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Inertial manifolds for retarded second order in time
evolution equations in admissible spaces

by Cung The Anh and Le Van Hieu (Hanoi)

Abstract. Using the Lyapunov–Perron method, we prove the existence of an inertial
manifold for the process associated to a class of non-autonomous semilinear hyperbolic
equations with finite delay, where the linear principal part is positive definite with a
discrete spectrum having a sufficiently large distance between some two successive spectral
points, and the Lipschitz coefficient of the nonlinear term may depend on time and belongs
to some admissible function spaces.

1. Introduction and statement of the main result. One of the
main problems in the theory of nonlinear differential equations is to study
the behavior of their solutions as time goes to infinity. It is now well-known
that for many dissipative equations, this behavior can be described by a
global attractor with finite Hausdorff and fractal dimensions. Such an at-
tractor is the largest bounded invariant set and attracts all bounded sets
(see e.g. [20]). The concept of inertial manifolds for evolutionary equations
introduced by Foiaş, Sell & Temam [9] allows us to go further in the study of
the long-time behavior of the solutions. These manifolds, which are finite-
dimensional Lipschitz manifolds, contain the global attractor and attract
exponentially all the solutions of the system under consideration. Moreover,
the dynamices in some absorbing set, when restricted to the inertial mani-
fold, reduces to a system of ordinary differential equations called the inertial
form of the given evolutionary equation.

The notion of inertial manifold has been translated and extended to
more general classes of differential equations like non-autonomous differen-
tial equations (see e.g. [10, 12, 13]), retarded partial differential equations
(see e.g. [3, 17, 19]), or differential equations with random or stochastic
perturbations (see e.g. [2, 5, 8]). However, to the best of our knowledge,
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the most popular conditions for existence of inertial manifolds are the spec-
tral gap condition on the linear principal part A and the uniform Lipschitz
condition on the nonlinear term, i.e., the Lipschitz coefficient of the non-
linearity does not depend on time. In some recent works [1, 11], the au-
thors constructed inertial manifolds for a class of nonautonomous semilin-
ear parabolic equations with or without delay under two conditions. First,
the linear operator A is positive definite with a discrete spectrum having
a sufficiently large distance between some two successive spectral points,
which can be considered in some sense as a slight generalization of the
restrictive spectral gap conditions in [7, 18]. Second, the nonlinear term
B(t, ut) is non-uniformly Lipschitz continuous in some interpolation space,
i.e., ‖B(t, ut) − B(t, vt)‖ ≤ ϕ(t)|ut − vt|Cα for ϕ being a real and positive
function which belongs to an addmissible function space defined in Defini-
tion 2.2 below and satisfies certain conditions.

The aim of this paper is to study the existence of inertial manifolds for
second order in time, retarded PDEs, where the Lipschitz coefficient of the
nonlinear term may depend on time and belongs to some admissible function
space. In what follows, we will formulate the problem and the result obtained
in detail.

Hypothesis A. Let A be a positive definite operator with discrete spec-
trum in a separable Hilbert space H (with a norm ‖ · ‖) and there exists an
orthonormal basis {ek}∞k=1 of H such that

Aek = µkek with 0 < µ1 ≤ µ2 ≤ · · · , lim
k→∞

µk =∞.

In the usual way, we can associate with A its powers Aα defined on the
domain D(Aα) endowed with the norm ‖ · ‖α = ‖Aα · ‖, in particular D(A0)
= H.

For r > 0 and 0 ≤ α ≤ 1/2 we denote by Cα = C([−r, 0];D(Aα)) the
space of strongly continuous functions on the interval [−r, 0] with values in
D(Aα). It is a Banach space with the norm

|v|Cα ≡ sup
θ∈[−r,0]

‖v(θ)‖α.

In this paper, we will study the existence of an inertial manifold for the
following retarded second order in time nonautonomous evolution equation
arising in the theory of nonlinear oscillations:

(1.1)


d2u

dt2
+ 2ε

du

dt
+Au = B(t, ut) for t > τ, ε > 0,

u|t=τ+θ = uτ,0(θ) for θ ∈ [−r, 0],
du

dt

∣∣∣∣
t=τ

= uτ,1,

where uτ,0 ∈ Cα, uτ,1 ∈ H, τ ∈ R are given, and ut = ut(θ) denotes the
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element of Cα such that for all θ ∈ [−r, 0], we have ut(θ) = u(t+ θ). Besides
the above assumption on the operator A, we assume that the nonlinearity
B satisfies the following hypothesis.

Hypothesis B. Let E be an admissible Banach function space on R
(see Definition 2.2 below) and ϕ be a positive function belonging to E.

Assume that the function B : R × Cα → H is ϕ-Lipschitz, that is, for
a.e. t ∈ R, and all ut, vt ∈ Cα:

(i) ‖B(t, ut)‖ ≤ ϕ(t)(1 + |ut|Cα);
(ii) ‖B(t, ut)−B(t, vt)‖ ≤ ϕ(t)|ut − vt|Cα .

Let H = D(A1/2) × H. It is clear that H is a separable Hilbert space
with the inner product

(U, V ) = (Au0, v0) + (u1, v1),

where U = (u0;u1) and V = (v0; v1) are elements of H. In H problem (1.1)
can be rewritten as a system of first order:

(1.2)


dU

dt
+AU(t) = B(t, Ut), t > τ,

U |t=τ, θ∈[−r,0] = Uτ ,

where U(t) = (u(t); u̇(t)), Uτ = (uτ,0;uτ,1). Here the linear operator A and
the mapping B are defined by

AU = (−u1;Au0 + 2εu1), D(A) = D(A)×D(A1/2),

B(t, Ut) = (0;B(t, u0t )) for U = (u0;u1).

