Exponential limit shadowing

by S. A. Ahmadi and M. R. Molaei (Kerman)

Abstract. We introduce the notion of exponential limit shadowing and show that it is a persistent property near a hyperbolic set of a dynamical system. We show that Ω -stability implies the exponential limit shadowing property.

1. Introduction. The theory of shadowing in dynamical systems has been extended by many researchers [LS, P1, JTT, Y]. Let us explain this theory by considering a set M and a map $\phi : M \to M$. In numerical computation of the orbit of ϕ with initial value $x_0 \in M$ we can approximate $\phi(x_0)$ by x_1 . To continue the process we can compute the value x_2 close to $\phi(x_1)$ and so on. Sometimes this sequence can play the role of a shadow for the orbit $\mathcal{O}(x, \phi) = \{\phi^n(x)\}_{n \in \mathbb{Z}}$ for some $x \in M$. A natural question is: when, for a given shadow, can we find a real orbit close to it? This leads us to consider shadowing properties.

Furthermore, we may consider shadowing as a weak form of stability of dynamical systems with respect to C^0 perturbations. More precisely, let M be a compact smooth manifold with a metric r and let $\phi : M \to M$ be a C^1 diffeomorphism. Then the dynamical system ϕ has the *pseudo orbit tracing* property (POTP) on M if for each $\epsilon > 0$ there is d > 0 such that for any given sequence $\xi = \{x_k\}_{k \in \mathbb{Z}}$ with

$$r(\phi(x_k), x_{k+1}) < d \text{ for } k \in \mathbb{Z}$$

(called a *d-pseudo orbit*) there exists a point $p \in M$ such that

$$r(\phi^k(p), x_k) < \epsilon \quad \text{for } k \in \mathbb{Z}$$

(see [B]). The dynamical system ϕ has the Lipschitz shadowing property (LpSP) on M if there exist constants L > 0 and $d_0 > 0$ such that for any sequence $\xi = \{x_k\}_{k \in \mathbb{Z}}$ with

$$r(\phi(x_k), x_{k+1}) < d < d_0 \quad \text{for } k \in \mathbb{Z}$$

DOI: 10.4064/ap108-1-1

²⁰¹⁰ Mathematics Subject Classification: Primary 37C50; Secondary 37D05. Key words and phrases: shadowing, hyperbolic set, Ω -stability, expansive map.

there is a point $p \in M$ such that

 $r(\phi^k(p), x_k) < Ld \quad \text{for } k \in \mathbb{Z}.$

Another type of shadowing is the *limit shadowing* [ENP]. The dynamical system ϕ has the *limit shadowing property* (LmSP) on M if for any sequence $\xi = \{x_k\}_{k\geq 0}$ with

$$r(\phi(x_k), x_{k+1}) \to 0 \text{ as } k \to \infty$$

there exists a point $p \in M$ so that

$$r(\phi^k(p), x_k) \to 0 \quad \text{as } k \to \infty$$

From the numerical point of view, this property means that if we apply a numerical method that approximates ϕ with "improving accuracy", so that one-step errors tend to zero as time goes to infinity, then the numerically obtained trajectories tend to real ones.

We now introduce a kind of shadowing where one-step errors tend to zero with exponential rate, and each one-step error is determined in terms of two constants and the step number.

DEFINITION 1.1. We say that a dynamical system ϕ has the *exponential limit shadowing property* (ELmSP) on M if there exist constants L > 0 and $\lambda \in (0, 1)$ such that for any sequence $\xi = \{x_k\}_{k \ge 0}$ with

(1.1)
$$r(\phi(x_k), x_{k+1}) < \lambda^k$$
 for all k greater than a $k_1 \in \mathbb{N}$

there exists a point $p \in M$ and $k_2 \in \mathbb{N}$ so that

(1.2)
$$r(\phi^k(p), x_k) < L\lambda^{k/2} \quad \text{for } k \ge k_2.$$

In this paper, $\Omega(\phi)$ denotes the set of non-wandering points of ϕ . The system ϕ is called Ω -stable if given $\epsilon > 0$ there is $\delta > 0$ such that for any diffeomorphism ψ such that $\rho_1(\phi, \psi) = \sup_{x \in M} \{ \|\phi(x) - \psi(x)\|, \|D\phi(x) - D\psi(x)\| \} < \delta$ there is a homeomorphism $h : \Omega(\phi) \to \Omega(\psi)$ with

- $h \circ \phi = \psi \circ h;$
- $r(x, h(x)) < \epsilon$ for each $x \in \Omega(\phi)$.

