Exponential limit shadowing

by S. A. Ahmadi and M. R. Molaei (Kerman)

Abstract

We introduce the notion of exponential limit shadowing and show that it is a persistent property near a hyperbolic set of a dynamical system. We show that Ω-stability implies the exponential limit shadowing property.

1. Introduction. The theory of shadowing in dynamical systems has been extended by many researchers [LS, P1, JTT, Y]. Let us explain this theory by considering a set M and a map $\phi: M \rightarrow M$. In numerical computation of the orbit of ϕ with initial value $x_{0} \in M$ we can approximate $\phi\left(x_{0}\right)$ by x_{1}. To continue the process we can compute the value x_{2} close to $\phi\left(x_{1}\right)$ and so on. Sometimes this sequence can play the role of a shadow for the orbit $\mathcal{O}(x, \phi)=\left\{\phi^{n}(x)\right\}_{n \in \mathbb{Z}}$ for some $x \in M$. A natural question is: when, for a given shadow, can we find a real orbit close to it? This leads us to consider shadowing properties.

Furthermore, we may consider shadowing as a weak form of stability of dynamical systems with respect to C^{0} perturbations. More precisely, let M be a compact smooth manifold with a metric r and let $\phi: M \rightarrow M$ be a C^{1} diffeomorphism. Then the dynamical system ϕ has the pseudo orbit tracing property (POTP) on M if for each $\epsilon>0$ there is $d>0$ such that for any given sequence $\xi=\left\{x_{k}\right\}_{k \in \mathbb{Z}}$ with

$$
r\left(\phi\left(x_{k}\right), x_{k+1}\right)<d \quad \text { for } k \in \mathbb{Z}
$$

(called a d-pseudo orbit) there exists a point $p \in M$ such that

$$
r\left(\phi^{k}(p), x_{k}\right)<\epsilon \quad \text { for } k \in \mathbb{Z}
$$

(see [B]). The dynamical system ϕ has the Lipschitz shadowing property (LpSP) on M if there exist constants $L>0$ and $d_{0}>0$ such that for any sequence $\xi=\left\{x_{k}\right\}_{k \in \mathbb{Z}}$ with

$$
r\left(\phi\left(x_{k}\right), x_{k+1}\right)<d<d_{0} \quad \text { for } k \in \mathbb{Z}
$$

[^0]there is a point $p \in M$ such that
$$
r\left(\phi^{k}(p), x_{k}\right)<L d \quad \text { for } k \in \mathbb{Z}
$$

Another type of shadowing is the limit shadowing ENP. The dynamical system ϕ has the limit shadowing property (LmSP) on M if for any sequence $\xi=\left\{x_{k}\right\}_{k \geq 0}$ with

$$
r\left(\phi\left(x_{k}\right), x_{k+1}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

there exists a point $p \in M$ so that

$$
r\left(\phi^{k}(p), x_{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

From the numerical point of view, this property means that if we apply a numerical method that approximates ϕ with "improving accuracy", so that one-step errors tend to zero as time goes to infinity, then the numerically obtained trajectories tend to real ones.

We now introduce a kind of shadowing where one-step errors tend to zero with exponential rate, and each one-step error is determined in terms of two constants and the step number.

Definition 1.1. We say that a dynamical system ϕ has the exponential limit shadowing property (ELmSP) on M if there exist constants $L>0$ and $\lambda \in(0,1)$ such that for any sequence $\xi=\left\{x_{k}\right\}_{k \geq 0}$ with

$$
\begin{equation*}
r\left(\phi\left(x_{k}\right), x_{k+1}\right)<\lambda^{k} \quad \text { for all } k \text { greater than a } k_{1} \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

there exists a point $p \in M$ and $k_{2} \in \mathbb{N}$ so that

$$
\begin{equation*}
r\left(\phi^{k}(p), x_{k}\right)<L \lambda^{k / 2} \quad \text { for } k \geq k_{2} \tag{1.2}
\end{equation*}
$$

In this paper, $\Omega(\phi)$ denotes the set of non-wandering points of ϕ. The system ϕ is called Ω-stable if given $\epsilon>0$ there is $\delta>0$ such that for any diffeomorphism ψ such that $\rho_{1}(\phi, \psi)=\sup _{x \in M}\{\|\phi(x)-\psi(x)\|$, $\|D \phi(x)-D \psi(x)\|\}<\delta$ there is a homeomorphism $h: \Omega(\phi) \rightarrow \Omega(\psi)$ with

- $h \circ \phi=\psi \circ h$;
- $r(x, h(x))<\epsilon$ for each $x \in \Omega(\phi)$.

