Non-trivial solutions for a two-point boundary value problem

by G. A. Afrouzi (Babolsar), A. Hadjian (Babolsar) and S. Heidarkhani (Kermanshah and Tehran)

Abstract

We prove the existence of at least one non-trivial solution for Dirichlet quasilinear elliptic problems. The approach is based on variational methods.

1. Introduction. We investigate the existence of at least one non-trivial weak solution to the quasilinear elliptic problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=[\lambda f(x, u)+g(u)] h\left(x, u^{\prime}\right) \quad \text { in }(0,1) \tag{1.1}\\
u(0)=u(1)=0
\end{array}\right.
$$

where λ is a positive parameter, $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function with Lipschitz constant $L>0$, i.e.,

$$
\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

for all $t_{1}, t_{2} \in \mathbb{R}$, with $g(0)=0$, and $h:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$ is a bounded and continuous function with $m:=\inf _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)>0$.

Motivated by the fact that such problems are used to describe a large class of physical phenomena, many authors looked for existence of solutions for second order ordinary differential non-linear equations.

In this paper, we generalize the results obtained in [4] with $g \equiv 0$ and $h \equiv 1$ (see Remark 3.9). Our analysis is mainly based on a recent critical point theorem of Bonanno [1], contained in Theorem 2.1 below. This theorem has been used in several works in order to obtain existence results for different kinds of problems (see, for instance, [2, 3, 4, 6, 7, 8, 11]).

As an example, we state here the following special case of our results.
Theorem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative continuous function such that

$$
16 \int_{0}^{5} f(x) d x<25 \int_{0}^{1} f(x) d x
$$

[^0]Then, for each

$$
\lambda \in] \frac{10}{\int_{0}^{1} f(x) d x}, \frac{15}{\int_{0}^{5} f(x) d x}[
$$

the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda f(u) \quad \text { in }(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

admits at least one positive classical solution \bar{u} such that $|\bar{u}(x)|<5$ for all $x \in[0,1]$.
2. Preliminaries. Our main tool is the Ricceri variational principle 13 , Theorem 2.5] as given in [1, Theorem 5.1] which is recalled below (see also [1, Proposition 2.1]).

For a given non-empty set X, and two functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$, we define

$$
\begin{aligned}
& \beta\left(r_{1}, r_{2}\right)=\inf _{v \in \Phi^{-1}(] r_{1}, r_{2}[)} \frac{\sup _{u \in \Phi^{-1}(] r_{1}, r_{2}[)} \Psi(u)-\Psi(v)}{r_{2}-\Phi(v)}, \\
& \rho\left(r_{1}, r_{2}\right)=\sup _{v \in \Phi^{-1}(] r_{1}, r_{2}[)} \frac{\Psi(v)-\sup _{u \in \Phi^{-1}(]-\infty, r_{1}[)} \Psi(u)}{\Phi(v)-r_{1}}
\end{aligned}
$$

for all $r_{1}, r_{2} \in \mathbb{R}$ with $r_{1}<r_{2}$.
Theorem 2.1 ([1, Theorem 5.1]). Let X be a reflexive real Banach space; $\Phi: X \rightarrow \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux differentiable function whose Gâteaux derivative admits a continuous inverse on X^{*}; and $\Psi: X \rightarrow \mathbb{R}$ be a continuously Gâteaux differentiable function whose Gâteaux derivative is compact. Assume that there are $r_{1}, r_{2} \in \mathbb{R}$, with $r_{1}<r_{2}$, such that

$$
\beta\left(r_{1}, r_{2}\right)<\rho\left(r_{1}, r_{2}\right)
$$

Then, setting $I_{\lambda}:=\Phi-\lambda \Psi$, for each $\left.\lambda \in\right] 1 / \rho\left(r_{1}, r_{2}\right), 1 / \beta\left(r_{1}, r_{2}\right)[$ there is $u_{0, \lambda} \in \Phi^{-1}(] r_{1}, r_{2}[)$ such that $I_{\lambda}\left(u_{0, \lambda}\right) \leq I_{\lambda}(u)$ for all $u \in \Phi^{-1}(] r_{1}, r_{2}[)$ and $I_{\lambda}^{\prime}\left(u_{0, \lambda}\right)=0$.

