Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions

by Changchun Liu (Changchun)

Abstract

We consider an initial-boundary problem for a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type estimates and Campanato spaces, we prove the global existence of classical solutions for the problem in two space dimensions.

1. Introduction. In this paper, we investigate the sixth order nonlinear parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\operatorname{div}\left[m(u)\left(k \nabla \Delta^{2} u+\nabla\left(-a(u) \Delta u-\frac{a^{\prime}(u)}{2}|\nabla u|^{2}+h(u)\right)\right)\right]=0 \tag{1.1}
\end{equation*}
$$ in a two-dimensional bounded domain $\Omega \subset \mathbb{R}^{2}$ with smooth boundary, where $k>0, a(u)=\gamma_{1} u^{2}+\gamma_{2}$, and $\gamma_{1}>0, \gamma_{2}>0$ are constants ([GG]). From physical considerations, we prefer to consider a typical case of the volumetric free energy $H(u)$, that is, $H^{\prime}(u)=h(u)$, in the following form ([GG, PZ]):

$$
\begin{equation*}
H(u)=(u+1)^{2}\left(u^{2}+h_{0}\right)(u-1)^{2} . \tag{H1}
\end{equation*}
$$

The equation (1.1) is supplemented by the boundary value conditions

$$
\begin{equation*}
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=\left.\Delta^{2} u\right|_{\partial \Omega}=0, \quad t>0 \tag{1.2}
\end{equation*}
$$

and the initial value condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \tag{1.3}
\end{equation*}
$$

The equation (1.1) is a sixth order parabolic equation which describes the dynamics of phase transitions in ternary oil-water-surfactant systems GG, GK, GK2]. Here $u(x, t)$ is a scalar order parameter which is proportional to the local difference between the oil and water concentrations. The surfactant has the property that one part of it is hydrophilic and the other lipophilic is called the amphiphile. In the system, almost pure oil, almost pure water

[^0]and microemulsion which consists of a homogeneous, isotropic mixture of oil and water can coexist in equilibrium.

During the past years, only a few works have been devoted to sixth-order parabolic equations in general BF, EGK1, EGK2, FK, KEMW, LT, Pawłow and Zajaczzkowski [PZ] proved that the initial boundary value problem for (1.1) with $m(u)=1$ admits a unique global smooth solution which depends continuously on the initial datum. F. Bernis and A. Friedman BF] have studied the initial boundary value problem for the thin film equation

$$
\frac{\partial u}{\partial t}+(-1)^{m-1} \partial_{x}\left(f(u) \partial_{x}^{2 m+1} u\right)=0
$$

where $f(u)=|u|^{n} f_{0}(u), f_{0}(u)>0, n \geq 1$, and proved the existence of weak solutions preserving nonnegativity. J. W. Barrett, S. Langdon and R. Nuernberg BLN considered the above equation with $m=2$. A finite element method was presented which was proved to be well posed and convergent. Numerical experiments illustrated the theory.

Recently, Evans, Galaktionov and King [EGK1, EGK2] considered the sixth-order thin film equation containing an unstable (backward parabolic) second-order term

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\operatorname{div}\left[|u|^{n} \nabla \Delta^{2} u\right]-\Delta\left(|u|^{p-1} u\right), \quad n>0, p>1 \tag{1.4}
\end{equation*}
$$

By a formal matched expansion technique, they showed that, for the first critical exponent $p=p_{0}=n+1+4 / N$ for $n \in(0,5 / 4)$, where N is the space dimension, the free-boundary problem with zero-height, zero-contact-angle, zero-moment, and zero-flux conditions at the interface admits a countable set of continuous branches of radially symmetric self-similar blow-up solutions $u_{k}(x, t)=(T-t)^{-N /(n N+6)} f_{k}(y), y=x /(T-t)^{1 /(n N+6)}$, where $T>0$ is the blow-up time. Some other results can be found in JM, L, SP.

Our main purpose is to establish the global existence of classical solutions under much general assumptions. The main difficulties in treating the regularized problem are caused by the nonlinearity of the principal part and the lack of maximum principle. The key step is to get a priori estimates on the Hölder norm of Δu. The method used in [PZ] seems not applicable to the present situation. Our method is based on uniform Schauder type estimates for local in time solutions in the framework of Campanato spaces. For this purpose, we require some delicate local integral estimates rather than the global energy estimates used in the discussion of the Cahn-Hilliard equation with constant mobility.

Now, we state the main results of this paper.

Theorem 1.1. Assume that

$$
\begin{equation*}
m \in C^{1+\alpha}(\mathbb{R}), \quad m(s) \geq M_{1}, \quad\left|m^{\prime}(s)\right|^{2} \leq M_{2} m(s) \tag{H2}
\end{equation*}
$$

where M_{1}, M_{2}, α are positive constants, and $\left.u_{0}\right|_{\partial \Omega}=\left.\Delta u_{0}\right|_{\partial \Omega}=\left.\Delta^{2} u_{0}\right|_{\partial \Omega}$ $=0$. Then the problem (1.1)-(1.3) admits a unique classical solution $u \in$ $C^{6+\alpha, 1+\alpha / 6}\left(\bar{Q}_{T}\right)$ for any smooth initial data u_{0}, where $Q_{T}=\Omega \times(0, T)$.

This paper is organized as follows. We first present in Section 2 a key step, yielding a priori estimates on the Hölder norm of solutions, and then give the proof of our main theorem in Section 3.
2. Hölder estimates. As an important step, in this section we give Hölder norm estimates on local in time solutions. From the classical approach, it is not difficult to conclude that the problem admits a unique classical solution local in time. So it is sufficient to find a priori estimates.

Proposition 2.1. Assume that (H1), (H2) hold, and u is a smooth solution of the problem (1.1)-1.3). Then there exists a constant C, depending only on the known quantities, such that for any $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in Q_{T}$ and some $0<\alpha<1$,

$$
\begin{align*}
\left|u\left(x_{1}, t_{1}\right)-u\left(x_{2}, t_{2}\right)\right| & \leq C\left(\left|t_{1}-t_{2}\right|^{\alpha / 6}+\left|x_{1}-x_{2}\right|^{\alpha}\right) \tag{2.1}\\
\left|\nabla u\left(x_{1}, t_{1}\right)-\nabla u\left(x_{2}, t_{2}\right)\right| & \leq C\left(\left|t_{1}-t_{2}\right|^{1 / 12}+\left|x_{1}-x_{2}\right|^{1 / 2}\right) . \tag{2.2}
\end{align*}
$$

Proof. We set

$$
F(t)=\int_{\Omega}\left[\frac{k}{2}(\Delta u)^{2}+\frac{a(u)}{2}|\nabla u|^{2}+H(u)\right] d x .
$$

Integrating by parts and using the equation (1.1) itself and the boundary condition (1.2), we see that

$$
\begin{aligned}
\frac{d F(t)}{d t} & =\int_{\Omega}\left[k \Delta u \Delta u_{t}+a(u) \nabla u \nabla u_{t}+\frac{a^{\prime}(u)}{2}|\nabla u|^{2} u_{t}+h(u) u_{t}\right] d x \\
& =\int_{\Omega}\left[k \Delta^{2} u-a(u) \Delta u-\frac{a^{\prime}(u)}{2}|\nabla u|^{2}+h(u)\right] \frac{\partial u}{\partial t} d x \\
& =-\int_{\Omega} m(u)\left[k \nabla \Delta^{2} u+\nabla\left(-a(u) \Delta u-\frac{a^{\prime}(u)}{2}|\nabla u|^{2}+h(u)\right)\right]^{2} d x \leq 0 .
\end{aligned}
$$

On the other hand, we have

$$
\int_{\Omega}|\nabla u(x, t)|^{2} d x \leq \varepsilon \int_{\Omega}(\Delta u)^{2} d x+C(\varepsilon) \int_{\Omega} u^{2} d x
$$

By the Young inequality

$$
u^{2} \leq \varepsilon u^{6}+C_{1 \varepsilon}, \quad u^{4} \leq \varepsilon u^{6}+C_{2 \varepsilon}
$$

Combining the above inequalities and using $a(u)=\gamma_{1} u^{2}+\gamma_{2}, \gamma_{1}>0$, yields

$$
\begin{equation*}
\sup _{0<t<T} \int_{\Omega} u^{2} d x \leq C \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
& \sup _{0<t<T} \int_{\Omega}|\nabla u|^{2} d x \leq C \tag{2.4}\\
& \sup _{0<t<T} \int_{\Omega}(\Delta u)^{2} d x \leq C \tag{2.5}
\end{align*}
$$