We recall that a compact, ϕ-invariant subset $\Lambda \subset M$ is called a hyperbolic set for ϕ if there are constants $\lambda \in(0,1), C>0$ and a family of subspaces $E^{s}(x) \subset T_{x} M$ and $E^{u}(x) \subset T_{x} M, x \in \Lambda$, so that for every $x \in \Lambda$:
(1) $T_{x} M=E^{s}(x) \oplus E^{u}(x)$;
(2) $\left\|\left(D_{x} \phi^{n}\right) v\right\| \leq C \lambda^{n}\|v\|$ for each $v \in E^{s}(x)$ and $n \geq 0$;
(3) $\left\|\left(D_{x} \phi^{-n}\right) v\right\| \leq C \lambda^{n}\|v\|$ for every $v \in E^{u}(x)$ and $n \geq 0$;
(4) $\left(D_{x} \phi\right) E^{s}(x)=E^{s}(x)$ and $\left(D_{x} \phi\right) E^{u}(x)=E^{u}(x)$.

The subspace $E^{s}(x)$ (respectively $\left.E^{u}(x)\right)$ is called the stable (resp. unstable) subspace at x, and the family $\left\{E^{s}(x)\right\}_{x \in \Lambda}$ (res. $\left.\left\{E^{u}(x)\right\}_{x \in \Lambda}\right)$ is called the stable (resp. unstable) distribution of $\left.\phi\right|_{\Lambda}$.

A system ϕ satisfies Axiom A if

- $\Omega(\phi)$ is a hyperbolic set;
- the set $\operatorname{Per}(\phi)$ of periodic points of ϕ is dense in $\Omega(\phi)$.

2. Theorems. In this paper we prove the following main theorems:

Theorem 2.1. Let Λ be a hyperbolic set for a diffeomorphism ϕ of M. Then there exists a neighborhood W of Λ such that ϕ has the ELmSP on W.

Theorem 2.2. If a diffeomorphism ϕ is Ω-stable, then it has the ELmSP.
Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be a homeomorphism. Then f is called expansive if there is a constant $e>0$ such that if $d\left(f^{i}(x), f^{i}(y)\right) \leq e$ for all $i \in \mathbb{Z}$, then $x=y$.

For $\Delta>0$ and $x \in X$, let $W_{\Delta}^{s}(x)=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \leq \Delta\right.$ for all $n \geq 0\}$ and $W_{\Delta}^{u}=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \leq \Delta\right.$ for all $\left.n \leq 0\right\}$. The mapping f is called \mathcal{L}-hyperbolic [Sa] if

- f is a Lipschitz homeomorphism;
- there is $\epsilon_{0}>0$ such that for every $0<\epsilon<\epsilon_{0}$, there exists $\delta>0$ so that for any $x, y \in X$ with $d(x, y)<\delta$, the set $W_{\epsilon}^{s}(x) \cap W_{\epsilon}^{u}(y)$ consists of a single point $\alpha(x, y)$;
- there is a constant $\mathcal{K}>0$ such that

$$
d(\alpha(x, y), x) \leq \mathcal{K} d(x, y), \quad d(\alpha(x, y), y) \leq \mathcal{K} d(x, y)
$$

- there are $0<\Delta, \nu<1$ such that for all $x \in X$,

$$
\begin{aligned}
& y \in W_{\Delta}^{s}(x) \Rightarrow d\left(f^{n}(x), f^{n}(y)\right) \leq \nu^{n} d(x, y), n \geq 0 \\
& y \in W_{\Delta}^{u}(x) \Rightarrow d\left(f^{-n}(x), f^{-n}(y)\right) \leq \nu^{n} d(x, y), n \geq 0 .
\end{aligned}
$$

We will also prove the following theorem.
Theorem 2.3. Let $f: X \rightarrow X$ be an \mathcal{L}-hyperbolic homeomorphism on a compact metric space (X, d). Then f has the ELmSP.
3. Proofs of theorems. Let us recall the following theorem which is a stronger version of the shadowing lemma:

Theorem 3.1 ([|]1). If Λ is a hyperbolic set for a diffeomorphism ϕ then there exists a neighborhood W of Λ on which ϕ has the LpSP.