Let $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be an L^{1}-Carathéodory function, $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz continuous function with Lipschitz constant $L>0$, i.e.,

$$
\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

for all $t_{1}, t_{2} \in \mathbb{R}$, and $g(0)=0$, and $h:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$ be a bounded and continuous function with $m:=\inf _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)>0$.

We recall that $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function if
(a) $x \mapsto f(x, \xi)$ is measurable for every $\xi \in \mathbb{R}$;
(b) $\xi \mapsto f(x, \xi)$ is continuous for almost every $x \in[0,1]$;
(c) for every $\rho>0$ there is a function $l_{\rho} \in L^{1}([0,1])$ such that

$$
\sup _{|\xi| \leq \rho}|f(x, \xi)| \leq l_{\rho}(x)
$$

for almost every $x \in[0,1]$.
Corresponding to f, g and h we introduce the functions $F:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$, $G: \mathbb{R} \rightarrow \mathbb{R}$ and $H:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$ as follows:

$$
\begin{aligned}
F(x, t) & :=\int_{0}^{t} f(x, \xi) d \xi, \quad G(t):=-\int_{0}^{t} g(\xi) d \xi \\
H(x, t) & :=\int_{0}^{t}\left(\int_{0}^{\tau} \frac{1}{h(x, \delta)} d \delta\right) d \tau
\end{aligned}
$$

for all $x \in[0,1]$ and $t \in \mathbb{R}$.
Throughout, we let $M:=\sup _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)$ and suppose that the Lipschitz constant $L>0$ of g satisfies the condition $L M<4$.

Let X be the Sobolev space $W_{0}^{1,2}([0,1])$ equipped with the norm

$$
\|u\|:=\left(\int_{0}^{1}\left|u^{\prime}(x)\right|^{2} d x\right)^{1 / 2}
$$

We say that a function $u \in X$ is a weak solution of problem (1.1) if

$$
\int_{0}^{1}\left(\int_{0}^{u^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right) v^{\prime}(x) d x-\lambda \int_{0}^{1} f(x, u(x)) v(x) d x-\int_{0}^{1} g(u(x)) v(x) d x=0
$$

for all $v \in X$. By standard regularity results, if f is continuous in $[0,1] \times \mathbb{R}$, then weak solutions of problem (1.1) belong to $C^{2}([0,1])$, thus they are classical solutions.

For other basic notations and definitions, we refer the reader to [5, 10 , 14, 16.
3. Main results. Put

$$
A:=\frac{4-L M}{8 M}, \quad B:=\frac{4+L m}{8 m}
$$

and suppose that $B \leq 4 A$.
Given a non-negative constant c_{1} and two positive constants c_{2} and d with $c_{1}^{2}<8 d^{2}<c_{2}^{2}$, put

$$
\begin{aligned}
a\left(c_{2}, d\right) & :=\frac{\int_{0}^{1} \sup _{|t| \leq c_{2}} F(x, t) d x-\int_{1 / 4}^{3 / 4} F(x, d) d x}{B c_{2}^{2}-8 B d^{2}} \\
b\left(c_{1}, d\right) & :=\frac{\int_{1 / 4}^{3 / 4} F(x, d) d x-\int_{0}^{1} \sup _{|t| \leq c_{1}} F(x, t) d x}{8 B d^{2}-A c_{1}^{2}}
\end{aligned}
$$