It is easy to verify that the eigenvalues and eigenvectors of the operator
A have the form

λ±n = ε±
√
ε2 − µn, f±n = (en;−λ±n en), n = 1, 2, . . . ,

where µn and en are eigenvalues and eigenvectors of the operator A.
Let the condition ε2 > µN+1 hold for some integer N . We consider the

decomposition of the space H into the orthogonal sum

H = H1 ⊕H2,

where

H1 = span {(ek; 0), (0; ek) : k = 1, . . . , N},
and H2 is defined as the closure of the set

span {(ek; 0), (0; ek) : k ≥ N + 1}.
As in [16], we will use the following inner products in H1 and H2:

(1.3)
〈U, V 〉1 = ε2(u0, v0)− (Au0, v0) + (εu0 + u1, εv0 + v1),

〈U, V 〉2 = (Au0, v0)− (ε2 − 2µN+1)(u
0, v0) + (εu0 + u1, εv0 + v1).
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Here U = (u0;u1) and V = (v0; v1) are elements from the corresponding
subspace Hi. Using (1.3) we define a new inner product and norm in H by

〈U, V 〉 = 〈U1, V1〉1 + 〈U2, V2〉2, |U | = 〈U,U〉1/2,
where U = U1 + U2 and V = V1 + V2 are decompositions of the elements U
and V into the orthogonal terms Vi, Ui ∈ Hi, i = 1, 2.

Lemma 1.1 ([7, Lemma 7.1]). The estimates

|U |1 ≥
1

µαN

√
ε2 − µN‖u0‖α, U = (u0;u1) ∈ H1,

|U |2 ≥
1

µαN+1

δN,ε‖u0‖α, U = (u0;u1) ∈ H2,

hold for 0 ≤ α ≤ 1/2. Here

(1.4) δN,ε =
√
µN+1 min

(
1,

√
ε2 − µN+1

µN+1

)
.

In particular, this lemma implies the estimate

(1.5) ‖u0‖α ≤ µαN+1δ
−1
N,ε|U |

for any U = (u0;u1) ∈ H, where 0 ≤ α ≤ 1/2 and δN,ε has the form (1.4).

Lemma 1.2. Let B(t, Ut) = (0;B(t, u0t )), where U = (u0;u1) ∈ H and
B(t, u0t ) satisfies Hypothesis B. Then

|B(t, Ut)| ≤ ϕ(t) + ψ(t) sup
θ∈[−r,0]

|U(t+ θ)|,(1.6)

|B(t, Ut)− B(t, Vt)| ≤ ψ(t) sup
θ∈[−r,0]

|U(t+ θ)− V (t+ θ)|,(1.7)

where

ψ(t) = ϕ(t)µαN+1δ
−1
N,ε = ϕ(t)µ

α−1/2
N+1 max

{
1,

√
µN+1

ε2 − µN+1

}
.

Proof. By Hypothesis B, using (1.5) we have

|B(t, Ut)| = ‖B(t, u0t )‖ ≤ ϕ(t)(1 + |u0t |Cα)

= ϕ(t)
(

1 + sup
θ∈[−r,0]

‖u0(t+ θ)‖α
)

≤ ϕ(t)
(

1 + µαN+1δ
−1
N,ε sup

θ∈[−r,0]
|U(t+ θ)|

)
= ϕ(t) + ψ(t) sup

θ∈[−r,0]
|U(t+ θ)|,

|B(t, Ut)− B(t, Vt)| = ‖B(t, u0t )−B(t, v0t )‖ ≤ ϕ(t)|u0t − v0t |Cα
= ϕ(t) sup

θ∈[−r,0]
‖u0(t+ θ)− v0(t+ θ)‖α
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≤ ϕ(t)µαN+1δ
−1
N,ε sup

θ∈[−r,0]
|U(t+ θ)− V (t+ θ)|

= ψ(t) sup
θ∈[−r,0]

|U(t+ θ)− V (t+ θ)|.

Definition 1.1. A function U(t) ≡ (u(t); u̇(t)) ∈ C([τ −r, T ];H) is said
to be a mild solution of problem (1.2) on the interval [τ, T ] if u(τ + θ) =
uτ,0(θ) for θ ∈ [−r, 0], u̇(τ) = uτ,1 and U satisfies the integral equation

(1.8) U(t) = e−(t−τ)AU(τ) +

t�

τ

e−(t−s)AB(s, Us) ds

for all t ∈ [τ, T ].

The proof of the existence and uniqueness of a mild solution is standard.
First, an auxiliary nonretarded linear problem is considered, namely (1.1),
with a given h(t) ∈ L∞(R;H) instead of B. Using Galerkin approximate
solutions and the compactness method we obtain the existence and unique-
ness of solution for the auxiliary problem. This allows one to define a linear
semigroup e−tA in H which is a contraction for ε > 0 (see e.g. [7, 20]). Then,
using the standard fixed point method, one easily proves the existence and
uniqueness of a mild solution of (1.2).

Now, we can define an evolution semigroup S(t, τ) in the space CH ≡
C([−r, 0];H) by

S(t, τ)Uτ ≡ [S(t, τ)Uτ ](θ) =

{
U(t+ θ) if t+ θ > τ ,

U(τ + θ) if t+ θ ≤ τ ,

for any θ ∈ [−r, 0], Uτ ∈ CH, and any τ ≤ t, where U(t) is the mild solution
of problem (1.2) with the initial datum Uτ at time τ .

We now fix an integer N and consider the subspaces

H±1 = span{f±k : k ≤ N},

which are orthogonal for the hermitian product 〈·, ·〉, so H1 = H+
1 ⊕ H

−
1 .

We denote by PHi the orthoprojectors onto the subspace Hi in H, i = 1, 2.

Lemma 1.3 ([7, pp. 195–196]). We have

|e−AtPH2 | = e−λ
−
N+1t, |eAtPH−1 | = eλ

−
N t, |e−AtPH+

1
| = e−λ

+
N t, t ≥ 0.

Here | · | is the operator norm induced by the corresponding vector norm.

We set P ≡ PH−1
and Q = I − P = PH+

1
+ PH2 . Lemma 1.3 implies the

dichotomy conditions

(1.9) |eAtP | ≤ eλ
−
N |t| for t ∈ R and |e−AtQ| ≤ e−λ

−
N+1t for t > 0.
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We can define the Green function as follows:

G(t, s) :=

{
e−(t−s)AQ for t > s,

−e−(t−s)AP for t ≤ s.
Then G(t, s) maps H into H, and for σ = (λ−N + λ−N+1)/2 we have

(1.10) eσ(t−s)|G(t, s)| ≤ e−µ|t−s| for all t 6= s,

where µ = (λ−N+1 − λ
−
N )/2.