To prove Theorem 2.1 we will use the following lemma.
Lemma 3.2 (ENP). If Λ is a hyperbolic set for a diffeomorphism ϕ then there exist a neighborhood U of Λ and constants $\delta>0$ and $\nu \in(0,1)$ such that if two points x and y in M have the properties $\phi^{k}(x), \phi^{k}(y) \in U$ and $r\left(\phi^{k}(x), \phi^{k}(y)\right) \leq \delta$ for all $k \geq 0$ then

$$
r\left(\phi^{k}(x), \phi^{k}(y)\right) \leq 2 \nu^{k} r(x, y) \quad \text { for all } k \geq 0 .
$$

Proof of Theorem 2.1. By Theorem 3.1 there exists a neighborhood U_{0} of Λ on which ϕ has the LpSP with constants L_{0} and d_{0}. Take a neighborhood U_{1} of Λ and numbers $\nu \in(0,1)$ and $\delta>0$ as given by Lemma 3.2. If

$$
U=U_{0} \cap U_{1}
$$

then we can find a neighborhood W of Λ such that $N(W, \delta) \subset U$ (by decreasing δ), where $N(W, \delta)$ is the δ-neighborhood of W. We claim that for $\lambda=\nu \in(0,1), \phi$ has the ELmSP on W. To prove this let $\xi=\left\{x_{k}\right\}_{k \geq 0}$ be a sequence on W so that

$$
r\left(x_{k+1}, \phi\left(x_{k}\right)\right) \leq \lambda^{k} \quad \text { for } k \geq k_{1}
$$

We choose $k_{2} \geq k_{1}$ large enough so that $\lambda^{k}<\min \left\{d_{0}, \delta / 2 L_{0}\right\}$ for $k \geq k_{2}$. Since ϕ has the LpSP on $W \subset U_{0}$, for each $k \geq k_{2}$ there exists $y_{k} \in M$ such that

$$
r\left(\phi^{i}\left(y_{k}\right), x_{i}\right) \leq L_{0} \lambda^{k}<\delta / 2 \quad \text { for } i \geq k \geq k_{2}
$$

If $p=y_{k_{2}}$, then

$$
r\left(\phi^{i}\left(y_{k}\right), \phi^{i}(p)\right) \leq r\left(\phi^{i}\left(y_{k}\right), x_{i}\right)+r\left(x_{i}, \phi^{i}(p)\right)<\delta / 2+\delta / 2=\delta
$$

for $i \geq k \geq k_{2}$. Fix $k \geq k_{2}$; then for $i \geq 0$ we deduce

$$
r\left(\phi^{i+k}\left(y_{k}\right), \phi^{i+k}(p)\right)<\delta \quad \text { and } \quad \phi^{i+k}\left(y_{k}\right), \phi^{i+k}(p) \in U \subset U_{1}
$$

Hence Lemma 3.2 implies

$$
r\left(\phi^{i+k}\left(y_{k}\right), \phi^{i+k}(p)\right) \leq 2 r\left(\phi^{k}\left(y_{k}\right), \phi^{k}(p)\right) \lambda^{i}<2 \delta \lambda^{i} \quad \text { for } i \geq 0
$$

So
$d\left(\phi^{2 k}(p), x_{2 k}\right) \leq d\left(\phi^{2 k}(p), \phi^{2 k}\left(y_{k}\right)\right)+d\left(\phi^{2 k}\left(y_{k}\right), x_{2 k}\right)<\left(L_{0}+2 \delta\right) \lambda^{k} \quad$ for $k \geq k_{2}$. Thus

$$
d\left(\phi^{k}(p), x_{k}\right)<\left(L_{0}+2 \delta\right) \lambda^{k / 2} \quad \text { for } k \geq 2 k_{2}
$$

If $L=L_{0}+2 \delta$ then $r\left(\phi^{k}(p), x_{k}\right) \leq L \lambda^{k / 2}$ for $k \geq 2 k_{2}$.
Let S^{1} be the unit circle with coordinate $x \in[0,1)$. Then we have the following proposition:

Proposition 3.3. Let $\phi: S^{1} \rightarrow S^{1}$ be an orientation preserving diffeomorphism. Moreover suppose that the set $\operatorname{Fix}(\phi)$ of fixed points of ϕ is a nonempty hyperbolic, nowhere dense set. Then ϕ has the ELmSP.