By the Sobolev imbedding theorem,

$$
\begin{align*}
\sup _{Q_{T}}|u| & \leq C \tag{2.6}\\
\sup _{0<t<T} \int_{\Omega}|\nabla u|^{q} d x & \leq C, \quad 2 \leq q<\infty \tag{2.7}
\end{align*}
$$

Multiplying both sides of the equation 1.1 by $\Delta^{2} u$ and then integrating the resulting relation with respect to x over Ω, after integrating by parts, and using the boundary condition, we derive

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}(\Delta u)^{2} d x+\int_{\Omega} k m(u)\left|\nabla \Delta^{2} u\right|^{2} d x \\
& \quad=\int_{\Omega} m(u) a(u) \nabla \Delta u \nabla \Delta^{2} u d x+2 \int_{\Omega} m(u) a^{\prime}(u) \nabla u \Delta u \nabla \Delta^{2} u d x \\
& \quad+\frac{1}{2} \int_{\Omega} m(u) a^{\prime \prime}(u)|\nabla u|^{3} \nabla \Delta^{2} u d x-\int_{\Omega} m(u) h^{\prime}(u) \nabla u \nabla \Delta^{2} u d x
\end{aligned}
$$

Using the Hölder inequality and (2.6), we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}(\Delta u)^{2} d x & +\int_{\Omega} k m(u)\left|\nabla \Delta^{2} u\right|^{2} d x \\
\leq & \frac{k}{2} \int_{\Omega} m(u)\left|\nabla \Delta^{2} u\right|^{2} d x+C \int_{\Omega}|\nabla \Delta u|^{2} d x+C \int_{\Omega}|\nabla u|^{4} d x \\
& +C \int_{\Omega}|\Delta u|^{4} d x+C \int_{\Omega}|\nabla u|^{6} d x+C \int_{\Omega}|\nabla u|^{2} d x
\end{aligned}
$$

It follows by using the Gagliardo-Nirenberg inequalities (noticing that we consider only the two-dimensional case)

$$
\begin{aligned}
& \left(\int_{\Omega}|\nabla \Delta u|^{2} d x\right)^{1 / 2} \leq C_{1}\left(\int_{\Omega}\left|\nabla \Delta^{2} u\right|^{2} d x\right)^{1 / 6}\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{1 / 3} \\
& \left(\int_{\Omega}|\Delta u|^{4} d x\right)^{1 / 4} \leq C_{1}\left(\int_{\Omega}\left|\nabla \Delta^{2} u\right|^{2} d x\right)^{1 / 12}\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{5 / 12}
\end{aligned}
$$

By (2.5) and (2.7), we have

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega}(\Delta u)^{2} d x+\int_{\Omega} k m(u)\left|\nabla \Delta^{2} u\right|^{2} d x \leq \frac{k}{2} \int_{\Omega} m(u)\left|\nabla \Delta^{2} u\right|^{2} d x+C
$$

Hence

$$
\begin{equation*}
\iint_{Q_{T}} m(u)\left|\nabla \Delta^{2} u\right|^{2} d x d t \leq C \tag{2.8}
\end{equation*}
$$

(2.3) and 2.4 imply that

$$
\begin{equation*}
\left|u\left(x_{1}, t\right)-u\left(x_{2}, t\right)\right| \leq C\left|x_{1}-x_{2}\right|^{\alpha}, \quad 0<\alpha<1 \tag{2.9}
\end{equation*}
$$

Integrating the equation (1.1) over $\Omega_{y} \times\left(t_{1}, t_{2}\right)$, where $0<t_{1}<t_{2}<T$, $\Delta t=t_{2}-t_{1}, \Omega_{y}=\left(y_{1}, y_{1}+(\Delta t)^{1 / 12}\right) \times\left(y_{2}, y_{2}+(\Delta t)^{1 / 12}\right)$, we see that

$$
\begin{align*}
& \int_{\Omega_{y}}\left[u\left(z, t_{2}\right)-u\left(z, t_{1}\right)\right] d z \tag{2.10}\\
& =\int_{t_{1}}^{t_{2}} \int_{y_{2}}^{y_{2}+(\Delta t)^{1 / 12}}\left[F_{1}\left(y_{1}+(\Delta t)^{1 / 12}, y, s\right)-F_{1}\left(y_{1}, y, s\right)\right] d y d s \\
& +\int_{t_{1}}^{t_{2}} \int_{y_{1}}^{y_{1}+(\Delta t)^{1 / 12}}\left[F_{2}\left(y, y_{2}+(\Delta t)^{1 / 12}, s\right)-F_{2}\left(y, y_{2}, s\right)\right] d y d s \\
& =\int_{t_{1}}^{t_{2}}(\Delta t)^{1 / 12}\left[F_{1}\left(y_{1}+(\Delta t)^{1 / 12}, y_{2}+\theta_{1}^{*}(\Delta t)^{1 / 12}, s\right)\right. \\
& -F_{1}\left(y_{1}, y_{2}+\theta_{1}^{*}(\Delta t)^{1 / 12}, s\right)+F_{2}\left(y_{1}+\theta_{2}^{*}(\Delta t)^{1 / 12}, y_{2}+(\Delta t)^{1 / 12}, s\right) \\
& \left.-F_{2}\left(y_{1}+\theta_{2}^{*}(\Delta t)^{1 / 12}, y_{2}, s\right)\right] d s,
\end{align*}
$$

where

$$
m(u(x, s))\left(k \nabla \Delta^{2} u+\nabla\left(-a(u) \Delta u-\frac{a^{\prime}(u)}{2}|\nabla u|^{2}+h(u)\right)\right)(x, s)=\left(F_{1}, F_{2}\right)
$$

Set
$N\left(s, y_{1}, y_{2}\right)$

$$
\begin{aligned}
= & (\Delta t)^{1 / 12}\left[F_{1}\left(y_{1}+(\Delta t)^{1 / 12}, y_{2}+\theta_{1}^{*}(\Delta t)^{1 / 12}, s\right)-F_{1}\left(y_{1}, y_{2}+\theta_{1}^{*}(\Delta t)^{1 / 12}, s\right)\right. \\
& \left.+F_{2}\left(y_{1}+\theta_{2}^{*}(\Delta t)^{1 / 12}, y_{2}+(\Delta t)^{1 / 12}, s\right)-F_{2}\left(y_{1}+\theta_{2}^{*}(\Delta t)^{1 / 12}, y_{2}, s\right)\right]
\end{aligned}
$$

Then 2.10 is converted into

$$
\begin{aligned}
&(\Delta t)^{1 / 6} \int_{I=(0,1) \times(0,1)}\left[u\left(y+\theta(\Delta t)^{1 / 12}, t_{2}\right)-u\left(y+\theta(\Delta t)^{1 / 12}, t_{1}\right)\right] d \theta \\
&=\int_{t_{1}}^{t_{2}} N\left(s, y_{1}, y_{2}\right) d s
\end{aligned}
$$

Integrating the above equality over Ω_{x}, we get

$$
(\Delta t)^{1 / 3}\left(u\left(x^{*}, t_{2}\right)-u\left(x^{*}, t_{1}\right)\right)=\int_{t_{1}}^{t_{2}} \int_{\Omega_{x}} N(s, y) d y d s
$$

Here, we have used the mean value theorem, where $x^{*}=y^{*}+\theta^{*}(\Delta t)^{1 / 12}$. Hence by the Hölder inequality and (2.5), (2.6), 2.8), we get

$$
\left|u\left(x^{*}, t_{2}\right)-u\left(x^{*}, t_{1}\right)\right| \leq C(\Delta t)^{\alpha / 6}, \quad 0<\alpha<1
$$