We also define the N -dimensional projector P̂ in CH by

P̂U = (P̂U)(θ) =
N∑
k=1

e−λ
−
k θ〈U(0), f−k 〉f

−
k ≡ e

−AθPU(0),

where −r ≤ θ ≤ 0 and U = U(θ) is an element of CH.

Definition 1.2. The inertial manifold of problem (1.2) is a collection
M = {Mt}t∈R of surfaces in CH of the form

(1.11) Mt = {p̂(θ) + Φt(p̂(0))(θ) : p̂(θ) ∈ P̂CH} ⊂ CH for t ∈ R,

where Φt(·) is a mapping from PH into Q̂CH with the following properties:

(i) For every t ∈ R,Mt is a finite-dimensional Lipschitz manifold, i.e.,

|Φt(p1)− Φt(p2)|CH ≤ `Φ|p1 − p2|
for all p1, p2 ∈ PH with `Φ independent of p1, p2 and t.

(ii) M is invariant with respect to S(t, τ), i.e., S(t, τ)Mτ =Mt for all
t ≥ τ .

(iii) M is exponentially attracting, i.e., there exists a positive constant
σ such that for every τ ∈ R and Uτ ∈ CH there exists a Vτ ∈ Mτ

with

|S(t, τ)Uτ − S(t, τ)Vτ |CH ≤ Ke
−σ(t−τ)

for t ≥ τ and K = K(τ, Uτ ) > 0.

From now on, we frequently use the following notations:

σ :=
λ−N+1 + λ−N

2
, µ :=

λ−N+1 − λ
−
N

2
,

`1 :=
N1e

σr

1− e−µ
‖Λ1ψ‖∞, `2 :=

N2e
σr

1− e−µ
‖Λ1ψ‖∞, ` := `1 + `2,

with

ψ(t) = ϕ(t)µ
α−1/2
N+1 max

{
1,

√
µN+1

ε2 − µN+1

}
,

and Λ1ψ,N1, N2 are given in Definition 2.2 below.

The main result of this paper is the following
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Theorem 1.1. Let Hypotheses A and B hold. If for some integer N we
have ε2 > µN+1, ` < 1, and

(1.12) δ =
`2(1 + `)

1− `
+ ` < 1,

then the process S(t, τ) associated to problem (1.2) possesses an inertial
manifold M = {Mt}t∈R.

Remark 1.1. It is easy to check that when 0 ≤ α ≤ 1/2, condition
(1.12) is fulfilled if the following two conditions hold:

(i) the spectral gap λ−N+1 − λ
−
N is sufficiently large,

(ii) the norm

‖Λ1ψ‖∞ = µ
α−1/2
N+1 max

{
1,

√
µN+1

ε2 − µN+1

}
· sup
t∈R

t�

t−1
ϕ(s) ds

is sufficiently small.

The plan of the paper is as follows. In Section 2, for the convenience of the
reader, we recall some background material on admissible function spaces. In
Section 3, using a slightly modified version of the Lyapunov–Perron method,
we give the construction of the inertial manifold and establish some of its
properties. In the last section, we give an example to illustrate the result
obtained.

2. Admissible function spaces. Denote by B the Borel algebra and
by λ the Lebesgue measure on R. The space L1, loc(R) of real-valued locally
integrable functions on R (modulo λ-nullfunctions) becomes a Fréchet space
for the seminorms pn(f) :=

	
Jn
|f(t)| dt, where Jn = [n, n+1] for each n ∈ Z

(see [15, Chapter 2, §20]). We can now define Banach function spaces as
follows.

Definition 2.1. A normed vector space E of real-valued Borel-measur-
able functions on R (modulo λ-nullfunctions) is called a Banach function
space (over (R,B, λ)) if

(i) E is a Banach lattice with respect to the norm ‖ ·‖E , i.e., (E, ‖ ·‖E)
is a Banach space, and if ϕ ∈ E and ψ is a real-valued Borel-
measurable function such that |ψ(·)| ≤ |ϕ(·)| λ-a.e, then ψ ∈ E and
‖ψ‖E ≤ ‖ϕ‖E ;

(ii) the characteristic functions χA belong to E for all A ∈ B having
finite measure, and supt∈R ‖χ[t,t+1]‖E<∞ and inft∈R ‖χ[t,t+1]‖E>0;

(iii) E ↪→ L1, loc(R), i.e., for each seminorm pn of L1, loc(R), there exists
a number βpn > 0 such that pn(f) ≤ βpn‖f‖E for all f ∈ E.
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We remark that condition (iii) in the above definition means that for
each compact interval J ⊂ R, there exists a number βJ ≥ 0 such that	
J |f(t)| dt ≤ βJ‖f‖E for all f ∈ E.

We now introduce the notion of admissibility.

Definition 2.2. The Banach function space E is called admissible if

(i) there is a constant M ≥ 1 such that for every compact interval
[a, b] ⊂ R we have

b�

a

|ϕ(t)| dt ≤ M(b− a)

‖χ[a,b]‖E
‖ϕ‖E for all ϕ ∈ E;

(ii) for any ϕ ∈ E, the function Λ1ϕ defined by Λ1ϕ(t) :=
	t
t−1 ϕ(s) ds

belongs to E;
(iii) E is T+

τ -invariant and T−τ -invariant, where T+
τ and T−τ are defined,

for τ ∈ R, by

T+
τ ϕ(t) := ϕ(t− τ) for t ∈ R,
T−τ ϕ(t) := ϕ(t+ τ) for t ∈ R.

Moreover, there are constants N1, N2 such that ‖T+
τ ‖ ≤ N1 and

‖T−τ ‖ ≤ N2 for all τ ∈ R+.