We formulate our main result as follows.
Theorem 3.1. Assume that there exist a non-negative constant c_{1} and two positive constants c_{2} and d with $c_{1}^{2}<8 d^{2}<c_{2}^{2}$ such that
$\left(\mathrm{A}_{1}\right) F(x, t) \geq 0$ for all $(x, t) \in([0,1 / 4] \cup[3 / 4,1]) \times[0, d]$;
($\left.\mathrm{A}_{2}\right) a\left(c_{2}, d\right)<b\left(c_{1}, d\right)$.
Then, for each $\lambda \in] 1 / b\left(c_{1}, d\right), 1 / a\left(c_{2}, d\right)[$, problem (1.1) admits at least one non-trivial weak solution $\bar{u} \in X$ such that

$$
\frac{A}{B} c_{1}^{2}<\|\bar{u}\|^{2}<\frac{B}{A} c_{2}^{2} .
$$

Proof. Our aim is to apply Theorem 2.1 to our problem. To this end, for each $u \in X$, we define $\Phi, \Psi: X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \Phi(u):=\int_{0}^{1} H\left(x, u^{\prime}(x)\right) d x+\int_{0}^{1} G(u(x)) d x, \\
& \Psi(u):=\int_{0}^{1} F(x, u(x)) d x,
\end{aligned}
$$

and put

$$
I_{\lambda}(u):=\Phi(u)-\lambda \Psi(u), \quad u \in X .
$$

It is well known that Φ and Ψ are well defined and continuously differentiable functionals whose derivatives at the point $u \in X$ are the functionals $\Phi^{\prime}(u), \Psi^{\prime}(u) \in X^{*}$ given by

$$
\begin{aligned}
& \Phi^{\prime}(u)(v)=\int_{0}^{1}\left(\int_{0}^{u^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right) v^{\prime}(x) d x-\int_{0}^{1} g(u(x)) v(x) d x \\
& \Psi^{\prime}(u)(v)=\int_{0}^{1} f(x, u(x)) v(x) d x
\end{aligned}
$$

for every $v \in X$. Also, the functionals Φ and Ψ satisfy all regularity assumptions imposed in Theorem 2.1 (for more details, see the proof of [9, Theorem 2.1]). Note that the weak solutions of (1.1) are exactly the critical points of I_{λ}.

Since g is Lipschitz continuous and satisfies $g(0)=0$, while h is bounded away from zero, the inequality

$$
\begin{equation*}
\max _{x \in[0,1]}|u(x)| \leq \frac{1}{2}\|u\| \quad \text { for all } u \in X \tag{3.1}
\end{equation*}
$$

(see, e.g., [15]) yields for any $u \in X$ the estimate

$$
\begin{equation*}
A\|u\|^{2} \leq \Phi(u) \leq B\|u\|^{2} . \tag{3.2}
\end{equation*}
$$

Now, put

$$
r_{1}:=A c_{1}^{2}, \quad r_{2}:=B c_{2}^{2}, \quad w(x):= \begin{cases}4 d x & \text { if } x \in[0,1 / 4[\\ d & \text { if } x \in[1 / 4,3 / 4] \\ 4 d(1-x) & \text { if } x \in] 3 / 4,1]\end{cases}
$$

It is easy to verify that $w \in X$ and, in particular,

$$
\|w\|^{2}=8 d^{2}
$$

So, from (3.2), we have

$$
8 A d^{2} \leq \Phi(w) \leq 8 B d^{2}
$$

From the condition $c_{1}^{2}<8 d^{2}<c_{2}^{2}$, we obtain $r_{1}<\Phi(w)<r_{2}$. Since $B \leq 4 A$, for all $u \in X$ such that $\Phi(u)<r_{2}$, taking (3.1) into account, one has $|u(x)|<c_{2}$ for all $x \in[0,1]$, which implies

$$
\sup _{u \in \Phi^{-1}(]-\infty, r_{2}[)} \Psi(u)=\sup _{u \in \Phi^{-1}(]-\infty, r_{2}[)} \int_{0}^{1} F(x, u(x)) d x \leq \int_{0}^{1} \sup _{|t| \leq c_{2}} F(x, t) d x
$$

Arguing as before, we obtain

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \Psi(u) \leq \int_{0}^{1} \sup _{|t| \leq c_{1}} F(x, t) d x
$$