Again multiplying both sides of 1.1 by $\Delta^{3} u$ and integrating the resulting relation with respect to x over Ω, integrating by parts, and using the boundary condition, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}|\nabla \Delta u|^{2} d x+\int_{\Omega} k m(u)\left(\Delta^{3} u\right)^{2} d x+\int_{\Omega} k m^{\prime}(u) \nabla u \cdot \nabla \Delta^{2} u \Delta^{3} u d x \\
& \quad-\int_{\Omega}\left[2\left(m(u) a^{\prime}(u)\right)^{\prime}+3 m(u) a^{\prime \prime}(u)\right]|\nabla u|^{2} \Delta u \Delta^{3} u d x \\
& \quad-\int_{\Omega} m(u) a(u) \Delta^{2} u \Delta^{3} u d x-\int_{\Omega}\left[2 m(u) a^{\prime}(u)+(m(u) a(u))^{\prime}\right] \nabla u \nabla \Delta u \Delta^{3} u d x \\
& \quad-2 \int_{\Omega} m(u) a^{\prime}(u)(\Delta u)^{2} \Delta^{3} u d x-\int_{\Omega}\left(m(u) a^{\prime \prime}(u)\right)^{\prime}|\nabla u|^{4} \Delta^{3} u d x \\
& \quad+\int_{\Omega}\left(m(u) h^{\prime}(u)\right)^{\prime}|\nabla u|^{2} \Delta^{3} u d x+\int_{\Omega} m(u) h^{\prime}(u) \Delta u \Delta^{3} u d x=0 .
\end{aligned}
$$

The Hölder inequality and the assumption (H2) yield

$$
\begin{aligned}
& \left|\int_{\Omega} m^{\prime}(u) \nabla u \nabla \Delta^{2} u \Delta^{3} u d x\right| \\
& \quad \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C \int_{\Omega} \frac{\left|m^{\prime}(u)\right|^{2}}{m(u)}|\nabla u|^{2}\left|\nabla \Delta^{2} u\right|^{2} d x \\
& \quad \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{2} u\right)^{2} d x+C M_{2} \int_{\Omega}|\nabla u|^{2}\left|\nabla \Delta^{2} u\right|^{2} d x \\
& \quad \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C M_{2}\left(\int_{\Omega}|\nabla u|^{8} d x\right)^{1 / 4}\left(\int_{\Omega}\left|\nabla \Delta^{2} u\right|^{8 / 3} d x\right)^{3 / 4}
\end{aligned}
$$

It follows by using the Gagliardo-Nirenberg inequality (noticing that we consider only the two-dimensional case)

$$
\left(\int_{\Omega}\left|\nabla \Delta^{2} u\right|^{8 / 3} d x\right)^{3 / 8} \leq C_{1}\left(\int_{\Omega}\left|\Delta^{3} u\right|^{2} d x\right)^{13 / 32}\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{3 / 32}
$$

and by 2.7 ,

$$
\left|\int_{\Omega} m^{\prime}(u) \nabla u \nabla \Delta^{2} u \Delta^{3} u d x\right| \leq \frac{1}{8} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C
$$

Again using 2.3 and the Hölder inequality, we have

$$
\begin{aligned}
\mid \int_{\Omega}\left[2\left(m(u) a^{\prime}(u)\right)^{\prime}\right. & \left.+3 m(u) a^{\prime \prime}(u)\right]|\nabla u|^{2} \Delta u \Delta^{3} u d x \mid \\
& \leq C \int_{\Omega}|\nabla u|^{4}|\Delta u|^{2} d x+\frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x \\
& \leq C \int_{\Omega}|\nabla u|^{8} d x+C \int_{\Omega}|\Delta u|^{4} d x+\frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x
\end{aligned}
$$

Using the Gagliardo-Nirenberg inequality, we have

$$
\int_{\Omega}|\Delta u|^{4} d x \leq C_{1}\left(\int_{\Omega}\left|\Delta^{3} u\right|^{2} d x\right)^{1 / 4}\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{7 / 4}
$$

By (2.5), we obtain

$$
\begin{aligned}
&\left.\left|\int_{\Omega}\left[2\left(m(u) a^{\prime}(u)\right)^{\prime}+3 m(u) a^{\prime \prime}(u)\right]\right| \nabla u\right|^{2} \Delta u \Delta^{3} u d x \mid \\
& \leq \frac{1}{8} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
&\left|-2 \int_{\Omega} m(u) a^{\prime}(u)(\Delta u)^{2} \Delta^{3} u d x\right| \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C \\
&\left|-\int_{\Omega}\left[2 m(u) a^{\prime}(u)+(m(u) a(u))^{\prime}\right] \nabla u \nabla \Delta u \Delta^{3} u d x\right| \\
& \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C \\
&\left|-\int_{\Omega} m(u) a(u) \Delta^{2} u \Delta^{3} u d x\right| \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C \\
&\left.\left|-\int_{\Omega}\left(m(u) a^{\prime \prime}(u)\right)^{\prime}\right| \nabla u\right|^{4} \Delta^{3} u d x \mid \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C \\
&\left.\left|\int_{\Omega}\left(m(u) h^{\prime}(u)\right)^{\prime}\right| \nabla u\right|^{2} \Delta^{3} u d x \mid \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C \\
&\left|\int_{\Omega} m(u) h^{\prime}(u) \Delta u \Delta^{3} u d x\right| \leq \frac{1}{16} \int_{\Omega} m(u)\left(\Delta^{3} u\right)^{2} d x+C
\end{aligned}
$$

Summing up, we have

$$
\frac{d}{d t} \int_{\Omega}|\nabla \Delta u|^{2} d x+C_{1} \int_{\Omega}\left(\Delta^{3} u\right)^{2} d x \leq C_{2}
$$

By Gronwall's inequality, we obtain

$$
\begin{align*}
& \int_{\Omega}|\nabla \Delta u|^{2} d x \leq C, \quad 0<t<T \tag{2.11}\\
& \iint_{Q_{T}}\left(\Delta^{3} u\right)^{2} d x d t \leq C \tag{2.12}
\end{align*}
$$

Similar to the discussion above, we have

$$
\begin{equation*}
\left|\nabla u\left(x_{1}, t_{1}\right)-\nabla u\left(x_{2}, t_{2}\right)\right| \leq C\left(\left|x_{1}-x_{2}\right|^{1 / 2}+\left|t_{1}-t_{2}\right|^{1 / 12}\right) \tag{2.13}
\end{equation*}
$$

3. Proof of the main result. This section is devoted to the proof of Theorem 1.1. The key step is the Hölder estimate for Δu. We divide the argument into the following propositions.

Proposition 3.1. If $u, \nabla u$ are Hölder continuous in the interior of Q_{T}, then u is classical in the interior of Q_{T}.

We consider the following linear problem:

$$
\begin{align*}
& \frac{\partial u}{\partial t}-\nabla \Delta(a(x, t) \nabla \Delta u)+\nabla \Delta(b(x, t) \nabla u)=\nabla \Delta \vec{F} \tag{3.1}\\
& \left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=\left.\Delta^{2} u\right|_{\partial \Omega}=0 \tag{3.2}\\
& u(x, 0)=0 \tag{3.3}
\end{align*}
$$

Here we do not specify the smoothness of the given functions $a(x, t), b(x, t)$ and \vec{F}, but simply assume that they are sufficiently smooth. Our main purpose is to find a relation between the Hölder norm of the solution u and $a(x, t), b(x, t), \vec{F}$.

The crucial step is to establish estimates on the Hölder norm of u. Fix $\left(x_{0}, t_{0}\right) \in \Omega \times(0, T)$ and define

$$
\varphi(\rho)=\iint_{S_{\rho}}\left(\left|u-u_{\rho}\right|^{2}+\rho^{6}|\nabla \Delta u|^{2}\right) d x d t \quad(\rho>0)
$$

where

$$
S_{\rho}=B_{\rho}\left(x_{0}\right) \times\left(t_{0}-\rho^{6}, t_{0}+\rho^{6}\right), \quad u_{\rho}=\frac{1}{\left|S_{\rho}\right|} \iint_{S_{\rho}} u d x d t
$$

and $B_{\rho}\left(x_{0}\right)$ is the ball centred at x_{0} of radius ρ.
Let u be the solution of the problem (3.1)-(3.3). We split u on S_{R} into $u=u_{1}+u_{2}$, where u_{1} is the solution of the problem

$$
\begin{equation*}
\frac{\partial u_{1}}{\partial t}-a\left(x_{0}, t_{0}\right) \Delta^{3} u_{1}+b\left(x_{0}, t_{0}\right) \Delta^{2} u_{1}=0, \quad(x, t) \in S_{R} \tag{3.4}
\end{equation*}
$$