Proof. Since $\operatorname{Fix}(\phi)$ is a hyperbolic set, by Theorem 2.1 there is a neighborhood W of $\operatorname{Fix}(\phi)$ such that ϕ has the ELmSP on W with constants $\lambda \in(0,1)$ and $L>0$. Suppose that the sequence $\xi=\left\{x_{k}\right\}_{k \geq k_{1}}$ for some $k_{1} \in \mathbb{N}$ satisfies

$$
\left|\phi\left(x_{k}\right)-x_{k+1}\right|<\lambda^{k} \quad \text { for } k \geq k_{1}
$$

Then Theorem 3.1.2 of [P1] implies that there is a fixed point x such that $x_{k} \rightarrow x$ and so $\left\{x_{k}\right\}_{k \geq k_{2}} \subset W$ for some $k_{2} \geq k_{1}$. Hence there exists $p \in S^{1}$
such that

$$
\left|\phi^{k}(p)-x_{k}\right|<\lambda^{k / 2} \quad \text { for } k \geq k_{3}
$$

for some $k_{3} \in \mathbb{N}$, i.e. ϕ has the ELmSP.
Let us recall Smale's spectral decomposition theorem [Sm]. If ϕ satisfies Axiom A, then there is a unique representation

$$
\Omega(\phi)=\Omega_{1} \cup \cdots \cup \Omega_{k}
$$

of $\Omega(\phi)$ as a disjoint union of closed ϕ-invariant sets (called basic sets) such that

- each Ω_{i} is a locally maximal hyperbolic set of ϕ;
- ϕ is topologically transitive on each Ω_{i};
- each Ω_{i} is a disjoint union of closed sets $\Omega_{i}^{j}, 1 \leq j \leq m_{i}$, cyclically permuted by ϕ, and $\phi^{m_{i}}$ is topologically mixing on each Ω_{i}^{j}.
For the proof of the following lemma, see the proof of Lemma 1 of P 2].
Lemma $3.4(\boxed{\mathrm{P} 2]})$. If a diffeomorphism ϕ is Ω-stable and the sequence $\left\{x_{k}\right\}$ satisfies $\lim _{k \rightarrow \infty} d\left(\phi\left(x_{k}\right), x_{k+1}\right)=0$ then there exists a basic set Ω_{i} such that

$$
r\left(x_{k}, \Omega_{i}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Proof of Theorem 2.2. Let

$$
\Omega(\phi)=\Omega_{1} \cup \cdots \cup \Omega_{n}
$$

be the spectral decomposition of ϕ. Since ϕ is Ω-stable, it satisfies Axiom A, so $\Omega(\phi)$ is a hyperbolic set. Therefore by Theorem 2.1 there exists a neighborhood W of $\Omega(\phi)$ on which ϕ has the ELmSP with constants $\lambda \in(0,1)$ and L. Now if a sequence $\left\{x_{k}\right\}$ satisfies (1.1), then by Lemma 3.4 there exists a basic set Ω_{i} such that

$$
r\left(x_{k}, \Omega_{i}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

So there exists $k_{0} \geq k_{1}$ such that $\left\{x_{k}\right\}_{k \geq k_{0}} \subset W$. Hence there exist $p \in M$ and $k_{2} \in \mathbb{N}$ such that

$$
r\left(\phi^{2 k}(p), x_{2 k}\right) \leq L \lambda^{k} \quad \text { for } k \geq k_{2} .
$$

Thus $d\left(\phi^{k}(p), x_{k}\right)<L \lambda^{k / 2}$ for $k \geq 2 k_{2}$.
Theorem 3.5 (Sa|). Let f be a homeomorphism on a compact metric space X. Then the following conditions are equivalent:

- f is expansive and has the POTP.
- There is a compatible metric D for X such that f is \mathcal{L}-hyperbolic.
- (X, f) is a Smale space.

Theorem 3.6 (Sa|). Let $f: X \rightarrow X$ be an \mathcal{L}-hyperbolic homeomorphism on a compact metric space (X, d). Then f has the LpSP.