Since $0 \leq w(x) \leq d$ for each $x \in[0,1]$, assumption $\left(\mathrm{A}_{1}\right)$ ensures that

$$
\int_{0}^{1 / 4} F(x, w(x)) d x+\int_{3 / 4}^{1} F(x, w(x)) d x \geq 0
$$

and so

$$
\Psi(w) \geq \int_{1 / 4}^{3 / 4} F(x, d) d x
$$

Therefore,

$$
\begin{aligned}
\beta\left(r_{1}, r_{2}\right) & \leq \frac{\sup _{u \in \Phi^{-1}(]-\infty, r_{2}[)} \Psi(u)-\Psi(w)}{r_{2}-\Phi(w)} \\
& \leq \frac{\int_{0}^{1} \sup _{|t| \leq c_{2}} F(x, t) d x-\int_{1 / 4}^{3 / 4} F(x, d) d x}{B c_{2}^{2}-8 B d^{2}}=a\left(c_{2}, d\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\rho\left(r_{1}, r_{2}\right) & \geq \frac{\Psi(w)-\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \Psi(u)}{\Phi(w)-r_{1}} \\
& \geq \frac{\int_{1 / 4}^{3 / 4} F(x, d) d x-\int_{0}^{1} \sup _{|t| \leq c_{1}} F(x, t) d x}{8 B d^{2}-A c_{1}^{2}}=b\left(c_{1}, d\right)
\end{aligned}
$$

Hence, from assumption $\left(\mathrm{A}_{2}\right)$, one has $\beta\left(r_{1}, r_{2}\right)<\rho\left(r_{1}, r_{2}\right)$. Therefore, from Theorem 2.1, for each $\lambda \in] 1 / b\left(c_{1}, d\right), 1 / a\left(c_{2}, d\right)\left[\right.$, the functional I_{λ} admits at least one critical point \bar{u} such that

$$
r_{1}<\Phi(\bar{u})<r_{2}
$$

that is,

$$
\frac{A}{B} c_{1}^{2}<\|\bar{u}\|^{2}<\frac{B}{A} c_{2}^{2}
$$

and the conclusion is achieved.
Now, we point out an immediate consequence of Theorem 3.1.
TheOrem 3.2. Assume that there exist two positive constants c and d with $2 \sqrt{2} d<c$ such that assumption $\left(\mathrm{A}_{1}\right)$ in Theorem 3.1 holds. Furthermore, suppose that

$$
\left(\mathrm{A}_{3}\right) \frac{\int_{0}^{1} \sup _{|t| \leq c} F(x, t) d x}{c^{2}}<\frac{1}{8} \frac{\int_{1 / 4}^{3 / 4} F(x, d) d x}{d^{2}}
$$

Then, for each

$$
\lambda \in] \frac{8 B d^{2}}{\int_{1 / 4}^{3 / 4} F(x, d) d x}, \frac{B c^{2}}{\int_{0}^{1} \sup _{|t| \leq c} F(x, t) d x}[
$$

problem 1.1 admits at least one non-trivial weak solution $\bar{u} \in X$ such that $|\bar{u}(x)|<c$ for all $x \in[0,1]$.

Proof. The conclusion follows from Theorem 3.1, by taking $c_{1}=0$ and $c_{2}=c$. Indeed, owing to assumption $\left(\mathrm{A}_{3}\right)$, one has

$$
\begin{aligned}
a(c, d) & =\frac{\int_{0}^{1} \sup _{|t| \leq c} F(x, t) d x-\int_{1 / 4}^{3 / 4} F(x, d) d x}{B c^{2}-8 B d^{2}} \\
& <\frac{\left(1-8 d^{2} / c^{2}\right) \int_{0}^{1} \sup _{|t| \leq c} F(x, t) d x}{B\left(c^{2}-8 d^{2}\right)}=\frac{1}{B c^{2}} \int_{0}^{1} \sup _{|t| \leq c} F(x, t) d x .
\end{aligned}
$$

On the other hand,

$$
b(0, d)=\frac{\int_{1 / 4}^{3 / 4} F(x, d) d x}{8 B d^{2}}
$$

Hence, taking assumption $\left(\mathrm{A}_{3}\right)$ and (3.1) into account, Theorem 3.1 yields the conclusion.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Put $F(t):=\int_{0}^{t} f(\xi) d \xi$ for all $t \in \mathbb{R}$. We have the following result as a direct consequence of Theorem 3.1 in the autonomous case.