Example 1. Besides the space Lp(R), 1 ≤ p ≤ ∞, and the space

M(R) :=
{
f ∈ L1, loc(R) : sup

t∈R

t�

t−1
|f(s)| ds <∞

}
endowed with the norm ‖f‖M := supt∈R

	t
t−1 |f(s)| ds, many other function

spaces occurring in interpolation theory, e.g. the Lorentz spaces Lp,q, 1 <
p < ∞, 1 < q < ∞ (see [4, Theorem 3, p. 284]), and, more generally,
rearrangement invariant function spaces over (R,B, λ) (see [14, 2.a]) are
admissible.

Remark 2.1. If E is an admissible Banach function space, then E ↪→
M(R). Indeed, put β := supt∈R ‖χ[t,t+1]‖E > 0 (see Definition 2.1). Then,
from Definition 2.2 we derive

t�

t−1
|ϕ(s)| ds ≤ M

β
‖ϕ‖E for all t ∈ R and ϕ ∈ E.

Therefore, if ϕ ∈ E, then ϕ ∈ M(R) and ‖ϕ‖M ≤ (M/β)‖ϕ‖E , so E ↪→
M(R).

We now collect some properties of admissible Banach function spaces
(see [15, 23.V.1]).
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Proposition 2.1. Let E be an admissible Banach function space. Then
the following assertions hold:

(i) Let ϕ ∈ L1, loc(R) be such that ϕ ≥ 0 and Λ1ϕ ∈ E, where Λ1 is as
in Definition 2.2. For σ > 0 define functions Λ′σϕ and Λ′′σϕ by

Λ′σϕ(t) :=

t�

−∞
e−σ(t−s)ϕ(s) ds,

Λ′′σ(t) :=

∞�

t

e−σ(s−t)ϕ(s) ds.

Then Λ′σϕ and Λ′′σϕ belong to E. In particular, if supt∈R
	t
t−1 ϕ(s) ds

<∞ (this will be satisfied if ϕ ∈ E, see Remark 2.1), then Λ′σϕ and
Λ′′σϕ are bounded. Moreover,

‖Λ′σϕ‖∞ ≤
N1

1− e−σ
‖Λ1ϕ‖∞ and ‖Λ′′σϕ‖∞ ≤

N2

1− e−σ
‖Λ1ϕ‖∞,

where the constants N1, N2 are defined in Definition 2.2.
(ii) E contains all exponentially decaying functions ψ(t) = e−α|t| for

t ∈ R and any fixed constant α > 0.
(iii) E contains no exponentially growing function f(t) := eb|t| for t ∈ R

and any fixed constant b > 0.

3. Proof of the main result

3.1. Integral equation for determination of an inertial manifold.
We rely on a version of the Lyapunov–Perron method presented in [6] for
the nonretarded case. For τ ∈ R we introduce the space

C−σ,τ =
{
V ∈ C((−∞, τ ];H) : |V |−σ = sup

t∈(−∞,τ ]
eσ(t−τ)|V (t)| <∞

}
,

which is a Banach space endowed with the norm | · |−σ . For V ∈ C−σ,τ and
p ∈ PH, we consider the integral equation

(3.1) V (p)(t) = T (V, p)(t),

where T (V, p)(t) is the map defined by

T (V, p)(t) = e−(t−τ)Ap+

τ�

−∞
G(t, s)B(s, Vs) ds

for all t ≤ τ , and Vs is an element from CH defined by Vs(θ) = V (s+ θ) for
all θ ∈ [−r, 0].

Equation (3.1) is called the Lyapunov–Perron equation; it will be used
to determine an inertial manifold for (1.2). Our construction of the inertial
manifold is based on the fact that, for suitable σ, a function V ∈ C−σ,τ is a
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solution of (3.1) if and only if V is a fixed point of T . The idea then is to
prove that for suitable σ, the map T is well-defined from C−σ,τ×PH into C−σ,τ ,
and is a strict contraction in C−σ,τ , uniformly in PH. Hence, for each p ∈ PH,
there exists a unique V ∈ C−σ,τ such that T (V, p) = V (p); in other words,
there will be a map V : PH → C−σ,τ such that T (V, p) = V (p). We can then

define a map Φτ : PH → Q̂CH which gives the inertial manifold by

Φτ (p)(θ) =

τ�

−∞
G(τ + θ, s)B(s, Vs) ds ≡ V (p)(τ + θ)− e−θAp

for all θ ∈ [−r, 0].

3.2. Construction of an invariant manifold

Lemma 3.1. We have T : C−σ,τ×PH → C−σ,τ provided σ = (λ−N+λ−N+1)/2.

Proof. Take V ∈ C−σ,τ and p ∈ PH. From Lemma 1.2, we have

|B(t, Vt)| ≤ ϕ(t) + ψ(t) sup
θ∈[−r,0]

|V (t+ θ)|

≤ ϕ(t) + ψ(t)eσre−σ(t−τ) sup
θ∈[−r,0]

eσ(t+θ−τ)|V (t+ θ)|

≤ ϕ(t) + ψ(t)eσre−σ(t−τ)|V |−σ

≤ ψ∗(t)eσre−σ(t−τ)(1 + |V |−σ ),

where ψ∗(t) = max{ϕ(t), ψ(t)}, for all t ≤ τ . From (3.1), we have

eσ(t−τ)|T (V, p)(t)| ≤ eσ(t−τ)|G(t, τ)| · |p|+ eσ(t−τ)
τ�

−∞
|G(t, s)| · |B(s, Vs)| ds

≤ e−µ|t−τ ||p|+
τ�

−∞
eσ(t−s)|G(t, s)|ψ∗(s) ds · eσr(1 + |V |−σ )

≤ |p|+ N1 +N2

1− e−µ
‖Λ1ψ

∗‖∞eσr(1 + |V |−σ ).

This implies that |T (V, p)|−σ <∞. Here, we have used the estimates
τ�

−∞
eσ(t−s)|G(t, s)|ψ∗(s) ds ≤

τ�

−∞
e−µ|t−s|ψ∗(s) ds(3.2)

≤
t�

−∞
e−µ(t−s)ψ∗(s) ds+

τ�

t

e−µ(s−t)ψ∗(s) ds

≤ N1

1− e−µ
‖Λ1ψ

∗‖∞ +
N2

1− e−µ
‖Λ1ψ

∗‖∞.