Proof of Theorem 2.3. Suppose that the sequence $\xi=\left\{x_{k}\right\}$ satisfies

$$
d\left(f\left(x_{k}\right), x_{k+1}\right) \leq \lambda^{k} \quad \text { for } k \geq k_{1},
$$

for some $k_{1} \in \mathbb{N}$, where $\lambda=\nu \in(0,1)$ is the constant in the definition of \mathcal{L}-hyperbolicity. By Theorem 3.6 there exist constants $L_{0}, \delta>0$ such that f has the LpSP with these constants. Choose $k_{2} \geq k_{1}$ so that $k>k_{2}$ implies that $\lambda^{k}<\min \left\{\delta, \Delta / 2 L_{0}\right\}$. Hence for any $k>k_{2}$ there exists $y_{k} \in X$ such that

$$
d\left(f^{i}\left(y_{k}\right), x_{i}\right) \leq L_{0} \lambda^{k}<\Delta / 2 \quad \text { for } i \geq k \geq k_{2} .
$$

If $y=y_{k_{2}}$ then

$$
d\left(f^{i}\left(y_{k}\right), f^{i}(y)\right) \leq d\left(f^{i}\left(y_{k}\right), x_{i}\right)+d\left(x_{i}, f^{i}(y)\right)<\Delta / 2+\Delta / 2=\Delta
$$

for $i \geq k \geq k_{2}$. If $k \geq k_{2}$ is a fixed integer then

$$
d\left(f^{i}\left(y_{k}\right), f^{i}(y)\right)<\Delta \quad \text { for } i \geq k
$$

Hence

$$
d\left(f^{i+k}\left(y_{k}\right), f^{i+k}(y)\right)<\Delta \quad \text { for } i \geq 0 .
$$

Therefore $f^{k}\left(y_{k}\right) \in W_{\Delta}^{s}\left(f^{k}(y)\right)$. The property (4) in the definition of \mathcal{L} hyperbolicity implies

$$
d\left(f^{i+k}\left(y_{k}\right), f^{i+k}(y)\right)<\nu^{i} \Delta \quad \text { for } i \geq 0 .
$$

Thus
$d\left(f^{2 k}(y), x_{2 k}\right) \leq d\left(f^{2 k}(y), f^{2 k}\left(y_{k}\right)\right)+d\left(f^{2 k}\left(y_{k}\right), x_{2 k}\right)<\left(L_{0}+\Delta\right) \lambda^{k} \quad$ for $k \geq k_{2}$. So

$$
d\left(f^{k}(y), x_{k}\right)<\left(L_{0}+\Delta\right) \lambda^{k / 2} \quad \text { for } k \geq 2 k_{2} .
$$

If $L=L_{0}+\Delta$ then $d\left(f^{k}(y), x_{k}\right) \leq L \lambda^{k / 2}$ for $k \geq 2 k_{2}$.
Theorems 2.3 and 3.5 imply the following corollaries:
Corollary 3.7. Let $f: X \rightarrow X$ be an expansive homeomorphism on a compact metric space having the POTP. Then there is a compatible metric D on X such that f has the ELmSP with respect to D.

Corollary 3.8. Let (X, f) be a Smale space. Then there is a compatible metric D on X such that f has the ELmSP with respect to D.
4. Examples. We begin by an example of a diffeomorphism which has the LmSP but does not have the ELmSP.

Example 4.1. Consider the unit circle with coordinate $x \in[0,1)$. Let ϕ be a dynamical system on S^{1} generated by the mapping $f:[0.1) \rightarrow[0,1)$ defined by $f(x)=x-x^{2}(x-1 / 2)(x-1)^{2}$. Then ϕ has two fixed points $\{0,1 / 2\}$, and 0 is not a hyperbolic point because $f^{\prime}(0)=1$. Theorem 3.1.2
in [P1] ensures that ϕ has the LmSP on S^{1}. We now show that it does not have the ELmSP.

Suppose ϕ has the ELmSP with constants $L>0$ and $\lambda \in(0,1)$. Take a natural number n_{0} such that $\sum_{i=n_{0}}^{\infty} \lambda^{i}<1 / 4$. We define a sequence $\left\{x_{k}\right\}$ by

$$
x_{n_{0}}=1 / 4, \quad x_{k+1}=\phi\left(x_{k}\right)+\lambda^{k} \quad \text { for } k \geq n_{0} .
$$