We recall that a compact, ϕ -invariant subset $\Lambda \subset M$ is called a *hyperbolic* set for ϕ if there are constants $\lambda \in (0, 1)$, C > 0 and a family of subspaces $E^s(x) \subset T_x M$ and $E^u(x) \subset T_x M$, $x \in \Lambda$, so that for every $x \in \Lambda$:

- (1) $T_x M = E^s(x) \oplus E^u(x);$
- (2) $||(D_x\phi^n)v|| \le C\lambda^n ||v||$ for each $v \in E^s(x)$ and $n \ge 0$;
- (3) $||(D_x\phi^{-n})v|| \le C\lambda^n ||v||$ for every $v \in E^u(x)$ and $n \ge 0$;
- (4) $(D_x\phi)E^s(x) = E^s(x)$ and $(D_x\phi)E^u(x) = E^u(x)$.

The subspace $E^{s}(x)$ (respectively $E^{u}(x)$) is called the *stable* (resp. *unstable*) subspace at x, and the family $\{E^{s}(x)\}_{x \in \Lambda}$ (res. $\{E^{u}(x)\}_{x \in \Lambda}$) is called the stable (resp. *unstable*) distribution of $\phi|_{\Lambda}$. A system ϕ satisfies Axiom A if

- $\Omega(\phi)$ is a hyperbolic set;
- the set $Per(\phi)$ of periodic points of ϕ is dense in $\Omega(\phi)$.

2. Theorems. In this paper we prove the following main theorems:

THEOREM 2.1. Let Λ be a hyperbolic set for a diffeomorphism ϕ of M. Then there exists a neighborhood W of Λ such that ϕ has the ELmSP on W.

THEOREM 2.2. If a diffeomorphism ϕ is Ω -stable, then it has the ELmSP.

Let (X, d) be a compact metric space and let $f : X \to X$ be a homeomorphism. Then f is called *expansive* if there is a constant e > 0 such that if $d(f^i(x), f^i(y)) \leq e$ for all $i \in \mathbb{Z}$, then x = y.

For $\Delta > 0$ and $x \in X$, let $W^s_{\Delta}(x) = \{y \in X : d(f^n(x), f^n(y)) \leq \Delta$ for all $n \geq 0\}$ and $W^u_{\Delta} = \{y \in X : d(f^n(x), f^n(y)) \leq \Delta$ for all $n \leq 0\}$. The mapping f is called \mathcal{L} -hyperbolic [Sa] if

- f is a Lipschitz homeomorphism;
- there is $\epsilon_0 > 0$ such that for every $0 < \epsilon < \epsilon_0$, there exists $\delta > 0$ so that for any $x, y \in X$ with $d(x, y) < \delta$, the set $W^s_{\epsilon}(x) \cap W^u_{\epsilon}(y)$ consists of a single point $\alpha(x, y)$;
- there is a constant $\mathcal{K} > 0$ such that

$$d(\alpha(x,y),x) \le \mathcal{K}d(x,y), \quad d(\alpha(x,y),y) \le \mathcal{K}d(x,y);$$

• there are $0 < \Delta, \nu < 1$ such that for all $x \in X$,

$$\begin{split} y &\in W^s_{\Delta}(x) \ \Rightarrow \ d(f^n(x), f^n(y)) \le \nu^n d(x, y), \ n \ge 0, \\ y &\in W^u_{\Delta}(x) \ \Rightarrow \ d(f^{-n}(x), f^{-n}(y)) \le \nu^n d(x, y), \ n \ge 0. \end{split}$$

We will also prove the following theorem.

THEOREM 2.3. Let $f : X \to X$ be an \mathcal{L} -hyperbolic homeomorphism on a compact metric space (X, d). Then f has the ELmSP.

3. Proofs of theorems. Let us recall the following theorem which is a stronger version of the shadowing lemma:

THEOREM 3.1 ([P1]). If Λ is a hyperbolic set for a diffeomorphism ϕ then there exists a neighborhood W of Λ on which ϕ has the LpSP.

To prove Theorem 2.1 we will use the following lemma.