The continuity of t 7→ T (V, p)(t) from (−∞, τ ] into H can be proved in
the same way. Indeed, assume that t1, t2 ∈ (−∞, τ ] and t1 < t2. It is evident
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that

(3.3) T (V, p)(t2) = e−t2Ap−
τ�

t2

e−(t2−s)APB(s, Vs) ds

+

t2�

−∞
e−(t2−s)AQB(s, Vs) ds

= e−(t2−t1)Ae−t1Ap− e−(t2−t1)A
( t1�
t2

+

τ�

t1

)
e−(t1−s)APB(s, Vs) ds

+ e−(t2−t1)A
( t1�

−∞
+

t2�

t1

)
e−(t1−s)AQB(s, Vs) ds

= e−(t2−t1)AT (V, p)(t1) +

t2�

t1

e−(t2−s)AB(s, Vs) ds.

We see that if t2 → t1, then

|T (V, p)(t1)− e−(t2−t1)AT (V, p)(t1)| → 0.

Therefore, it is sufficient to estimate the second term on the right-hand side
of (3.3). Equation (1.9) implies that∣∣∣ t2�
t1

e−(t2−s)AB(s, Vs) ds
∣∣∣ ≤ t2�

t1

e−λ
−
1 (t2−s)|B(s, Vs)| ds ≤

t2�

t1

ds max
s∈[t1,t2]

|B(s, Vs)|

≤ (t2 − t1) max
s∈[t1,t2]

|B(s, Vs)|,

which converges to 0 as t2 → t1. Thus, T (V, p) ∈ C−σ,τ , which shows that
T (V, p) is well-defined as a map from C−σ,τ × PH into C−σ,τ .

Lemma 3.2. Assume that the conditions in Theorem 1.1 hold. Then for
any fixed τ ∈ R and any p ∈ PH, there exists a unique function V (p) ∈ C−σ,τ
satisfying the integral equation (3.1) for all t ∈ (−∞, τ ] with PV (p)(τ) = p.
Moreover,

(3.4) |V (p)|−σ <∞, |V (p)− V (q)|−σ ≤ (1− `)−1|p− q|,
where ` < 1.

Proof. Take U, V ∈ C−σ,τ and p, q ∈ PH. By Lemma 1.2, for all t ≤ τ ,

|B(t, Ut)− B(t, Vt)| ≤ ψ(t)eσre−σ(t−τ)|U − V |−σ .
From (3.1) we have

eσ(t−τ)|T (U, p)(t)− T (V, q)(t)|

≤ eσ(t−τ)|G(t, s)| |p− q|+ eσ(t−τ)
τ�

−∞
|G(t, s)| |B(s, Us)−B(s, Vs)| ds
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≤ e−µ(τ−t)|p− q|+
τ�

−∞
eσ(t−s)|G(t, s)|ψ(s) ds · eσr|U − V |−σ

≤ |p− q|+ `|U − V |−σ .
Therefore,

(3.5) |T (U, p)− T (V, q)|−σ ≤ |p− q|+ `|U − V |−σ ,
which implies that T is a strict contraction in C−σ,τ , uniformly in PH (if
p = q). Therefore, there exists a unique fixed point V (p) = T (V, p), which
is the unique solution of the integral equation (3.1).

Using (3.5) and the fact that V (p) = T (V, p), V (q) = T (V, q), we have

|V (p)− V (q)|−σ ≤ |p− q|+ `|V (p)− V (q)|−σ .
Hence,

|V (p)− V (q)|−σ ≤ (1− `)−1|p− q|.

Lemma 3.2 enables us to define a collection {Mt}t∈R of manifolds by

Mt = {p̂(θ) + Φt(p)(θ) : p̂(θ) ∈ P̂CH} ⊂ CH,
where p = p̂(0), and

(3.6) Φt(p)(θ) =

t�

−∞
G(t+ θ, s)B(s, Vs) ds

for all θ ∈ [−r, 0]. Here Vs(θ) = V (s+ θ), θ ∈ [−r, 0] and V (s) = V (p)(s) is
the solution to (3.1) for all s ≤ t. Some properties of the manifoldsMt and
the function Φt(p)(θ) are given in the following assertion.

Proposition 3.1. Assume that the conditions in Theorem 1.1 are sat-
isfied. Then the collection M≡ {Mt}t∈R has the following properties:

(i) Mt is a Lipschitzian surface and

|Φt(p)− Φt(q)|CH ≤ `Φ|p− q|
for all p, q ∈ PH and t ∈ R, where `Φ = `eσr/(1− `).

(ii) M is invariant with respect to S(t, τ), i.e., S(t, τ)Mτ =Mt.

Proof. Take p, q ∈ PH. For σ = (λ−N+1 +λ−N )/2 and all θ ∈ [−r, 0], from
(3.6) and (3.4), we have

(3.7) |Φt(p)(θ)− Φt(q)(θ)| ≤
t�

−∞
|G(t+ θ, s)| · |B(s, Vs(p))− B(s, Vs(q))| ds

≤
t�

−∞
e−σ(s−t)|G(t+ θ, s)|ψ(s) ds · eσr|V (p)− V (q)|−σ
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≤ e−σθ
t�

−∞
eσ(t+θ−s)|G(t+ θ, s)|ψ(s) ds · e

σr

1− `
|p− q|

≤ e−σθ

1− `
· N1 +N2

1− e−µ
‖Λ1ψ‖∞ · eσr|p− q| =

`e−σθ

1− `
|p− q|.

Hence,

|Φt(p)− Φt(q)|CH = sup
θ∈[−r,0]

|Φt(p)(θ)− Φt(q)(θ)| ≤
`eσr

1− `
|p− q|.

We now prove (ii). To do this, let U be a solution of problem (1.2) with
initial datum Uτ ∈ Mτ , i.e., Uτ (θ) = p̂(θ) + Φτ (p̂(0))(θ), where p̂ ∈ P̂CH.
We have to prove that Ut = S(t, τ)Uτ ∈Mt.