$$
\begin{array}{ll}
u_{1}=u, & \frac{\partial u_{1}}{\partial n}=\frac{\partial u}{\partial n}, \quad \Delta u_{1}=\Delta u, \quad x \in \partial B_{R}\left(x_{0}\right) \\
u_{1}=u, & t=t_{0}-R^{6}, x \in B_{R}\left(x_{0}\right) \tag{3.6}
\end{array}
$$

and u_{2} solves the problem

$$
\begin{align*}
\frac{\partial u_{2}}{\partial t}- & a\left(x_{0}, t_{0}\right) \Delta^{3} u_{2}+b\left(x_{0}, t_{0}\right) \Delta^{2} u_{2} \tag{3.7}\\
= & -\nabla \Delta\left[\left(a\left(x_{0}, t_{0}\right)-a(x, t)\right) \nabla \Delta u\right] \\
& +\nabla \Delta\left[\left(b\left(x_{0}, t_{0}\right)-b(x, t)\right) \nabla u\right]+\nabla \Delta \vec{F}, \quad(x, t) \in S_{R} \\
& \quad \begin{aligned}
u_{2}= & 0, \quad \frac{\partial u_{2}}{\partial n}=0, \quad \Delta u_{2}=0, \quad(x, t) \in \partial B_{R}\left(x_{0}\right) \\
u_{2}= & 0, \quad t=t_{0}-R^{6}, x \in B_{R}\left(x_{0}\right)
\end{aligned} \tag{3.8}
\end{align*}
$$

By classical linear theory, the above decomposition is uniquely determined by u.

We need several lemmas on u_{1} and u_{2}.
Lemma 3.1. Assume that
$\left|a(x, t)-a\left(x_{0}, t_{0}\right)\right| \leq a_{\sigma}\left(\left|t-t_{0}\right|^{\sigma / 6}+\left|x-x_{0}\right|^{\sigma}\right), \quad(x, t) \in B_{R}\left(x_{0}\right) \times J_{R}\left(t_{0}\right)$, $\left|b(x, t)-b\left(x_{0}, t_{0}\right)\right| \leq b_{\sigma}\left(\left|t-t_{0}\right|^{\sigma / 6}+\left|x-x_{0}\right|^{\sigma}\right), \quad(x, t) \in B_{R}\left(x_{0}\right) \times J_{R}\left(t_{0}\right)$, where $J_{R}\left(t_{0}\right)=\left(t_{0}-R^{6}, t_{0}+R^{6}\right)$. Then

$$
\begin{aligned}
& \sup _{\left(t_{0}-R^{6}, t_{0}+R^{6}\right)} \int_{B_{R}\left(x_{0}\right)} u_{2}^{2}(x, t) d x+\iint_{S_{R}}\left|\nabla \Delta u_{2}\right|^{2} d x d t \\
& \leq C R^{2 \sigma} \iint_{S_{R}}|\nabla \Delta u|^{2} d x d t+C R^{2 \sigma} \iint_{S_{R}}|\nabla u|^{2} d x d t+C \sup _{S_{R}}|\vec{F}|^{2} R^{5} .
\end{aligned}
$$

Proof. Multiply the equation (3.7) by u_{2} and integrate the resulting relation over $\left(t_{0}-R^{6}, t\right) \times B_{R}\left(x_{0}\right)$. Integrating by parts, we have

$$
\begin{aligned}
\frac{1}{2} \int_{B_{R}} u_{2}^{2} d x+a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} d s & \int_{B_{R}}\left|\nabla \Delta u_{2}\right|^{2} d x+b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} d s \int_{B_{R}}\left(\Delta u_{2}\right)^{2} d x \\
= & \int_{t_{0}-R^{6}}^{t} d s \int_{B_{R}}\left[a\left(x_{0}, t_{0}\right)-a(x, t)\right] \nabla \Delta u \cdot \nabla \Delta u_{2} d x \\
& +\int_{t_{0}-R^{6}}^{t} d s \int_{B_{R}}\left[b\left(x_{0}, t_{0}\right)-b(x, t)\right] \nabla u \cdot \nabla \Delta u_{2} d x \\
& +\int_{t_{0}-R^{6}}^{t} d s \int_{B_{R}} \vec{F} \nabla \Delta u_{2} d x
\end{aligned}
$$

Noticing that

$$
\begin{aligned}
\left|\int_{t_{0}-R^{6}}^{t} d s \int_{B_{R}}\left[a\left(x_{0}, t_{0}\right)-a(x, t)\right] \nabla \Delta u \nabla \Delta u_{2} d x\right| \\
\leq \varepsilon \iint_{S_{R}}\left|\nabla \Delta u_{2}\right|^{2} d s d x+C_{\varepsilon} a_{\sigma}^{2} R^{2 \sigma} \iint_{S_{R}}|\nabla \Delta u|^{2} d x d s
\end{aligned}
$$

and

$$
\left|\int_{t_{0}-R^{6}}^{t} d s \int_{B_{R}} \vec{F} \nabla \Delta u_{2} d x\right| \leq \varepsilon \iint_{S_{R}}\left|\nabla \Delta u_{2}\right|^{2} d x d s+C_{\varepsilon} R^{5} \sup |\vec{F}|^{2}
$$

we hence obtain the estimate and the proof is complete.
Lemma 3.2. For any $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in S_{\rho}$,

$$
\begin{aligned}
& \frac{\left|u_{1}\left(t_{1}, x_{1}\right)-u_{1}\left(t_{2}, x_{2}\right)\right|^{2}}{\left|t_{1}-t_{2}\right|^{1 / 6}+\left|x_{1}-x_{2}\right|} \\
& \quad \leq C \sup _{\left(t_{0}-\rho^{6}, t_{0}+\rho^{6}\right)} \int_{B_{\rho}\left(x_{0}\right)}\left(\left|\nabla u_{1}(x, t)\right|^{2}+\rho^{4}\left(\Delta u_{1}\right)^{2}\right) d x+C \iint_{S_{\rho}}\left(\Delta^{2} u_{1}\right)^{2} d x d t .
\end{aligned}
$$

Proof. By the Sobolev imbedding theorem, for any $\left(x_{1}, t\right),\left(x_{2}, t\right) \in S_{\rho}$ we have

$$
\begin{align*}
& \left.\frac{\mid u_{1}\left(x_{1}, t\right)-}{} u_{1}\left(x_{2}, t\right)\right|^{2} \tag{3.10}\\
& \left|x_{1}-x_{2}\right| \\
& \leq C \sup _{\left(t_{0}-\rho^{6}, t_{0}+\rho^{6}\right)} \int_{B_{\rho}\left(x_{0}\right)}\left(\left|\nabla u_{1}(x, t)\right|^{2}+\rho^{4}\left(\Delta u_{1}\right)^{2}\right) d x
\end{align*}
$$

Integrating the equation over $\Omega_{y} \times\left(t_{1}, t_{2}\right)$, where $0<t_{1}<t_{2}<T, \Delta t=$ $t_{2}-t_{1}, \Omega_{y}=\left(y_{1}, y_{1}+(\Delta t)^{1 / 12}\right) \times\left(y_{2}, y_{2}+(\Delta t)^{1 / 12}\right)$, we see that

$$
\begin{aligned}
& \int_{\Omega_{y}}\left[u_{1}\left(z, t_{2}\right)-u_{1}\left(z, t_{1}\right)\right] d z \\
&= \int_{t_{1}}^{t_{2}} \int_{y_{2}}^{y_{2}+(\Delta t)^{1 / 12}}\left[G_{1}\left(y_{1}+(\Delta t)^{1 / 12}, y, s\right)-G_{1}\left(y_{1}, y, s\right)\right] d y d s \\
& \quad+\int_{t_{1}}^{t_{2}} \int_{y_{1}}^{y_{1}+(\Delta t)^{1 / 12}}\left[G_{2}\left(y, y_{2}+(\Delta t)^{1 / 12}, s\right)-G_{2}\left(y, y_{2}, s\right)\right] d y d s \\
&= \int_{t_{1}}^{t_{2}}(\Delta t)^{1 / 12}\left[G_{1}\left(y_{1}+(\Delta t)^{1 / 12}, y_{2}+\theta_{1}^{*}(\Delta t)^{1 / 12}, s\right)\right. \\
& \quad-G_{1}\left(y_{1}, y_{2}+\theta_{1}^{*}(\Delta t)^{1 / 12}, s\right)+G_{2}\left(y_{1}+\theta_{2}^{*}(\Delta t)^{1 / 12}, y_{2}+(\Delta t)^{1 / 12}, s\right) \\
&\left.\quad-G_{2}\left(y_{1}+\theta_{2}^{*}(\Delta t)^{1 / 12}, y_{2}, s\right)\right] d s
\end{aligned}
$$

where

$$
a\left(x_{0}, t_{0}\right) \nabla \Delta^{2} u_{1}(x, s)-b\left(x_{0}, t_{0}\right) \nabla \Delta u_{1}(x, s)=\left(G_{1}, G_{2}\right)
$$