LEMMA 3.2 ([ENP]). If Λ is a hyperbolic set for a diffeomorphism ϕ then there exist a neighborhood U of Λ and constants $\delta > 0$ and $\nu \in (0, 1)$ such that if two points x and y in M have the properties $\phi^k(x), \phi^k(y) \in U$ and $r(\phi^k(x), \phi^k(y)) \leq \delta$ for all $k \geq 0$ then

$$r(\phi^k(x), \phi^k(y)) \le 2\nu^k r(x, y)$$
 for all $k \ge 0$.

Proof of Theorem 2.1. By Theorem 3.1 there exists a neighborhood U_0 of Λ on which ϕ has the LpSP with constants L_0 and d_0 . Take a neighborhood U_1 of Λ and numbers $\nu \in (0, 1)$ and $\delta > 0$ as given by Lemma 3.2. If

$$U = U_0 \cap U_1$$

then we can find a neighborhood W of Λ such that $N(W, \delta) \subset U$ (by decreasing δ), where $N(W, \delta)$ is the δ -neighborhood of W. We claim that for $\lambda = \nu \in (0, 1), \phi$ has the ELmSP on W. To prove this let $\xi = \{x_k\}_{k\geq 0}$ be a sequence on W so that

$$r(x_{k+1}, \phi(x_k)) \le \lambda^k \quad \text{for } k \ge k_1.$$

We choose $k_2 \ge k_1$ large enough so that $\lambda^k < \min\{d_0, \delta/2L_0\}$ for $k \ge k_2$. Since ϕ has the LpSP on $W \subset U_0$, for each $k \ge k_2$ there exists $y_k \in M$ such that

$$r(\phi^i(y_k), x_i) \le L_0 \lambda^k < \delta/2 \quad \text{for } i \ge k \ge k_2.$$

If $p = y_{k_2}$, then

$$r(\phi^{i}(y_{k}), \phi^{i}(p)) \le r(\phi^{i}(y_{k}), x_{i}) + r(x_{i}, \phi^{i}(p)) < \delta/2 + \delta/2 = \delta$$

for $i \ge k \ge k_2$. Fix $k \ge k_2$; then for $i \ge 0$ we deduce

$$r(\phi^{i+k}(y_k), \phi^{i+k}(p)) < \delta$$
 and $\phi^{i+k}(y_k), \phi^{i+k}(p) \in U \subset U_1.$

Hence Lemma 3.2 implies

$$r(\phi^{i+k}(y_k), \phi^{i+k}(p)) \le 2r(\phi^k(y_k), \phi^k(p))\lambda^i < 2\delta\lambda^i \quad \text{for } i \ge 0.$$

 So

 $d(\phi^{2k}(p), x_{2k}) \leq d(\phi^{2k}(p), \phi^{2k}(y_k)) + d(\phi^{2k}(y_k), x_{2k}) < (L_0 + 2\delta)\lambda^k \quad \text{for } k \geq k_2.$ Thus

$$d(\phi^k(p), x_k) < (L_0 + 2\delta)\lambda^{k/2} \quad \text{for } k \ge 2k_2.$$

If $L = L_0 + 2\delta$ then $r(\phi^k(p), x_k) \le L\lambda^{k/2}$ for $k \ge 2k_2$.

Let S^1 be the unit circle with coordinate $x \in [0, 1)$. Then we have the following proposition:

PROPOSITION 3.3. Let $\phi : S^1 \to S^1$ be an orientation preserving diffeomorphism. Moreover suppose that the set $Fix(\phi)$ of fixed points of ϕ is a nonempty hyperbolic, nowhere dense set. Then ϕ has the ELmSP.

Proof. Since $\operatorname{Fix}(\phi)$ is a hyperbolic set, by Theorem 2.1 there is a neighborhood W of $\operatorname{Fix}(\phi)$ such that ϕ has the ELmSP on W with constants $\lambda \in (0,1)$ and L > 0. Suppose that the sequence $\xi = \{x_k\}_{k \geq k_1}$ for some $k_1 \in \mathbb{N}$ satisfies

$$|\phi(x_k) - x_{k+1}| < \lambda^k \quad \text{for } k \ge k_1.$$

Then Theorem 3.1.2 of [P1] implies that there is a fixed point x such that $x_k \to x$ and so $\{x_k\}_{k \ge k_2} \subset W$ for some $k_2 \ge k_1$. Hence there exists $p \in S^1$

such that

$$|\phi^k(p) - x_k| < \lambda^{k/2}$$
 for $k \ge k_3$

for some $k_3 \in \mathbb{N}$, i.e. ϕ has the ELmSP.