Fix t ∈ [τ,∞) and define a function W (t) on (−∞, t] by

W (s) =

{
U(s) for s ∈ [τ, t],

V (s) for s ∈ (−∞, τ ],

where V (s) = V (p)(s) is the unique solution of (3.1) with p = p̂(0). From
(3.5), since p̂(0) = e−0Ap = p, we have

Φτ (p(0))(θ) =

τ+θ�

−∞
e−(τ+θ−s)AQB(s, Vs) ds−

τ�

τ+θ

e−(τ+θ−s)APB(s, Vs) ds.

Hence, for all t ∈ [τ − r, τ ], we have θ = t− τ ∈ [−r, 0] and

U(t) = U(τ + θ) = Uτ (θ) = p̂(θ) + Φτ (p̂(0))(θ)

= e−θAp̂(0) +

τ+θ�

−∞
e−(τ+θ−s)AQB(s, Vs) ds−

τ�

τ+θ

e−(τ+θ−s)APB(s, Vs) ds

= e−(t−τ)Ap̂(0) +

t�

τ

e−(t−s)BPB(s, Vs) ds+

t�

−∞
e−(t−s)BQB(s, Vs) ds.

For all t ≥ τ , (1.8) implies that

U(t) = e−(t−τ)AUτ (0) +

t�

τ

e−(t−s)AB(s, Us) ds(3.8)

= e−(t−τ)Ap̂(0) + e−(t−τ)AΦτ (p̂(0))(0)

+

t�

τ

e−(t−s)APB(s, Us) ds+

t�

τ

e−(t−s)AQB(s, Us) ds

= e−(t−τ)Ap̂(0) + e−(t−τ)A
τ�

−∞
e−(τ−s)BQB(s, Vs) ds

+

t�

τ

e−(t−s)APB(s, Us) ds+

t�

τ

e−(t−s)AQB(s, Us) ds
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= e−(t−τ)Ap̂(0) +

t�

τ

e−(t−s)APB(s,Ws) ds

+

t�

−∞
e−(t−s)AQB(s,Ws) ds.

So, we obtain

U(t) = e−(t−τ)Ap̂(0) +

t�

τ

e−(t−s)APB(s,Ws) ds(3.9)

+

t�

−∞
e−(t−s)AQB(s,Ws) ds

for all t ≥ τ − r.
Now, for all t ≥ τ , it follows from (3.9) that

(P̂Ut)(θ) = e−θAPU(t)(3.10)

= e−(t+θ−τ)Ap̂(0) + e−θA
t�

τ

e−(t−s)APB(s,Ws) ds

for all θ ∈ [−r, 0], and

Q̂Ut(θ) ≡ Ut(θ)− (P̂Ut)(θ)

= e−(t+θ−τ)Ap̂(0) +

t+θ�

τ

e−(t+θ−s)APB(s,Ws) ds

+

t+θ�

−∞
e−(t+θ−s)AQB(s,Ws) ds

− e−(t+θ−τ)Ap̂(0)−
t�

τ

e−(t+θ−s)APB(s,Ws) ds

=

t+θ�

t

e−(t+θ−s)APB(s,Ws) ds+

t+θ�

−∞
e−(t+θ−s)AQB(s,Ws) ds

= Φt(PU(t))(θ).

Therefore, in order to prove Ut ∈ Mt, it is sufficient to check that the
function W (·) is a solution of (3.1) with p = PU(t) and s ≤ t. Let us do
this. From (3.1) and (3.9) we have

W (s) = e−(s−τ)Ap̂(0) +

s�

τ

e−(s−r)APB(r,Wr) dr(3.11)

+

s�

−∞
e−(s−r)AQB(r,Wr) dr
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for all s ≤ t. Equation (3.10) implies

p̂(0) = e(t−τ)APU(t)− e(t−τ)A
t�

τ

e−(t−r)APB(r,Wr) dr,

hence

e−(s−τ)Ap̂(0) = e−(s−t)APU(t)−
t�

τ

e−(s−r)APB(r,Wr) dr.

From (3.11) we get

W (s) = e−(s−t)APU(t) +

s�

t

e−(s−r)APB(r,Wr) dr

+

s�

−∞
e−(s−r)AQB(r,Wr) dr.

This implies that W (·) is a solution of (3.1) with p = PU(t) and s ≤ t. So
we have proved that U(t, τ)Mτ ⊂Mt.

Conversely, if Ut ∈Mt, there exists p̂ ∈ P̂CH such that

Ut(θ) = p̂(θ) + Φt(p̂(0))(θ) = e−θAp(t) + Φt(p(t))(θ) = V (p(t))(t+ θ)

for all θ ∈ [−r, 0]. For a given p(t) there exists a function V (s) = V (p(t))(s)
which is a solution of (3.1) with p = p(t) and s ≤ t. So, we obtain

V (s)− e−(s−τ)AV (τ)

= e−(s−t)Ap(t) +

s�

t

e−(s−r)APB(r, Vr) dr +

s�

−∞
e−(s−r)AQB(r, Vr) dr

− e−(s−τ)A
[
e−(τ−t)Ap(t) +

τ�

t

e−(τ−r)APB(r, Vr) dr

]

− e−(s−τ)A
τ�

−∞
e−(τ−r)AQB(r, Vr) dr

=

s�

t

e−(s−r)APB(r, Vr) dr +

s�

−∞
e−(s−r)AQB(r, Vr) dr

+

t�

τ

e−(s−r)APB(r, Vr) dr −
τ�

−∞
e−(s−r)AQB(r, Vr) dr

=

s�

τ

e−(s−r)APB(r, Vr) dr +

s�

τ

e−(s−r)AQB(r, Vr) dr

=

s�

τ

e−(s−r)AB(r, Vr) dr for all τ ≤ s ≤ t.
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Hence,

V (s) = e−(s−τ)AVτ (0) +

s�

τ

e−(s−r)AB(r, Vr) dr.