Similar to the proof of Proposition 2.1, integrating the above equality over Ω_{x}, we get

$$
\begin{aligned}
& \left|u_{1}\left(x^{*}, t_{2}\right)-u_{1}\left(x^{*}, t_{1}\right)\right| \\
& \qquad C C\left|t_{1}-t_{2}\right|^{1 / 6}\left[\iint_{S_{\rho}}\left(\Delta^{2} u_{1}\right)^{2} d x d t+\iint_{S_{\rho}}\left(\Delta u_{1}\right)^{2} d x d t\right]
\end{aligned}
$$

where $x^{*}=y^{*}+\theta^{*}(\Delta t)^{1 / 12}$. This and 3.10 yield the desired conclusion.
Lemma 3.3 (Caccioppoli type inequality).

$$
\begin{aligned}
& \sup _{\left(t_{0}-(R / 2)^{6}, t_{0}+(R / 2)^{6}\right)} \int_{B_{R / 2}\left(x_{0}\right)}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x+\iint_{S_{R / 2}}\left|\nabla \Delta u_{1}\right|^{2} d x d t \\
& \leq \frac{C}{R^{6}} \iint_{S_{R}}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x d t, \\
& \sup _{\left(t_{0}-(R / 2)^{6}, t_{0}+(R / 2)^{6}\right)} \int_{B_{R / 2}\left(x_{0}\right)}\left|\nabla u_{1}\right|^{2} d x+\iint_{S_{R / 2}}\left|\Delta^{2} u_{1}\right|^{2} d x d t \\
& \leq \frac{C}{R^{6}} \iint_{S_{R}}\left|\nabla u_{1}\right|^{2} d x d t \leq \frac{C}{R^{8}} \iint_{S_{2 R}}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x d t, \\
& \sup _{\left(t_{0}-(R / 2)^{6}, t_{0}+(R / 2)^{6}\right)} \int_{B_{R / 2}\left(x_{0}\right)}\left|\Delta u_{1}\right|^{2} d x+\iint_{S_{R / 2}}\left|\nabla \Delta^{2} u_{1}\right|^{2} d x d t \\
& \leq \frac{C}{R^{6}} \iint_{S_{R}}\left|\Delta u_{1}\right|^{2} d x d t,
\end{aligned}
$$

where

$$
\left(u_{1}\right)_{R}=\frac{1}{\left|S_{R}\right|} \iint_{S_{R}} u_{1} d x d t
$$

Proof. For simplicity, we only prove the first inequality, since the other can be shown similarly. Choose a cut-off function $\chi(x)$ defined on $B_{R}\left(x_{0}\right)$ such that $\chi(x)=1$ in $B_{R / 2}\left(x_{0}\right)$ and

$$
\begin{aligned}
|\nabla \chi| \leq C / R, & \left|D^{2} \chi\right| \leq C / R^{2} \\
\left|D^{3} \chi\right| \leq C / R^{3}, & \left|D^{4} \chi\right| \leq C / R^{4}
\end{aligned}
$$

Let $g \in C_{0}^{\infty}\left(t_{0}, \infty\right)$ with $0 \leq g(t) \leq 1,0 \leq g^{\prime}(t) \leq C / R^{6}$ and $g(t)=1$ for $t \geq t_{0}-(R / 2)^{6}$. Multiplying (3.4) by $g(t) \chi^{6}\left[u_{1}(x, t)-\left(u_{1}\right)_{R}\right]$ and then integrating the resulting relation over $\left(t_{0}-R^{6}, t\right) \times B_{R}\left(x_{0}\right)$, we have

$$
\begin{aligned}
& \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)} \frac{\partial u_{1}}{\partial t} \chi^{6}\left[u_{1}(x, t)-\left(u_{1}\right)_{R}\right] d x \\
& \quad-a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)} \Delta^{3} u_{1} \chi^{6}\left[u_{1}(x, t)-\left(u_{1}\right)_{R}\right] d x \\
& \quad+b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)} \Delta^{2} u_{1} \chi^{6}\left[u_{1}(x, t)-\left(u_{1}\right)_{R}\right] d x=0
\end{aligned}
$$

It follows by integrating by parts that

$$
\begin{aligned}
& \frac{1}{2} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x \\
& \quad+a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)}^{\int} \nabla \Delta^{2} u_{1} \nabla\left[\chi^{6}\left[u_{1}(x, t)-\left(u_{1}\right)_{R}\right]\right] d x \\
& \quad-b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)} \nabla \Delta u_{1} \nabla\left[\chi^{6}\left[u_{1}(x, t)-\left(u_{1}\right)_{R}\right]\right] d x \\
& \quad=\frac{1}{2} \int_{t_{0}-R^{6}}^{t} g^{\prime} d s \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \frac{1}{2} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x \\
& \quad+a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)}^{\int} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x \\
& \quad+b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)}^{\int} \chi^{6}\left(\Delta u_{1}\right)^{2} d x \\
& \quad+a\left(x_{0}, t_{0}\right) \int_{t_{0}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)}^{\int}\left[18 \chi^{5} \nabla \chi \Delta u_{1} \nabla \Delta u_{1}\right. \\
& \quad+\left(18 \chi^{5} \Delta \chi+90 \chi^{4}|\nabla \chi|^{2}\right) \nabla u_{1} \nabla \Delta u_{1} \\
& \left.\quad+\left(6 \chi^{5} \nabla \Delta \chi+90 \chi^{4} \nabla \chi \Delta \chi+120 \chi^{3}|\nabla \chi|^{2} \nabla \chi\right)\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right) \nabla \Delta u_{1}\right] d x \\
& \left.\quad+b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)}^{\left[12 \chi^{5} \nabla \chi \nabla u_{1} \Delta u_{1}\right.}+\left(30 \chi^{4}|\nabla \chi|^{2}+6 \chi^{5} \Delta \chi\right)\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right) \Delta u_{1}\right] d x \\
& =\frac{1}{2} \int_{t_{0}-R^{6}}^{t} g^{\prime} d s \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|u_{1}-\left(u_{1}\right)_{R}\right|^{2} d x .
\end{aligned}
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
& \left|18 \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) a\left(x_{0}, t_{0}\right) \chi^{5} \nabla \chi \Delta u_{1} \nabla \Delta u_{1} d x d s\right| \\
& \leq \frac{1}{4} a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d s \\
& +C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{4}|\nabla \chi|^{2}\left(\Delta u_{1}\right)^{2} d x d s, \\
& \left|\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) a\left(x_{0}, t_{0}\right)\left(18 \chi^{5} \Delta \chi+90 \chi^{4}|\nabla \chi|^{2}\right) \nabla u_{1} \nabla \Delta u_{1} d x d s\right| \\
& \leq \frac{1}{4} a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d s \\
& +C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{4}|\Delta \chi|^{2}\left|\nabla u_{1}\right|^{2} d x d s \\
& +C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{2}|\nabla \chi|^{4}\left|\nabla u_{1}\right|^{2} d x d s
\end{aligned}
$$

and

$$
\begin{array}{r}
\int_{t_{0}-R^{6} B_{R_{R}\left(x_{0}\right)}^{t}}^{\int_{0}} g(s) a\left(x_{0}, t_{0}\right)\left(6 \chi^{5} \nabla \Delta \chi+90 \chi^{4} \nabla \chi \Delta \chi+120 \chi^{3}|\nabla \chi|^{2} \nabla \chi\right) \\
\leq \\
\leq \frac{1}{4} a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d s \\
\left.+\frac{C}{R^{6}} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right) \nabla \Delta u_{1} d x d s \right\rvert\,
\end{array}
$$

