have

I2 = −
t�

t0−R6

�

BR(x0)

u1∇(χ4|∆χ|2∇u1) dx dt

=

t�

t0−R6

�

BR(x0)

∇χ∇(χ4∆χu1∆u1) dx dt

+
1

2

t�

t0−R6

�

BR(x0)

∆(χ4|∆χ|2)u21 dx dt
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≤
t�

t0−R6

�

BR(x0)

∇χ∇(χ4∆χ)u1∆u1 dx dt

+

t�

t0−R6

�

BR(x0)

χ4∇χ∆χ(∇u1∆u1 + u1∇∆u1) dx dt+ CI4

= ε2I3 + CI4 + ε3

t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt

− 1

2

t�

t0−R6

�

BR(x0)

∇(χ4∇χ∆χ)|∇u1|2 dx dt

= ε2I3 + CI4 + ε3

t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt−
1

2
I2

− 1

2

t�

t0−R6

�

BR(x0)

(χ4∇χ∇∆χ+ 4χ3|∇χ|2∆χ)|∇u1|2 dx dt,

that is,

I2 ≤ ε2I3 + CI4 + ε3

t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt

− 1

3

t�

t0−R6

�

BR(x0)

(χ4∇χ∇∆χ+ 4χ3|∇χ|2∆χ)|∇u1|2 dx dt.

On the other hand,

−
t�

t0−R6

�

BR(x0)

(χ4∇χ∇∆χ+ 4χ3|∇χ|2∆χ)|∇u1|2 dx dt

=

t�

t0−R6

�

BR(x0)

(χ4∇χ∇∆χ+ 4χ3|∇χ|2∆χ)u1∆u1 dx dt

+

t�

t0−R6

�

BR(x0)

(∇(χ4∇χ∇∆χ) + 4∇(χ3|∇χ|2∆χ))u1∇u1 dx dt

≤ εI3 + CI4.

Combining the above two yields

I2 ≤ ε4I3 + CI4 + ε3

t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt.(3.12)
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Notice that

I3 = −
t�

t0−R6

�

BR(x0)

χ4|∇χ|2∇u1∇∆u1 dx dt

−
t�

t0−R6

�

BR(x0)

(4χ3|∇χ|2∇χ+ 2χ4∇χ∆χ)∇u1∆u1 dx dt

≤ ε5
t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt+ C(ε5)I1 +
1

4
I3 + CI1 +

1

4
I3 + CI2,

that is,

I3 ≤ 2C(ε5)I1 + CI2 + 2ε5

t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt.(3.13)

Finally, from (3.11)–(3.13), choosing ε1, ε3, ε4 small enough, we see that

Ii ≤ ε
t�

t0−R6

�

BR(x0)

χ6|∇∆u1|2 dx dt+ CI4, i = 1, 2, 3.

Hence we immediately obtain the desired first inequality of the lemma.

Lemma 3.4. Assume that

|a(x, t)− a(x0, t0)| ≤ aσ(|t− t0|σ/6 + |x− x0|σ),
t ∈ (t0 −R6, t0 +R6), x ∈ BR(x0).

Then for any ρ ∈ (0, R),

1

ρ8

� �

Sρ

(|u1 − (u1)ρ|2 + ρ6|∇∆u1|2) dx dt

≤ C

R8

� �

SR

(|u1 − (u1)R|2 +R6|∇∆u1|2) dx dt.

Proof. One only needs to check the inequality for ρ ≤ R/2. From Lemmas
3.2 and 3.3, we have
1

ρ8

� �

Sρ

|u1 − (u1)ρ|2 dx dt ≤ C sup
(t0−(R/2)6,t0+(R/2)6)

�

BR/2(x0)

(|∇u1(x, t)|2

+R4(∆u1)
2) dx+ C

� �

SR/2

|∆2u1|2 dx dt

≤ C

R8

� �

SR

(|u1 − (u1)R|2 +R6|∇∆u1|2) dx dt.
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On the other hand,
� �

Sρ

ρ6|∇∆u1|2 dx dt

≤ C1

� �

Sρ

ρ8(∆2u1)
2 dx dt+ C2

� �

Sρ

ρ2|∇u1|2 dx dt

≤ C1ρ
8

� �

SR/2

(∆2u1)
2 dx dt+ C2ρ

8 sup
(t0−(R/2)6,t0+(R/2)6)

�

BR/2(x0)

|∇u1|2 dx

≤ C
(
ρ

R

)8 � �

SR/2

R2|∇u1|2 dx dt

≤ C
(
ρ

R

)8[� �
SR

R6|∇∆u1|2 dx dt+
� �

SR

(u1 − (u1)R)
2 dx dt

]
.

The conclusion of the lemma follows at once.

Lemma 3.5. For λ ∈ (5, 6),

ϕ(ρ) ≤ Cλ
(
ϕ(R0) + sup

SR0

|~F |2
)
ρλ, ρ ≤ R0 = min(dist(x0, ∂Ω), t

1/6
0 ),

where Cλ depends on λ, R0 and the known quantities.

Proof. By Lemma 3.4,

ϕ(ρ) =
� �

Sρ

(|u− (u)ρ|2 + ρ6|∇∆u|2) dx dt

=
� �

Sρ

(|u1 − (u1)ρ|2 + ρ6|∇∆u1|2) dx dt

+
� �

Sρ

(|u2 − (u2)ρ|2 + ρ6|∇∆u2|2) dx dt

≤ C
(
ρ

R

)8 � �

SR

(|u− (u)R|2 +R6|∇∆u|2) dx dt

+ C
� �

SR

(|u2|2 +R6|∇∆u2|2) dx dt

≤ C[(ρ/R)8 +R2σ]ϕ(R) + C sup
SR0

|~F |2R13.