Then it is easy to see that $\xi=\left\{x_{k}\right\}_{k \geq n_{0}}$ is a subset of $(0,1 / 2)$,

$$
\begin{equation*}
\left|\phi\left(x_{k}\right)-x_{k+1}\right| \leq \lambda^{k} \quad \text { for } k \geq n_{0} \tag{4.1}
\end{equation*}
$$

and $x_{k} \rightarrow 0$ as $k \rightarrow \infty$. Hence there exist a point $p \in S^{1}$ and $n_{1} \in \mathbb{N}$ so that

$$
\begin{equation*}
\left|\phi^{k}(p)-x_{k}\right|<L \lambda^{k / 2} \quad \text { for } k \geq n_{1} . \tag{4.2}
\end{equation*}
$$

Thus

$$
\left|\phi^{2 k+1}(p)-x_{2 k+1}\right|<L \lambda^{k} \quad \text { for } k \geq n_{1} .
$$

The following three cases can happen:
Case 1. If $p=1 / 2$, then p does not satisfy (4.2).
CASE 2. If $p \in[0,1 / 2)$, then we show that there exists an index k_{1} such that $\phi^{k_{1}}(p)<x_{k_{1}}$. If $p=0$ then there is nothing to prove.

If $p \in(0,1 / 2)$ then there is a natural number i_{0} such that

$$
\phi^{n_{0}+i_{0}}(p)<x_{n_{0}} .
$$

If $\operatorname{Card}\left\{i: x_{i} \leq x_{i+1}\right\}>i_{0}$, then obviously

$$
\phi^{n_{0}+i_{0}+k}(p)<x_{n_{0}+i_{0}+k} \quad \text { for some } k \in \mathbb{N},
$$

and this proves our claim with $k_{1}=n_{0}+i_{0}+k$.
Now suppose $\operatorname{Card}\left\{i: x_{i} \leq x_{i+1}\right\} \leq i_{0}$. Then for all large enough $k \in \mathbb{N}$ we have $x_{k+1}<x_{k}$. Assume that $0<\cdots<a_{2}<a_{1}=1 / 4$ is a decreasing sequence of real numbers such that $\operatorname{diam}\left(\left[a_{n-1}, a_{n}\right]\right) \rightarrow 0$ and consider the sequence $\left\{I_{n}=\left(a_{n+1}, a_{n}\right]: n \geq 1\right\}$ of intervals. For $j \geq 1$ we put

$$
i_{j}=\operatorname{Card}\left\{\left\{x_{n_{0}+i}\right\}_{i=0}^{\infty} \cap I_{j}\right\}, \quad i_{j}^{\prime}=\operatorname{Card}\left\{\mathcal{O}(\phi, p) \cap I_{j}\right\}
$$

Obviously for any n, there is at most one k such that $x_{n+1} \leq \phi^{k}(p) \leq x_{n}$. So we can choose a_{n} 's so that $i_{n}>i_{n}^{\prime}$.

We show that $\sum_{j=1}^{m}\left(i_{j}-i_{j}^{\prime}\right)>i_{0}$ for some m. If $\sum_{j=1}^{m}\left(i_{j}-i_{j}^{\prime}\right) \leq i_{0}$ for each $m \in \mathbb{N}$ then $\sum_{j=1}^{\infty}\left(i_{j}-i_{j}^{\prime}\right) \leq i_{0}$. The inequality $i_{j} \geq i_{j}^{\prime}$ implies $i_{j}=i_{j}^{\prime}$ for $j \geq j_{0}$, for some j_{0}. Let l be the smallest index such that $x_{l} \in I_{j_{0}}$ and m be the smallest natural number such that $\phi^{m}(p) \in I_{j_{0}}$. If $\phi^{m}(p) \leq x_{l}$ then $\epsilon=x_{l+1}-\phi^{m+1}(p)>0$ and

$$
x_{l+i_{j_{0}}+\cdots+i_{j}}-\phi^{m+i_{j_{0}}+\cdots+i_{j}}(p)>\epsilon \quad \text { for } j>j_{0}
$$

But $\operatorname{diam}\left(I_{n}\right) \rightarrow 0$ so there exists $N \in \mathbb{N}$ such that $\operatorname{diam}\left(I_{N}\right)<\epsilon$ and for some j we have $x_{l+i_{j_{0}}+\cdots+i_{j}} \in I_{N}$. So $\phi^{m+i_{j_{0}}+\cdots+i_{j}}(p) \notin I_{N}$, which contradicts our hypothesis.