Similarly, we obtain

$$
\begin{array}{r}
\left|12 \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) b\left(x_{0}, t_{0}\right) \chi^{5} \nabla \chi \nabla u_{1} \Delta u_{1} d x d s\right| \\
\leq \frac{1}{4} b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left(\Delta u_{1}\right)^{2} d x d s \\
+C \int_{t_{0}-R^{6} B_{R}\left(x_{0}\right)}^{t} g(s) \chi^{4}|\nabla \chi|^{2}\left|\nabla u_{1}\right|^{2} d x d s
\end{array}
$$

and

$$
\begin{aligned}
& \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) b\left(x_{0}, t_{0}\right)\left(30 \chi^{4}|\nabla \chi|^{2}+6 \chi^{5} \Delta \chi\right)\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right) \Delta u_{1} d x d s \mid \\
& \leq \frac{1}{4} b\left(x_{0}, t_{0}\right) \\
& \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left(\Delta_{1} u^{2} d x d s\right. \\
&+\frac{C}{R^{6}} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right)^{2} d x d s
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\int_{t_{0}-R^{6}}^{t} & \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{4}|\nabla \chi|^{2}\left|\nabla u_{1}\right|^{2} d x d s \\
= & -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s)\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right) \nabla\left(\chi^{4}|\nabla \chi|^{2} \nabla u_{1}\right) d x d s \\
= & -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s)\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right) \chi^{4}|\nabla \chi|^{2} \Delta u_{1} d x d s \\
& +\frac{1}{2} \int_{t_{0}-R^{6} B_{R}\left(x_{0}\right)}^{t} g(s)\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right)^{2} \Delta\left(\chi^{4}|\nabla \chi|^{2}\right) d x d s \\
\leq & \frac{1}{4} b\left(x_{0}, t_{0}\right) \int_{t_{0}}^{t} \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left(\Delta u_{1}\right)^{2} d x d s \\
& +\frac{C}{R^{6}} \int_{t_{0}-R^{6} B_{R}\left(x_{0}\right)}^{t} \int_{\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right)^{2} d x d s .}
\end{aligned}
$$

Combining the above expressions yields

$$
\begin{aligned}
& \int_{B_{R}\left(x_{0}\right)} g(s) \chi^{6}\left|u_{1}(x, t)-\left(u_{1}\right)_{R}\right|^{2} d x+\frac{1}{2} a\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x \\
& \quad+b\left(x_{0}, t_{0}\right) \int_{t_{0}-R^{6}}^{t} g(s) d s \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left(\Delta u_{1}\right)^{2} d x \\
& \leq \int_{t_{0}-R^{6}}^{t} g^{\prime} d s \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|u_{1}-\left(u_{1}\right)_{R}\right|^{2} d x+C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{2}|\nabla \chi|^{4}\left|\nabla u_{1}\right|^{2} d x d s
\end{aligned}
$$

$$
\begin{aligned}
& +C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{4}|\Delta \chi|^{2}\left|\nabla u_{1}\right|^{2} d x d s \\
& +C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{4}|\nabla \chi|^{2}\left(\Delta u_{1}\right)^{2} d x d s \\
& +\frac{C}{R^{6}} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(u_{1}(x, t)-\left(u_{1}\right)_{R}\right)^{2} d x d s \\
& \equiv \int_{t_{0}-R^{6}}^{t} g^{\prime} d s \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|u_{1}-\left(u_{1}\right)_{R}\right|^{2} d x+C\left(I_{1}+I_{2}+I_{3}+I_{4}\right)
\end{aligned}
$$

As for I_{1}, we get

$$
\begin{align*}
I_{1}= & -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} u_{1} \nabla\left(\chi^{2}|\nabla \chi|^{4} \nabla u_{1}\right) d x d t \tag{3.11}\\
= & -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{2}|\nabla \chi|^{4} u_{1} \Delta u_{1} d x d t \\
& -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \nabla\left(\chi^{2}|\nabla \chi|^{4}\right) u_{1} \nabla u_{1} d x d t \\
\leq & \varepsilon_{1} I_{3}+C \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}|\nabla \chi|^{6} u_{1}^{2} d x d t \\
& +\frac{1}{2} \int_{t_{0}-R^{6} B_{R}\left(x_{0}\right)}^{t} \int^{2}\left(\chi^{2}|\nabla \chi|^{4}\right) u_{1}^{2} d x d t \\
\leq & \varepsilon_{1} I_{3}+C I_{4} .
\end{align*}
$$

As for I_{2}, we have

$$
\begin{aligned}
I_{2}= & -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} u_{1} \nabla\left(\chi^{4}|\Delta \chi|^{2} \nabla u_{1}\right) d x d t \\
= & \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \nabla \chi \nabla\left(\chi^{4} \Delta \chi u_{1} \Delta u_{1}\right) d x d t \\
& +\frac{1}{2} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \Delta\left(\chi^{4}|\Delta \chi|^{2}\right) u_{1}^{2} d x d t
\end{aligned}
$$

$$
\begin{aligned}
\leq & \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \nabla \chi \nabla\left(\chi^{4} \Delta \chi\right) u_{1} \Delta u_{1} d x d t \\
& +\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{4} \nabla \chi \Delta \chi\left(\nabla u_{1} \Delta u_{1}+u_{1} \nabla \Delta u_{1}\right) d x d t+C I_{4} \\
= & \varepsilon_{2} I_{3}+C I_{4}+\varepsilon_{3} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t \\
& -\frac{1}{2} \int_{t_{0}-R^{6} B_{R}\left(x_{0}\right)}^{t} \int_{=} \nabla\left(\chi^{4} \nabla \chi \Delta \chi\right)\left|\nabla u_{1}\right|^{2} d x d t \\
= & \varepsilon_{2} I_{3}+C I_{4}+\varepsilon_{3} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t-\frac{1}{2} I_{2} \\
& -\frac{1}{2} \int_{t_{0}-R^{6} B_{R}\left(x_{0}\right)}^{t} \int_{\left(\chi^{4} \nabla \chi \nabla \Delta \chi+4 \chi^{3}|\nabla \chi|^{2} \Delta \chi\right)\left|\nabla u_{1}\right|^{2} d x d t}
\end{aligned}
$$

that is,

$$
\begin{aligned}
I_{2} \leq & \varepsilon_{2} I_{3}+C I_{4}+\varepsilon_{3} \int_{t_{0}-R^{6}}^{t} \int \chi_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t \\
& -\frac{1}{3} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(\chi^{4} \nabla \chi \nabla \Delta \chi+4 \chi^{3}|\nabla \chi|^{2} \Delta \chi\right)\left|\nabla u_{1}\right|^{2} d x d t
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(\chi^{4} \nabla \chi \nabla \Delta \chi+4 \chi^{3}|\nabla \chi|^{2} \Delta \chi\right)\left|\nabla u_{1}\right|^{2} d x d t \\
& \quad=\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(\chi^{4} \nabla \chi \nabla \Delta \chi+4 \chi^{3}|\nabla \chi|^{2} \Delta \chi\right) u_{1} \Delta u_{1} d x d t \\
& \quad+\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(\nabla\left(\chi^{4} \nabla \chi \nabla \Delta \chi\right)+4 \nabla\left(\chi^{3}|\nabla \chi|^{2} \Delta \chi\right)\right) u_{1} \nabla u_{1} d x d t \\
& \quad \leq \varepsilon I_{3}+C I_{4} .
\end{aligned}
$$

Combining the above two yields

$$
\begin{equation*}
I_{2} \leq \varepsilon_{4} I_{3}+C I_{4}+\varepsilon_{3} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t \tag{3.12}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
I_{3}= & -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{4}|\nabla \chi|^{2} \nabla u_{1} \nabla \Delta u_{1} d x d t \\
& -\int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)}\left(4 \chi^{3}|\nabla \chi|^{2} \nabla \chi+2 \chi^{4} \nabla \chi \Delta \chi\right) \nabla u_{1} \Delta u_{1} d x d t \\
\leq & \varepsilon_{5} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t+C\left(\varepsilon_{5}\right) I_{1}+\frac{1}{4} I_{3}+C I_{1}+\frac{1}{4} I_{3}+C I_{2}
\end{aligned}
$$

that is,

$$
\begin{equation*}
I_{3} \leq 2 C\left(\varepsilon_{5}\right) I_{1}+C I_{2}+2 \varepsilon_{5} \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t \tag{3.13}
\end{equation*}
$$

Finally, from 3.11 3.13 , choosing $\varepsilon_{1}, \varepsilon_{3}, \varepsilon_{4}$ small enough, we see that

$$
I_{i} \leq \varepsilon \int_{t_{0}-R^{6}}^{t} \int_{B_{R}\left(x_{0}\right)} \chi^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t+C I_{4}, \quad i=1,2,3
$$