The conclusion follows immediately from [GS].

Similar to the discussion involving Campanato spaces in [GS], we first
deduce from Lemma 3.5 the following:
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Theorem 3.6. Let ~F be an appropriately smooth function and u be
a smooth solution of the problem (3.1)–(3.3). Then for any α ∈ (0, 1/2),
there exists a coefficient K, depending only on α, aσ, bσ,

		
QT

u2 dx dt and		
QT
|∇∆u|2 dx dt, such that

|u(x1, t1)− u(x2, t2)| ≤ K(1 + sup |~F |)(|x1 − x2|α + |t1 − t2|α/6).(3.14)

Proof of Proposition 3.1. Let w = ∆u−∆u0. Then w satisfies
∂u

∂t
−∇∆(a(x, t)∇∆u) +∇∆(b(x, t)∇u) = ∇∆~F,

u|∂Ω = ∆u|∂Ω = ∆2u|∂Ω = 0,

u(x, 0) = 0,

where a(x, t) = km(u), b(x, t) = m(u)a(u) and ~F = m(u)
(
k∇∆2u0 −

a(u)∇∆u0−a′(u)∇uw−a′(u)∇u∆u0−a′(u)∇uw−a′(u)∇u∆u0+h′(u)∇u−
a′′(u)

2 |∇u|
2∇u

)
. Hence, using (2.5)–(2.8) and Theorem 3.6, we conclude that

(3.15) |∆u(x1, t1)−∆u(x2, t2)| ≤ C(|x1 − x2|α/2 + |t1 − t2|α/12).
The conclusion follows immediately from the classical theory, since we can
transform the equation (1.1) into the form

∂u

∂t
+ a1(x, t)∆

3u+~b1(x, t)∇∆2u+ a2(x, t)∆
2u+~b2(x, t)∇∆u

+ a3(x, t)∆u+~b3(x, t)∇u = 0,

where the Hölder norms of
a1(x, t) = −km(u(x, t)), ~b1(x, t) = −km′(u(x, t))∇u(x, t),
a2(x, t) = m(u(x, t))a(u(x, t)), ~b2(x, t) = [m′(u)a(u) + 3m(u)a′(u)]∇u,
a3(x, t) = 2m(u)a′(u)∆u+

(
2m′(u)a′(u) + 7

2m(u)a′′(u)
)
|∇u|2 − h′(u),

~b3(x, t) =
(
1
2m
′(u)a′′(u) + 1

2m
′′(u)a′′′(u)

)
|∇u|2∇u− h′′(u)∇u

have been estimated in the above discussion.

Proposition 3.2. If u, ∇u are Hölder continuous in QT , then u is
classical in QT .

Proof. Fix (x0, t0) ∈ ∂Ω×(0, T ) and assume that in some neighbourhood
of x0, ∂Ω is explicitly expressed by a function y = ϕ(x). We split u as u1+u2
in ΩR(x0)× (t0 −R6, t0 +R6) with ΩR(x0) = BR(x0) ∩Ω, where

∂u1
∂t
− a(x0, t0)∆3u1 + b(x0, t0)∆

2u1 = 0, (x, t) ∈ SR,

u1 = u, ∆u1 = ∆u, ∆2u1 = ∆2u, x ∈ ∂BR(x0),
u1 = u, t = t0 −R6, x ∈ BR(x0),
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and u2 solves the problem
∂u2
∂t
− a(x0, t0)∆3u2 + b(x0, t0)∆

2u2 = −∇∆[(a(x0, t0)− a(x, t))∇∆u]

+∇∆[(b(x0, t0)− b(x, t))∇u] +∇∆~F, (x, t) ∈ SR,

u2 = 0, ∆u2 = 0, ∆2u2 = 0, (x, t) ∈ ∂BR(x0)× (t0 −R6, t0 +R6),

u2 = 0, t = t0 −R6, x ∈ BR(x0).
Define the normal and tangential derivatives as

∂n = ϕ′(x)
∂

∂x1
− ∂

∂x2
, ∂τ =

∂

∂x1
+ ϕ′(x)

∂

∂x2
.

Now, we modify the function ϕ(ρ) as

ϕ(ρ) =
� �

Sρ

(|∂nu|2 + |∂τu− (∂τu)ρ|2 + ρ6|∇∆u|2) dx dt.

Similar to the proof of Proposition 3.1, we conclude that

|u1(x1, t1)− u1(x2, t2)|2

|t1 − t2|1/6 + |x1 − x2|
≤ C sup

(t0−ρ6,t0+ρ6)

�

Bρ(x0)

(|∂nu1|2 + |∂τu1 − (∂τu1)ρ|2 + ρ4(∆u1)
2) dx

+ C
� �

Sρ

(∆2u1)
2 dx dt,

and

sup
(t0−(R/2)6,t0+(R/2)6)

�

ΩR/2(x0)

(|∂nu1|2 + |∂τu1 − (∂τu1)1/2|2) dx

+
� �

SR/2

|∆2u1|2 dx dt ≤
C

R6

� �

SR

(|∂nu1|2 + |∂τu1 − (∂τu1)1/2|2) dx dt.

The remaining part of the proof is similar to that of Proposition 3.1, and we
omit the details.

Proof of Theorem 1.1. Combining Proposition 3.1 with Proposition 3.2
completes the proof.
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