Let us recall Smale's spectral decomposition theorem [Sm]. If ϕ satisfies Axiom A, then there is a unique representation

$$\Omega(\phi) = \Omega_1 \cup \cdots \cup \Omega_k$$

of $\Omega(\phi)$ as a disjoint union of closed ϕ -invariant sets (called *basic sets*) such that

- each Ω_i is a locally maximal hyperbolic set of ϕ ;
- ϕ is topologically transitive on each Ω_i ;
- each Ω_i is a disjoint union of closed sets Ω_i^j , $1 \leq j \leq m_i$, cyclically permuted by ϕ , and ϕ^{m_i} is topologically mixing on each Ω_i^j .

For the proof of the following lemma, see the proof of Lemma 1 of [P2].

LEMMA 3.4 ([P2]). If a diffeomorphism ϕ is Ω -stable and the sequence $\{x_k\}$ satisfies $\lim_{k\to\infty} d(\phi(x_k), x_{k+1}) = 0$ then there exists a basic set Ω_i such that

$$r(x_k, \Omega_i) \to 0$$
 as $k \to \infty$.

Proof of Theorem 2.2. Let

$$\Omega(\phi) = \Omega_1 \cup \cdots \cup \Omega_n$$

be the spectral decomposition of ϕ . Since ϕ is Ω -stable, it satisfies Axiom A, so $\Omega(\phi)$ is a hyperbolic set. Therefore by Theorem 2.1 there exists a neighborhood W of $\Omega(\phi)$ on which ϕ has the ELmSP with constants $\lambda \in (0, 1)$ and L. Now if a sequence $\{x_k\}$ satisfies (1.1), then by Lemma 3.4 there exists a basic set Ω_i such that

$$r(x_k, \Omega_i) \to 0$$
 as $k \to \infty$.

So there exists $k_0 \ge k_1$ such that $\{x_k\}_{k\ge k_0} \subset W$. Hence there exist $p \in M$ and $k_2 \in \mathbb{N}$ such that

$$r(\phi^{2k}(p), x_{2k}) \le L\lambda^k$$
 for $k \ge k_2$.

Thus $d(\phi^k(p), x_k) < L\lambda^{k/2}$ for $k \ge 2k_2$.

THEOREM 3.5 ([Sa]). Let f be a homeomorphism on a compact metric space X. Then the following conditions are equivalent:

- f is expansive and has the POTP.
- There is a compatible metric D for X such that f is \mathcal{L} -hyperbolic.
- (X, f) is a Smale space.

THEOREM 3.6 ([Sa]). Let $f : X \to X$ be an \mathcal{L} -hyperbolic homeomorphism on a compact metric space (X, d). Then f has the LpSP. *Proof of Theorem 2.3.* Suppose that the sequence $\xi = \{x_k\}$ satisfies

$$d(f(x_k), x_{k+1}) \le \lambda^k \quad \text{for } k \ge k_1,$$

for some $k_1 \in \mathbb{N}$, where $\lambda = \nu \in (0, 1)$ is the constant in the definition of \mathcal{L} -hyperbolicity. By Theorem 3.6 there exist constants $L_0, \delta > 0$ such that f has the LpSP with these constants. Choose $k_2 \geq k_1$ so that $k > k_2$ implies that $\lambda^k < \min\{\delta, \Delta/2L_0\}$. Hence for any $k > k_2$ there exists $y_k \in X$ such that

$$d(f^i(y_k), x_i) \le L_0 \lambda^k < \Delta/2 \quad \text{for } i \ge k \ge k_2.$$

If $y = y_{k_2}$ then

$$d(f^{i}(y_{k}), f^{i}(y)) \leq d(f^{i}(y_{k}), x_{i}) + d(x_{i}, f^{i}(y)) < \Delta/2 + \Delta/2 = \Delta$$

for $i \ge k \ge k_2$. If $k \ge k_2$ is a fixed integer then

$$d(f^i(y_k), f^i(y)) < \Delta \quad \text{for } i \ge k.$$

Hence

$$d(f^{i+k}(y_k), f^{i+k}(y)) < \Delta \quad \text{for } i \ge 0.$$

Therefore $f^k(y_k) \in W^s_{\Delta}(f^k(y))$. The property (4) in the definition of \mathcal{L} -hyperbolicity implies

$$d(f^{i+k}(y_k), f^{i+k}(y)) < \nu^i \Delta \quad \text{for } i \ge 0.$$

Thus

$$d(f^{2k}(y), x_{2k}) \le d(f^{2k}(y), f^{2k}(y_k)) + d(f^{2k}(y_k), x_{2k}) < (L_0 + \Delta)\lambda^k \quad \text{for } k \ge k_2.$$
 So

$$d(f^k(y), x_k) < (L_0 + \Delta)\lambda^{k/2} \quad \text{for } k \ge 2k_2.$$

If $L = L_0 + \Delta$ then $d(f^k(y), x_k) \leq L\lambda^{k/2}$ for $k \geq 2k_2$.