Hence we immediately obtain the desired first inequality of the lemma.
Lemma 3.4. Assume that

$$
\begin{aligned}
&\left|a(x, t)-a\left(x_{0}, t_{0}\right)\right| \leq a_{\sigma}\left(\left|t-t_{0}\right|^{\sigma / 6}+\left|x-x_{0}\right|^{\sigma}\right) \\
& t \in\left(t_{0}-R^{6}, t_{0}+R^{6}\right), \quad x \in B_{R}\left(x_{0}\right)
\end{aligned}
$$

Then for any $\rho \in(0, R)$,

$$
\begin{aligned}
\frac{1}{\rho^{8}} \iint_{S_{\rho}}\left(\left|u_{1}-\left(u_{1}\right)_{\rho}\right|^{2}+\rho^{6} \mid \nabla\right. & \left.\left.\Delta u_{1}\right|^{2}\right) d x d t \\
& \leq \frac{C}{R^{8}} \iint_{S_{R}}\left(\left|u_{1}-\left(u_{1}\right)_{R}\right|^{2}+R^{6}\left|\nabla \Delta u_{1}\right|^{2}\right) d x d t
\end{aligned}
$$

Proof. One only needs to check the inequality for $\rho \leq R / 2$. From Lemmas 3.2 and 3.3 , we have

$$
\begin{aligned}
\frac{1}{\rho^{8}} \iint_{S_{\rho}}\left|u_{1}-\left(u_{1}\right)_{\rho}\right|^{2} d x d t \leq & \sup _{\left(t_{0}-(R / 2)^{6}, t_{0}+(R / 2)^{6}\right)} \int_{B_{R / 2}\left(x_{0}\right)}\left(\left|\nabla u_{1}(x, t)\right|^{2}\right. \\
& \left.+R^{4}\left(\Delta u_{1}\right)^{2}\right) d x+C \iint_{S_{R / 2}}\left|\Delta^{2} u_{1}\right|^{2} d x d t \\
\leq & \frac{C}{R^{8}} \iint_{S_{R}}\left(\left|u_{1}-\left(u_{1}\right)_{R}\right|^{2}+R^{6}\left|\nabla \Delta u_{1}\right|^{2}\right) d x d t
\end{aligned}
$$

On the other hand,
$\iint \rho^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t$
S_{ρ}

$$
\begin{aligned}
& \leq C_{1} \iint_{S_{\rho}} \rho^{8}\left(\Delta^{2} u_{1}\right)^{2} d x d t+C_{2} \iint_{S_{\rho}} \rho^{2}\left|\nabla u_{1}\right|^{2} d x d t \\
& \leq C_{1} \rho^{8} \iint_{S_{R / 2}}\left(\Delta^{2} u_{1}\right)^{2} d x d t+C_{2} \rho^{8} \sup _{\left(t_{0}-(R / 2)^{6}, t_{0}+(R / 2)^{6}\right)} \int_{B_{R / 2}\left(x_{0}\right)}\left|\nabla u_{1}\right|^{2} d x \\
& \leq C\left(\frac{\rho}{R}\right)^{8} \iint_{S_{R / 2}} R^{2}\left|\nabla u_{1}\right|^{2} d x d t \\
& \leq C\left(\frac{\rho}{R}\right)^{8}\left[\iint_{S_{R}} R^{6}\left|\nabla \Delta u_{1}\right|^{2} d x d t+\iint_{S_{R}}\left(u_{1}-\left(u_{1}\right)_{R}\right)^{2} d x d t\right]
\end{aligned}
$$

The conclusion of the lemma follows at once.
Lemma 3.5. For $\lambda \in(5,6)$,

$$
\varphi(\rho) \leq C_{\lambda}\left(\varphi\left(R_{0}\right)+\sup _{S_{R_{0}}}|\vec{F}|^{2}\right) \rho^{\lambda}, \quad \rho \leq R_{0}=\min \left(\operatorname{dist}\left(x_{0}, \partial \Omega\right), t_{0}^{1 / 6}\right)
$$

where C_{λ} depends on λ, R_{0} and the known quantities.
Proof. By Lemma 3.4.

$$
\begin{aligned}
\varphi(\rho)= & \iint_{S_{\rho}}\left(\left|u-(u)_{\rho}\right|^{2}+\rho^{6}|\nabla \Delta u|^{2}\right) d x d t \\
= & \iint_{S_{\rho}}\left(\left|u_{1}-\left(u_{1}\right)_{\rho}\right|^{2}+\rho^{6}\left|\nabla \Delta u_{1}\right|^{2}\right) d x d t \\
& +\iint_{S_{\rho}}\left(\left|u_{2}-\left(u_{2}\right)_{\rho}\right|^{2}+\rho^{6}\left|\nabla \Delta u_{2}\right|^{2}\right) d x d t \\
\leq & C\left(\frac{\rho}{R}\right)^{8} \iint_{S_{R}}\left(\left|u-(u)_{R}\right|^{2}+R^{6}|\nabla \Delta u|^{2}\right) d x d t \\
& +C \iint_{S_{R}}\left(\left|u_{2}\right|^{2}+R^{6}\left|\nabla \Delta u_{2}\right|^{2}\right) d x d t \\
\leq & C\left[(\rho / R)^{8}+R^{2 \sigma}\right] \varphi(R)+C \sup _{S_{R_{0}}}|\vec{F}|^{2} R^{13} .
\end{aligned}
$$

The conclusion follows immediately from GS].
Similar to the discussion involving Campanato spaces in GS, we first deduce from Lemma 3.5 the following:

TheOrem 3.6. Let \vec{F} be an appropriately smooth function and u be a smooth solution of the problem (3.1)-(3.3). Then for any $\alpha \in(0,1 / 2)$, there exists a coefficient K, depending only on $\alpha, a_{\sigma}, b_{\sigma}, \iint_{Q_{T}} u^{2} d x d t$ and $\iint_{Q_{T}}|\nabla \Delta u|^{2} d x d t$, such that

$$
\begin{equation*}
\left|u\left(x_{1}, t_{1}\right)-u\left(x_{2}, t_{2}\right)\right| \leq K(1+\sup |\vec{F}|)\left(\left|x_{1}-x_{2}\right|^{\alpha}+\left|t_{1}-t_{2}\right|^{\alpha / 6}\right) \tag{3.14}
\end{equation*}
$$

Proof of Proposition 3.1. Let $w=\Delta u-\Delta u_{0}$. Then w satisfies

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nabla \Delta(a(x, t) \nabla \Delta u)+\nabla \Delta(b(x, t) \nabla u)=\nabla \Delta \vec{F} \\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=\left.\Delta^{2} u\right|_{\partial \Omega}=0 \\
u(x, 0)=0
\end{array}\right.
$$

where $a(x, t)=k m(u), b(x, t)=m(u) a(u)$ and $\vec{F}=m(u)\left(k \nabla \Delta^{2} u_{0}-\right.$ $a(u) \nabla \Delta u_{0}-a^{\prime}(u) \nabla u w-a^{\prime}(u) \nabla u \Delta u_{0}-a^{\prime}(u) \nabla u w-a^{\prime}(u) \nabla u \Delta u_{0}+h^{\prime}(u) \nabla u-$ $\left.\frac{a^{\prime \prime}(u)}{2}|\nabla u|^{2} \nabla u\right)$. Hence, using 2.5-2.8 and Theorem 3.6. we conclude that

$$
\begin{equation*}
\left|\Delta u\left(x_{1}, t_{1}\right)-\Delta u\left(x_{2}, t_{2}\right)\right| \leq C\left(\left|x_{1}-x_{2}\right|^{\alpha / 2}+\left|t_{1}-t_{2}\right|^{\alpha / 12}\right) \tag{3.15}
\end{equation*}
$$

The conclusion follows immediately from the classical theory, since we can transform the equation 1.1 into the form

$$
\begin{aligned}
\frac{\partial u}{\partial t}+a_{1}(x, t) \Delta^{3} u+\vec{b}_{1}(x, t) \nabla \Delta^{2} u+ & a_{2}(x, t) \Delta^{2} u+\vec{b}_{2}(x, t) \nabla \Delta u \\
& +a_{3}(x, t) \Delta u+\vec{b}_{3}(x, t) \nabla u=0
\end{aligned}
$$

where the Hölder norms of

$$
\begin{array}{ll}
a_{1}(x, t)=-k m(u(x, t)), & \vec{b}_{1}(x, t)=-k m^{\prime}(u(x, t)) \nabla u(x, t), \\
a_{2}(x, t)=m(u(x, t)) a(u(x, t)), & \vec{b}_{2}(x, t)=\left[m^{\prime}(u) a(u)+3 m(u) a^{\prime}(u)\right] \nabla u, \\
a_{3}(x, t)=2 m(u) a^{\prime}(u) \Delta u+\left(2 m^{\prime}(u) a^{\prime}(u)+\frac{7}{2} m(u) a^{\prime \prime}(u)\right)|\nabla u|^{2}-h^{\prime}(u), \\
\vec{b}_{3}(x, t)=\left(\frac{1}{2} m^{\prime}(u) a^{\prime \prime}(u)+\frac{1}{2} m^{\prime \prime}(u) a^{\prime \prime \prime}(u)\right)|\nabla u|^{2} \nabla u-h^{\prime \prime}(u) \nabla u
\end{array}
$$

have been estimated in the above discussion.
Proposition 3.2. If $u, \nabla u$ are Hölder continuous in \bar{Q}_{T}, then u is classical in \bar{Q}_{T}.