This implies that V (·) is a solution of problem (1.2) with the initial datum
Vτ = V (p(t))(τ). Therefore, Vs = S(s, τ)Mτ , i.e., Mt ⊂ S(t, τ)Mτ . Thus,
S(t, τ)Mτ =Mt.

3.3. Asymptotic completeness. In this subsection, we show that the
collection {Mt}t∈R determined as in the previous subsection has the prop-
erty of exponential uniform attraction and hence is an inertial manifold for
problem (1.2). More precisely, Proposition 3.2 below states that {Mt} is an
exponentially asymptotically complete inertial manifold, i.e., for any solution
Ut = S(t, τ)Uτ , there exists a solution U∗t = S(t, τ)U∗τ lying in the manifold
(i.e. U∗t ∈Mt for all t ≥ τ) such that

|Ut − U∗t |CH ≤ Ce
−σ(t−τ), σ > 0, t ≥ τ.

In this case, the solution U∗(t) is called an induced trajectory for U(t) on
the manifold {Mt}. In particular, the existence of such induced trajecto-
ries means that the solution to the original infinite-dimensional problem
(1.2) can be naturally associated to the solution of the system (3.1)–(3.3) of
ordinary differential equations.

Proposition 3.2. Assume that the conditions in Theorem 1.1 hold.
Then the collection {Mt}t∈R of manifolds given by formula (1.11) is the in-
ertial manifold for problem (1.2). Moreover, for any solution Ut = S(t, τ)Uτ ,
there exists an induced trajectory U∗t = S(t, τ)U∗τ such that U∗t ∈ Mt for
t ≥ τ and

|U∗t − Ut|CH ≤ (1− δ)−1|Φτ (PUτ (0))− (I − P̂ )Uτ |CHe
−σ(t−τ).

Proof. We will find the induced trajectory in the form U∗(t) = U(t) +
W (t) with

(3.12) |W |+σ = sup
t≥τ−r

eσ(t−τ)|W (t)| <∞.

For simplicity of presentation we put

F(t,Wt) = B(t, Ut +Wt)−B(t, Ut),

and set

C+σ,τ =
{
V ∈ C([τ − r,∞);H) : sup

t≥τ−r
eσ(t−τ)|V (t)| <∞

}
endowed with the norm | · |+σ defined as in (3.12).
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Since U and U∗ are solutions of (1.2), for t ≥ τ one has

W (t) = e−(t−τ)AQW (τ) +

t�

τ

e−(t−s)AQF(s,Ws) ds(3.13)

−
∞�

t

e−(t−s)APF(s,Ws) ds.

This gives for all θ ∈ [−r, 0],

(P̂Wτ )(θ) = e−θAPWτ (0) = e−θAPW (τ)(3.14)

= −e−θA
∞�

τ

e−(τ−s)APF(s,Ws) ds

= −
∞�

τ

e−(τ+θ−s)APF(s,Ws) ds.

Since by definition of an induced trajectory, U∗τ = Uτ +Wτ ∈Mτ , we have

(I − P̂ )(Uτ +Wτ )(θ) = Φτ (P̂ (Uτ +Wτ )(0))(θ)

= Φτ

(
PUτ (0)−

∞�

τ

e−(τ−s)APF(s,Ws) ds
)

(θ).

Hence

(3.15) (I − P̂ )Wτ (θ)

= −(I − P̂ )Uτ (θ) + Φτ

(
PUτ (0)−

∞�

τ

e−(τ−s)APF(s,Ws) ds
)

(θ).

So, (3.14) and (3.15) give the formula for Wτ (θ), θ ∈ [−r, 0]:

(3.16) Wτ (θ) = (I − P̂ )Wτ (θ) + (P̂Wτ )(θ)

= −(I − P̂ )Uτ (θ) + Φτ

(
PUτ (0)−

∞�

τ

e−(τ−s)APF(s,Ws) ds
)

(θ)

−
∞�

τ

e−(τ+θ−s)APF(s,Ws) ds.

Now, we define the map T : C+σ,τ → C+σ,τ given by the right-hand side of (3.13)
and (3.16). Our goal is to prove that T is a contraction in the space C+σ,τ .

Indeed, for W (·) ∈ C+σ,τ , we have

|F(t,Wt)| ≤ ψ(t)eσre−σ(t−τ)|W |+σ ,

therefore we can estimate for all t ≥ τ − r. For t ∈ [τ − r, τ ], noting that
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θ ∈ [−r, 0] and t = τ + θ, we have

eσ(t−τ)|T (W )(t)| = eσθ|Wτ (θ)|
≤ eσθ|Φτ (PUτ (0))(θ)− (I − P̂ )Uτ (θ)|

+ eσθ
∣∣∣Φτ(PUτ (0)−

∞�

τ

e−(τ−s)APF(s,Ws) ds
)

(θ)− Φτ (PUτ (0))(θ)
∣∣∣

+ eσθ
∣∣∣∞�
τ

e−(τ+θ−s)APF(s,Ws) ds
∣∣∣

≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH

+ eσθ
`e−σθ

1− `

∣∣∣∞�
τ

e−(τ−s)APF(s,Ws) ds
∣∣∣

+ eσθ
∣∣∣∞�
τ

e−(τ+θ−s)APF(s,Ws) ds
∣∣∣

≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH

+ eσθ
`e−σθ

1− `

∣∣∣∞�
τ

eσre−λ
−
N (τ−s)eσ(τ−s)ψ(s) ds

∣∣∣|W |+σ
+ eσθ

∣∣∣∞�
τ

eσre−λ
−
N (τ+θ−s)eσ(τ−s)ψ(s) ds

∣∣∣|W |+σ
≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH

+

(
`

1− `
+ eµθ

)∣∣∣∞�
τ

eσreµ(τ−s)ψ(s) ds
∣∣∣|W |+σ

≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH +

(
`

1− `
+ 1

)
`2|W |+σ

≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH +
`2

1− `
|W |+σ .

From (3.16), we deduce that

|QWτ (θ)| ≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH +
`e−σθ

1− `
`2|W |+σ .