Theorems 2.3 and 3.5 imply the following corollaries:

COROLLARY 3.7. Let $f: X \to X$ be an expansive homeomorphism on a compact metric space having the POTP. Then there is a compatible metric D on X such that f has the ELmSP with respect to D.

COROLLARY 3.8. Let (X, f) be a Smale space. Then there is a compatible metric D on X such that f has the ELmSP with respect to D.

4. Examples. We begin by an example of a diffeomorphism which has the LmSP but does not have the ELmSP.

EXAMPLE 4.1. Consider the unit circle with coordinate $x \in [0, 1)$. Let ϕ be a dynamical system on S^1 generated by the mapping $f : [0.1) \to [0, 1)$ defined by $f(x) = x - x^2(x - 1/2)(x - 1)^2$. Then ϕ has two fixed points $\{0, 1/2\}$, and 0 is not a hyperbolic point because f'(0) = 1. Theorem 3.1.2

in [P1] ensures that ϕ has the LmSP on S^1 . We now show that it does not have the ELmSP.

Suppose ϕ has the ELmSP with constants L > 0 and $\lambda \in (0, 1)$. Take a natural number n_0 such that $\sum_{i=n_0}^{\infty} \lambda^i < 1/4$. We define a sequence $\{x_k\}$ by

$$x_{n_0} = 1/4, \quad x_{k+1} = \phi(x_k) + \lambda^k \quad \text{for } k \ge n_0.$$

Then it is easy to see that $\xi = \{x_k\}_{k \ge n_0}$ is a subset of (0, 1/2),

(4.1)
$$|\phi(x_k) - x_{k+1}| \le \lambda^k \quad \text{for } k \ge n_0$$

and $x_k \to 0$ as $k \to \infty$. Hence there exist a point $p \in S^1$ and $n_1 \in \mathbb{N}$ so that (4.2) $|\phi^k(n) - x_k| < L\lambda^{k/2}$ for $k \ge n_1$.

$$|\phi^{*}(p) - x_k| < L\lambda^{*/2} \quad \text{Io}$$

Thus

$$|\phi^{2k+1}(p) - x_{2k+1}| < L\lambda^k \quad \text{for } k \ge n_1$$

The following three cases can happen:

CASE 1. If p = 1/2, then p does not satisfy (4.2).

CASE 2. If $p \in [0, 1/2)$, then we show that there exists an index k_1 such that $\phi^{k_1}(p) < x_{k_1}$. If p = 0 then there is nothing to prove.

If $p \in (0, 1/2)$ then there is a natural number i_0 such that

$$\phi^{n_0+i_0}(p) < x_{n_0}.$$

If $Card\{i : x_i \le x_{i+1}\} > i_0$, then obviously

$$\phi^{n_0+i_0+k}(p) < x_{n_0+i_0+k} \quad \text{for some } k \in \mathbb{N},$$

and this proves our claim with $k_1 = n_0 + i_0 + k$.

Now suppose $\operatorname{Card}\{i : x_i \leq x_{i+1}\} \leq i_0$. Then for all large enough $k \in \mathbb{N}$ we have $x_{k+1} < x_k$. Assume that $0 < \cdots < a_2 < a_1 = 1/4$ is a decreasing sequence of real numbers such that $\operatorname{diam}([a_{n-1}, a_n]) \to 0$ and consider the sequence $\{I_n = (a_{n+1}, a_n] : n \geq 1\}$ of intervals. For $j \geq 1$ we put

$$i_j = \operatorname{Card}\{\{x_{n_0+i}\}_{i=0}^{\infty} \cap I_j\}, \quad i'_j = \operatorname{Card}\{\mathcal{O}(\phi, p) \cap I_j\}$$

Obviously for any n, there is at most one k such that $x_{n+1} \leq \phi^k(p) \leq x_n$. So we can choose a_n 's so that $i_n > i'_n$.