Proof. Fix $\left(x_{0}, t_{0}\right) \in \partial \Omega \times(0, T)$ and assume that in some neighbourhood of $x_{0}, \partial \Omega$ is explicitly expressed by a function $y=\varphi(x)$. We split u as $u_{1}+u_{2}$ in $\Omega_{R}\left(x_{0}\right) \times\left(t_{0}-R^{6}, t_{0}+R^{6}\right)$ with $\Omega_{R}\left(x_{0}\right)=B_{R}\left(x_{0}\right) \cap \Omega$, where

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial t}-a\left(x_{0}, t_{0}\right) \Delta^{3} u_{1}+b\left(x_{0}, t_{0}\right) \Delta^{2} u_{1}=0, \quad(x, t) \in S_{R} \\
& u_{1}=u, \quad \Delta u_{1}=\Delta u, \quad \Delta^{2} u_{1}=\Delta^{2} u, \quad x \in \partial B_{R}\left(x_{0}\right) \\
& u_{1}=u, \quad t=t_{0}-R^{6}, \quad x \in B_{R}\left(x_{0}\right)
\end{aligned}
$$

and u_{2} solves the problem

$$
\begin{aligned}
& \frac{\partial u_{2}}{\partial t}-a\left(x_{0}, t_{0}\right) \Delta^{3} u_{2}+b\left(x_{0}, t_{0}\right) \Delta^{2} u_{2}=-\nabla \Delta\left[\left(a\left(x_{0}, t_{0}\right)-a(x, t)\right) \nabla \Delta u\right] \\
& \quad+\nabla \Delta\left[\left(b\left(x_{0}, t_{0}\right)-b(x, t)\right) \nabla u\right]+\nabla \Delta \vec{F}, \quad(x, t) \in S_{R} \\
& u_{2}=0, \Delta u_{2}=0, \Delta^{2} u_{2}=0, \quad(x, t) \in \partial B_{R}\left(x_{0}\right) \times\left(t_{0}-R^{6}, t_{0}+R^{6}\right) \\
& u_{2}=0, \quad t=t_{0}-R^{6}, x \in B_{R}\left(x_{0}\right)
\end{aligned}
$$

Define the normal and tangential derivatives as

$$
\partial_{n}=\varphi^{\prime}(x) \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}, \quad \partial_{\tau}=\frac{\partial}{\partial x_{1}}+\varphi^{\prime}(x) \frac{\partial}{\partial x_{2}}
$$

Now, we modify the function $\varphi(\rho)$ as

$$
\varphi(\rho)=\iint_{S_{\rho}}\left(\left|\partial_{n} u\right|^{2}+\left|\partial_{\tau} u-\left(\partial_{\tau} u\right)_{\rho}\right|^{2}+\rho^{6}|\nabla \Delta u|^{2}\right) d x d t
$$

Similar to the proof of Proposition 3.1, we conclude that

$$
\begin{aligned}
& \frac{\left|u_{1}\left(x_{1}, t_{1}\right)-u_{1}\left(x_{2}, t_{2}\right)\right|^{2}}{\left|t_{1}-t_{2}\right|^{1 / 6}+\left|x_{1}-x_{2}\right|} \\
& \quad \leq C \sup _{\left(t_{0}-\rho^{6}, t_{0}+\rho^{6}\right)} \int_{B_{\rho}\left(x_{0}\right)}\left(\left|\partial_{n} u_{1}\right|^{2}+\left|\partial_{\tau} u_{1}-\left(\partial_{\tau} u_{1}\right)_{\rho}\right|^{2}+\rho^{4}\left(\Delta u_{1}\right)^{2}\right) d x \\
& \quad+C \iint_{S_{\rho}}\left(\Delta^{2} u_{1}\right)^{2} d x d t
\end{aligned}
$$

and

$$
\begin{aligned}
& \sup _{\left(t_{0}-(R / 2)^{6}, t_{0}+(R / 2)^{6}\right)} \int_{\Omega_{R / 2}\left(x_{0}\right)}\left(\left|\partial_{n} u_{1}\right|^{2}+\left|\partial_{\tau} u_{1}-\left(\partial_{\tau} u_{1}\right)_{1 / 2}\right|^{2}\right) d x \\
& \quad+\iint_{S_{R / 2}}\left|\Delta^{2} u_{1}\right|^{2} d x d t \leq \frac{C}{R^{6}} \iint_{S_{R}}\left(\left|\partial_{n} u_{1}\right|^{2}+\left|\partial_{\tau} u_{1}-\left(\partial_{\tau} u_{1}\right)_{1 / 2}\right|^{2}\right) d x d t
\end{aligned}
$$

The remaining part of the proof is similar to that of Proposition 3.1, and we omit the details.

Proof of Theorem 1.1. Combining Proposition 3.1 with Proposition 3.2 completes the proof.

Acknowledgements. The author would like to thank Professor Wojciech M. Zajacczkowski for valuable suggestions for the revision and improvement of the manuscript.

This research was partly supported by the Scientific Research Foundation for Returning Overseas Chinese Scholars, State Education Ministry.

References

[BLN] J. W. Barrett, S. Langdon and R. Nuernberg, Finite element approximation of a sixth order nonlinear degenerate parabolic equation, Numer. Math. 96 (2004), 401-434.
[BF] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), 179-206.
[EGK1] J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation: I. Blow-up similarity solutions, Nonlinearity 20 (2007), 1799-1841.
[EGK2] J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation: II. Global similarity patterns, Nonlinearity 20 (2007), 1843-1881.
[FK] J. C. Flitton and J. R. King, Moving-boundary and fixed-domain problems for a sixth-order thin-film equation, Eur. J. Appl. Math. 15 (2004), 713-754.
[GS] M. Giaquinta and M. Struwe, On the partial regularity for weak solutions to nonlinear parabolic systems, Math. Z. 179 (1982), 437-451.
[GG] G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E 50 (1994), 1325-1335.
[GK] G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E 47 (1993), 4289-4300.
[GK2] G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E 47 (1993), 4301-4312.
[JM] A. Jüngel and J. Milišić, A sixth-order nonlinear parabolic equation for quantum systems, SIAM J. Math. Anal. 41 (2009), 1472-1490.
[KEMW] M. D. Korzec, P. L. Evans, A. Munch and B. Wagner, Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations, SIAM J. Appl. Math. 69 (2008), 348-374.
[L] C. Liu, A fourth order parabolic equation in two space dimensions, Math. Methods Appl. Sci. 30 (2007), 1913-1930.
[LT] C. Liu and Y. Tian, Weak solutions for a sixth-order thin film equation, Rocky Mountain J. Math. 41 (2011), 1547-1565.
[PZ] I. Pawłow and W. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Comm. Pure Appl. Anal. 10 (2011), 1823-1847.
[SP] G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, to appear.

Changchun Liu
Department of Mathematics
Jilin University
Changchun 130012, China
E-mail: liucc@jlu.edu.cn

Received 19.12.2011
and in final form 4.1.2013

[^0]: 2010 Mathematics Subject Classification: Primary 35B65; Secondary 35K55, 35K35.
 Key words and phrases: sixth order nonlinear parabolic equation, existence, regularity.