Fig. 1. The sequence $\left\{x_{k}\right\}$ of Example 1

If $\phi^{m}(p)>x_{l}$ then $\phi^{m+1}(p) \leq x_{l}$ and

$$
x_{l+i_{j_{0}}+\cdots+i_{j}}-\phi^{m+1+i_{j_{0}}+\cdots+i_{j}}(p)>2 \epsilon
$$

for some $\epsilon>0$ and $j \geq j_{0}$. Since $\phi^{m+i_{j_{0}}+\cdots+i_{j}}(p)-\phi^{m+1+i_{j_{0}}+\cdots+i_{j}}(p) \rightarrow 0$ as $j \rightarrow \infty$, there is $j_{1} \geq j_{0}$ such that

$$
x_{l+i_{j_{0}}+\cdots+i_{j}}-\phi^{m+1+i_{j_{0}}+\cdots+i_{j}}(p)<\epsilon \quad \text { for } j \geq j_{1}
$$

and we find a contradiction.
So $\sum_{j=1}^{m}\left(i_{j}-i_{j}^{\prime}\right)>i_{0}$ for some m. Thus

$$
\phi^{i_{0}+\left(\sum_{j=1}^{m} i_{j}^{\prime}\right)+1}(p) \in I_{m+1} \quad \text { and } \quad x_{n_{0}+\sum_{j=1}^{m} i_{j}} \in I_{m} .
$$

So

$$
\phi^{i_{0}+\left(\sum_{j=1}^{m} i_{j}^{\prime}\right)+1}(p)<x_{n_{0}+\sum_{j=1}^{m} i_{j}} .
$$

Therefore

$$
\phi^{n_{0}+\sum_{j=1}^{m} i_{j}}(p) \leq \phi^{n_{0}+\left(\sum_{j=1}^{m} i_{j}^{\prime}\right)+i_{0}}(p) \leq \phi^{\left(\sum_{j=1}^{m} i_{j}^{\prime}\right)+i_{0}+1}(p)<x_{n_{0}+\sum_{j=1}^{m} i_{j}}
$$

and this proves our claim with $k_{1}=n_{0}+\sum_{j=1}^{m} i_{j}$.
Now since $\lim _{x \rightarrow 0} \phi^{\prime}(x)=1$, there exists a positive real ϵ such that $\phi^{\prime}(x)>\lambda^{1 / 2}$ for any $x \in[0, \epsilon)$. Hence, the mean value theorem implies that $\phi(x+h)>\phi(x)+\lambda^{1 / 2} h$ for any $h>0$ with $x+h \in[0, \epsilon)$.

Since $x_{k} \rightarrow 0$, there is k_{2} such that $x_{k} \in(0, \epsilon)$ for $k \geq k_{2}$. If $k_{0}=$ $\max \left\{k_{1}+1, k_{2}\right\}$, then $\phi^{2 k+1}(p)<\phi^{2 k-k_{0}+1}\left(x_{k_{0}}\right)$ for $k \geq k_{0}$. So

$$
\begin{aligned}
x_{2 k+1}-\phi^{2 k+1}(p)= & \phi\left(x_{2 k}\right)+\lambda^{2 k}-\phi^{2 k+1}(p) \\
= & \phi\left(x_{2 k-1}+\lambda^{2 k-1}\right)+\lambda^{2 k}-\phi^{2 k+1}(p) \\
> & \phi^{2}\left(x_{2 k-1}\right)+\lambda^{2 k-1+1 / 2}+\lambda^{2 k}-\phi^{2 k+1}(p)>\cdots \\
> & \phi^{i+1}\left(x_{2 k-i}\right)+\lambda^{2 k-i+1 / 2}+\lambda^{2 k-(i-1)+1 / 2}+\cdots+\lambda^{2 k-1+1 / 2} \\
& +\lambda^{2 k}-\phi^{2 k+1}(p)
\end{aligned}
$$

and with the new variable $i=2 k-k_{0}$ we deduce

$$
\begin{aligned}
x_{2 k+1}-\phi^{2 k+1}(p) & >\phi^{2 k-k_{0}}\left(x_{k_{0}}\right)+\lambda^{k+1 / 2}\left(\sum_{j=0}^{2 k-k_{0}} \lambda^{k-j}\right)-\phi^{2 k+1}(p) \\
& =\phi^{2 k-k_{0}}\left(x_{k_{0}}\right)+\lambda^{k+1 / 2}\left(\sum_{j=0}^{k} \lambda^{j}+\sum_{j=0}^{k-k_{0}} \lambda^{-j}\right)-\phi^{2 k+1}(p) \\
& >\lambda^{k+1 / 2}\left(\sum_{j=0}^{k} \lambda^{j}+\sum_{j=0}^{k-k_{0}} \lambda^{-j}\right)
\end{aligned}
$$