We show that $\sum_{j=1}^{m} (i_j - i'_j) > i_0^n$ for some m. If $\sum_{j=1}^{m} (i_j - i'_j) \le i_0$ for each $m \in \mathbb{N}$ then $\sum_{j=1}^{\infty} (i_j - i'_j) \le i_0$. The inequality $i_j \ge i'_j$ implies $i_j = i'_j$ for $j \ge j_0$, for some j_0 . Let l be the smallest index such that $x_l \in I_{j_0}$ and mbe the smallest natural number such that $\phi^m(p) \in I_{j_0}$. If $\phi^m(p) \le x_l$ then $\epsilon = x_{l+1} - \phi^{m+1}(p) > 0$ and

$$x_{l+i_{j_0}+\dots+i_j} - \phi^{m+i_{j_0}+\dots+i_j}(p) > \epsilon$$
 for $j > j_0$.

But diam $(I_n) \to 0$ so there exists $N \in \mathbb{N}$ such that diam $(I_N) < \epsilon$ and for some j we have $x_{l+i_{j_0}+\cdots+i_j} \in I_N$. So $\phi^{m+i_{j_0}+\cdots+i_j}(p) \notin I_N$, which contradicts our hypothesis.

Fig. 1. The sequence $\{x_k\}$ of Example 1

If $\phi^m(p) > x_l$ then $\phi^{m+1}(p) \le x_l$ and

$$x_{l+i_{j_0}+\dots+i_j} - \phi^{m+1+i_{j_0}+\dots+i_j}(p) > 2\epsilon$$

for some $\epsilon > 0$ and $j \ge j_0$. Since $\phi^{m+i_{j_0}+\cdots+i_j}(p) - \phi^{m+1+i_{j_0}+\cdots+i_j}(p) \to 0$ as $j \to \infty$, there is $j_1 \ge j_0$ such that

$$x_{l+i_{j_0}+\dots+i_j} - \phi^{m+1+i_{j_0}+\dots+i_j}(p) < \epsilon \quad \text{for } j \ge j_1$$

and we find a contradiction.

So $\sum_{j=1}^{m} (i_j - i'_j) > i_0$ for some *m*. Thus $\phi^{i_0 + (\sum_{j=1}^{m} i'_j) + 1}(p) \in I_{m+1}$ and $x_{n_0 + \sum_{j=1}^{m} i_j} \in I_m$.

So

$$\phi^{i_0 + (\sum_{j=1}^m i'_j) + 1}(p) < x_{n_0 + \sum_{j=1}^m i_j}.$$

Therefore

$$\phi^{n_0 + \sum_{j=1}^m i_j}(p) \le \phi^{n_0 + (\sum_{j=1}^m i'_j) + i_0}(p) \le \phi^{(\sum_{j=1}^m i'_j) + i_0 + 1}(p) < x_{n_0 + \sum_{j=1}^m i_j},$$

and this proves our claim with $k_1 = n_0 + \sum_{j=1}^m i_j$.

Now since $\lim_{x\to 0} \phi'(x) = 1$, there exists a positive real ϵ such that $\phi'(x) > \lambda^{1/2}$ for any $x \in [0, \epsilon)$. Hence, the mean value theorem implies that $\phi(x+h) > \phi(x) + \lambda^{1/2}h$ for any h > 0 with $x + h \in [0, \epsilon)$.

Since $x_k \to 0$, there is k_2 such that $x_k \in (0, \epsilon)$ for $k \ge k_2$. If $k_0 = \max\{k_1 + 1, k_2\}$, then $\phi^{2k+1}(p) < \phi^{2k-k_0+1}(x_{k_0})$ for $k \ge k_0$. So

$$\begin{aligned} x_{2k+1} - \phi^{2k+1}(p) &= \phi(x_{2k}) + \lambda^{2k} - \phi^{2k+1}(p) \\ &= \phi(x_{2k-1} + \lambda^{2k-1}) + \lambda^{2k} - \phi^{2k+1}(p) \\ &> \phi^2(x_{2k-1}) + \lambda^{2k-1+1/2} + \lambda^{2k} - \phi^{2k+1}(p) > \cdots \\ &> \phi^{i+1}(x_{2k-i}) + \lambda^{2k-i+1/2} + \lambda^{2k-(i-1)+1/2} + \cdots + \lambda^{2k-1+1/2} \\ &+ \lambda^{2k} - \phi^{2k+1}(p) \end{aligned}$$