So, (3.13) and the last inequality show that for all t ≥ τ ,

eσ(t−τ)|(TW )(t)|

≤ e−(λ
−
N+1−σ)(t−τ)|QW (τ)|+ eσr|W |+σ

∞�

τ

eσ(t−s)|G(t, s)| · ψ(s) ds

≤ e−µ(t−τ)
(
|Φτ (PUτ (0))− (I − P̂ )Uτ |CH +

`

1− `
`2|W |+σ

)
+ `|W |+σ

≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH +

(
`2

1− `
+ 1

)
`|W |+σ .
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It follows that (TW )(·) ∈ C+σ,τ , and

(3.17) |TW |+σ ≤ |Φτ (PUτ (0))− (I − P̂ )Uτ |CH + δ|W |+σ ,

where δ = `2(1 + `)/(1− `) + `. Therefore, the transformation T acts from
C+σ,τ into itself.

We take W 1,W 2 ∈ C+σ,τ , and use the fact that

|F(t,W 1
t )−F(t,W 2

t )| ≤ ψ(t)eσre−σ(t−τ)|W 1 −W 2|+σ

to obtain for θ ∈ [−r, 0], t = τ + θ,

(3.18) eσ(t−τ)|(TW 1)(t)− (TW 2)(t)| ≤ `2
1− `

|W 1 −W 2|+σ ,

and for t ≥ τ ,

(3.19) eσ(t−τ)|(TW 1)(t)−(TW 2)(t)|≤|Q(W 1(τ)−W 2(τ))|+`|W 1−W 2|+σ .

We deduce from (3.16) and (3.7) with θ = 0 that

|Q(W 1(τ)−W 2(τ)| ≤ `

1− `
`2|W 1 −W 2|+σ .

Therefore,

|TW 1 − TW 2|+σ ≤ δ|W 1 −W 2|+σ .

Hence, if

δ =
`2(1 + `)

1− `
+ ` < 1,

then T : C+σ,τ → C+σ,τ is a contraction. Thus, there exists a unique W (·) ∈ C+σ,τ
such that TW = W . By the definition of T , W (·) is the unique solution in
C+σ,τ of equations (3.13) and (3.16) for t ≥ τ − r. Also using (3.17) we obtain

|W |+σ ≤ (1− δ)−1|Φτ (PUτ (0))− (I − P̂ )Uτ |CH .

Furthermore, by determination of W , we obtain the existence of the solution
U∗ = U +W to (1.2) such that U∗t ∈Mt for t ≥ τ , and U∗ satisfies

|U∗t (θ)− Ut(θ)| = |W (t+ θ)| ≤ e−σ(t−τ)|W |+σ
≤ (1− δ)−1|Φτ (PUτ (0))− (I − P̂ )Uτ |CHe

−σ(t−τ)

for all t ≥ τ and θ ∈ [−r, 0]. Hence,

|U∗t − Ut|CH ≤ (1− δ)−1|Φτ (PUτ (0))− (I − P̂ )Uτ |CHe
−σ(t−τ).
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4. An example. Consider the following Cauchy–Dirichlet problem for
the semilinear damped wave equation with delay:
(4.1)

∂2u

∂t2
(x, t) + 2ε

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + f

(
x, t, u(x, t− r), ∂u

∂x
(x, t− r)

)
,

0 < x < π, t > τ,

u(0, t) = u(π, t) = 0, t > τ,

u(x, τ + θ) = φ1(x, θ),
∂u

∂t
(x, τ) = φ2(x), 0 < x < π, −r ≤ θ ≤ 0,

where r is a positive real number, φ1 and φ2 are given initial functions, and
f : R× R× R× R→ R is a continuous function such that

(4.2) |f(x, t, u1, ξ1)− f(x, t, u2, ξ2)| ≤ ϕ1(t)(L1|u1 − u2|+ L2|ξ1 − ξ2|)

for all x ∈ [0, π], t ≥ τ , and

π�

0

[f(x, t, 0, 0)]2 dx ≤ [L3ϕ2(t)]
2,

where Lj , j = 1, 2, 3, are nonnegative numbers, and ϕ1, ϕ2 belong to an
admissible function space E.

We choose the Hilbert space H = L2(0, π) and consider the operator
A : H → H defined by

Au = −∂
2u

∂x2
with D(A) = H1

0 (0, π) ∩H2(0, π).

Then A is a positive operator with discrete point spectrum

12, 22, . . . , n2, . . . .

Note that D(A1/2) = H1
0 (0, π).

Let B : R× C1/2 → H be defined by

B(t, ut)(x) = f

(
x, t, ut(−r)(x),

∂ut(−r)
∂x

(x)

)
, ut ∈ C1/2, x ∈ [0, π].

Then B is well-defined because f is continuous. Since for all ut, vt ∈ C1/2,∥∥∥∥∂ut(−r)∂x
− ∂vt(−r)

∂x

∥∥∥∥2 = ‖A1/2(ut(−r)− vt(−r))‖2 ≤ |ut − vt|2C1/2
,

‖ut(−r)− vt(−r)‖2 ≤ ‖A1/2(ut(−r)− vt(−r))‖2 ≤ |ut − vt|2C1/2
,

the mapping B satisfies

‖B(t, ut)−B(t, vt)‖ ≤ ϕ1(t)(L1 + L2)|ut − vt|C1/2
,

‖B(t, ut)‖ ≤ ϕ1(t)(L1 + L2)|ut|C1/2
+ L3ϕ2(t),
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for all t ∈ R and ut, vt ∈ C1/2. Therefore, B is ϕ-Lipschitz with

ϕ(t) = max{(L1 + L2)ϕ1(t), L3ϕ2(t)}.
Hence, for each initial data, problem (4.1) has a unique mild solution u(t).
Thus, we can define a process associated to problem (4.1), which has an
inertial manifold if the condition (1.12) is fulfilled.

In particular, if N1 = N2 (this assumption holds, for example, in the
case where ϕ(t) ≡ L does not depend on time t), we have `1 = `2 = `/2.
Then (1.12) becomes

`(1 + `)

2(1− `)
+ ` < 1,

that is,

` <
5−
√

17

2
(since ` < 1).
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