Therefore

$$
L>\lambda^{1 / 2}\left(\sum_{j=0}^{k} \lambda^{j}+\sum_{j=0}^{k-k_{0}} \lambda^{-j}\right) \quad \text { for } k>\max \left\{k_{0}, n_{1}\right\}
$$

which is a contradiction.
Case 3. If $p \in(1 / 2,1)$ then

$$
r\left(\phi^{k}(p), x_{k}\right)>r\left(\phi^{k}(1-p), x_{k}\right)
$$

Since $1-p \in(0,1 / 2)$, p does not satisfy (4.2) by Case 2 . So no point $p \in S^{1}$ satisfies (4.2), i.e. ϕ does not have the ELmSP.

REMARK 4.2. If $\phi: S^{1} \rightarrow S^{1}$ is a diffeomorphism generated by a function $f:[0,1) \rightarrow[0,1)$ with the properties:

- f is differentiable and increasing;
- f has a non-hyperbolic attracting fixed point p so that $(p, p+\epsilon) \cap$ $\operatorname{Fix}(f)=\emptyset$ or $(p-\epsilon, p) \cap \operatorname{Fix}(f)=\emptyset$ for some $\epsilon>0$,
then as in Example 4.1 we can find a sequence $\xi=\left\{x_{k}\right\}$ which satisfies (1.1), but there is no p such that 1.2 holds, i.e. ϕ does not have the ELmSP.

5. Conclusion. We know from [ENP] that near a hyperbolic set we have the limit shadowing property. In this paper we show that near a hyperbolic set we have a new kind of shadowing which is not equivalent to the limit shadowing property. Moreover, we show that an Ω-stable dynamical system
has this property and in a compact metric space any \mathcal{L}-hyperbolic map has the ELmSP.

We say that the dynamical system ϕ has the strong exponential limit shadowing property (SELmSP) on M if there exist constants $L>0$ and $\lambda \in(0,1)$ such that for any sequence $\xi=\left\{x_{k}\right\}$ with 1.1 there exist a point $p \in M$ and $k_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
r\left(\phi^{k}(p), x_{k}\right)<L \lambda^{k} \quad \text { for } k \geq k_{2} \tag{5.1}
\end{equation*}
$$

Obviously the SELmSP implies the ELmSP. Example 4.1 shows that the SELmSP is a different concept from the LmSP. The consideration of the SELmSP is a topic for further research.

Acknowledgements. We would like to express our thanks to the referee for his/her valuable comments.

References

[B] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975.
[ENP] T. Eirola, O. Nevanlinna and S. Yu. Pilyugin, Limit shadowing property, Numer. Funct. Anal. Optim. 18 (1997), 75-92.
[JTT] W. Jabłoński, Jacek Tabor and Józef Tabor, Generalized shadowing for discrete semidynamical systems, Ann. Polon. Math. 88 (2006), 263-269.
[LS] K. Lee and K. Sakai, Various shadowing properties and their equivalence, Discrete Contin. Dynam. Systems 13 (2005), 533-539.
[P1] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math. 1706, Springer, Berlin, 1999.
[P2] S. Yu. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differential Equations 19 (2007), 747-775.
[Sa] K. Sakai, Shadowing properties of \mathcal{L}-hyperbolic homeomorphisms, Topology Appl. 112 (2001), 229-243.
[Sm] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.
[Y] K. Yokoi, The chain recurrent set for maps of compacta, Ann. Polon. Math. 92 (2007), 123-131.

S. A. Ahmadi, M. R. Molaei
Department of Mathematics
Shahid Bahonar University of Kerman
Kerman, Iran
E-mail: sa.ahmdi@gmail.com
mrmolaei@mail.uk.ac.ir

Received 22.9.2011
and in final form 27.6.2012

[^0]: 2010 Mathematics Subject Classification: Primary 37C50; Secondary 37D05.
 Key words and phrases: shadowing, hyperbolic set, Ω-stability, expansive map.