and with the new variable $i = 2k - k_0$ we deduce

$$\begin{aligned} x_{2k+1} - \phi^{2k+1}(p) &> \phi^{2k-k_0}(x_{k_0}) + \lambda^{k+1/2} \Big(\sum_{j=0}^{2k-k_0} \lambda^{k-j} \Big) - \phi^{2k+1}(p) \\ &= \phi^{2k-k_0}(x_{k_0}) + \lambda^{k+1/2} \Big(\sum_{j=0}^k \lambda^j + \sum_{j=0}^{k-k_0} \lambda^{-j} \Big) - \phi^{2k+1}(p) \\ &> \lambda^{k+1/2} \Big(\sum_{j=0}^k \lambda^j + \sum_{j=0}^{k-k_0} \lambda^{-j} \Big). \end{aligned}$$

Therefore

$$L > \lambda^{1/2} \left(\sum_{j=0}^{k} \lambda^{j} + \sum_{j=0}^{k-k_0} \lambda^{-j} \right) \quad \text{for } k > \max\{k_0, n_1\},$$

which is a contradiction.

CASE 3. If $p \in (1/2, 1)$ then

$$r(\phi^k(p), x_k) > r(\phi^k(1-p), x_k).$$

Since $1 - p \in (0, 1/2)$, p does not satisfy (4.2) by Case 2. So no point $p \in S^1$ satisfies (4.2), i.e. ϕ does not have the ELmSP.

REMARK 4.2. If $\phi: S^1 \to S^1$ is a diffeomorphism generated by a function $f: [0,1) \to [0,1)$ with the properties:

- f is differentiable and increasing;
- f has a non-hyperbolic attracting fixed point p so that $(p, p + \epsilon) \cap$ Fix $(f) = \emptyset$ or $(p - \epsilon, p) \cap$ Fix $(f) = \emptyset$ for some $\epsilon > 0$,

then as in Example 4.1 we can find a sequence $\xi = \{x_k\}$ which satisfies (1.1), but there is no p such that (1.2) holds, i.e. ϕ does not have the ELmSP.

5. Conclusion. We know from [ENP] that near a hyperbolic set we have the limit shadowing property. In this paper we show that near a hyperbolic set we have a new kind of shadowing which is not equivalent to the limit shadowing property. Moreover, we show that an Ω -stable dynamical system has this property and in a compact metric space any \mathcal{L} -hyperbolic map has the ELmSP.

We say that the dynamical system ϕ has the strong exponential limit shadowing property (SELmSP) on M if there exist constants L > 0 and $\lambda \in (0,1)$ such that for any sequence $\xi = \{x_k\}$ with (1.1) there exist a point $p \in M$ and $k_2 \in \mathbb{N}$ such that

(5.1)
$$r(\phi^k(p), x_k) < L\lambda^k \quad \text{for } k \ge k_2.$$

Obviously the SELmSP implies the ELmSP. Example 4.1 shows that the SELmSP is a different concept from the LmSP. The consideration of the SELmSP is a topic for further research.

Acknowledgements. We would like to express our thanks to the referee for his/her valuable comments.

References

- [B] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975.
- [ENP] T. Eirola, O. Nevanlinna and S. Yu. Pilyugin, *Limit shadowing property*, Numer. Funct. Anal. Optim. 18 (1997), 75–92.
- [JTT] W. Jabłoński, Jacek Tabor and Józef Tabor, Generalized shadowing for discrete semidynamical systems, Ann. Polon. Math. 88 (2006), 263–269.
- [LS] K. Lee and K. Sakai, Various shadowing properties and their equivalence, Discrete Contin. Dynam. Systems 13 (2005), 533–539.
- [P1] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math. 1706, Springer, Berlin, 1999.
- [P2] S. Yu. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differential Equations 19 (2007), 747–775.
- [Sa] K. Sakai, Shadowing properties of *L*-hyperbolic homeomorphisms, Topology Appl. 112 (2001), 229–243.
- [Sm] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.
- [Y] K. Yokoi, The chain recurrent set for maps of compacta, Ann. Polon. Math. 92 (2007), 123–131.

S. A. Ahmadi, M. R. Molaei Department of Mathematics Shahid Bahonar University of Kerman Kerman, Iran E-mail: sa.ahmdi@gmail.com mrmolaei@mail.uk.ac.ir

> Received 22.9.2011 and in final form 27.6.2012

(2552)