Corollary 3.3. Assume that there exist a non-negative constant c_{1} and two positive constants c_{2} and d with $c_{1}^{2}<8 d^{2}<c_{2}^{2}$ such that
(A $\left.{ }_{4}\right) f(t) \geq 0$ for all $t \in\left[-c_{2}, \max \left\{c_{2}, d\right\}\right]$;

$$
\left(\mathrm{A}_{5}\right) \frac{F\left(c_{2}\right)-\frac{1}{2} F(d)}{B c_{2}^{2}-8 B d^{2}}<\frac{F\left(c_{1}\right)-\frac{1}{2} F(d)}{A c_{1}^{2}-8 B d^{2}} .
$$

Then, for each

$$
\lambda \in] \frac{A c_{1}^{2}-8 B d^{2}}{F\left(c_{1}\right)-\frac{1}{2} F(d)}, \frac{B c_{2}^{2}-8 B d^{2}}{F\left(c_{2}\right)-\frac{1}{2} F(d)}[,
$$

the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=[\lambda f(u)+g(u)] h\left(x, u^{\prime}\right) \quad \text { in }(0,1), \\
u(0)=u(1)=0
\end{array}\right.
$$

admits at least one non-trivial classical solution \bar{u} such that

$$
\frac{A}{B} c_{1}^{2}<\|\bar{u}\|^{2}<\frac{B}{A} c_{2}^{2} .
$$

Proof. From the condition $c_{1}^{2}<8 d^{2}<c_{2}^{2}$, we obtain $c_{1}<c_{2}$. Therefore, assumption (A_{4}) means $f(t) \geq 0$ for each $t \in\left[-c_{1}, c_{1}\right]$ and $f(t) \geq 0$ for each $t \in\left[-c_{2}, c_{2}\right]$, which implies

$$
\max _{t \in\left[-c_{1}, c_{1}\right]} F(t)=F\left(c_{1}\right), \quad \max _{t \in\left[-c_{2}, c_{2}\right]} F(t)=F\left(c_{2}\right) .
$$

So, the conclusion follows from Theorem 3.1.
Now, we point out a special situation of our main result when the nonlinear term has separated variables. To be precise, let $\alpha \in L^{1}([0,1])$ be such that $\alpha(x) \geq 0$ a.e. $x \in[0,1], \alpha \not \equiv 0$, and let $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative continuous function. Consider the following Dirichlet boundary value problem,

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=[\lambda \alpha(x) \gamma(u)+g(u)] h\left(x, u^{\prime}\right) \quad \text { in }(0,1), \tag{3.3}\\
u(0)=u(1)=0 .
\end{array}\right.
$$

Put $\Gamma(t):=\int_{0}^{t} \gamma(\xi) d \xi$ for all $t \in \mathbb{R}$, and set $\|\alpha\|_{1}:=\int_{0}^{1} \alpha(x) d x$.
Corollary 3.4. Assume that there exist a non-negative constant c_{1} and two positive constants c_{2} and d with $c_{1}^{2}<8 d^{2}<c_{2}^{2}$ such that

$$
\left(\mathrm{A}_{6}\right) \frac{\Gamma\left(c_{2}\right)\|\alpha\|_{1}-\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x}{B c_{2}^{2}-8 B d^{2}}<\frac{\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x-\Gamma\left(c_{1}\right)\|\alpha\|_{1}}{8 B d^{2}-A c_{1}^{2}}
$$

Then, for each

$$
\lambda \in] \frac{8 B d^{2}-A c_{1}^{2}}{\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x-\Gamma\left(c_{1}\right)\|\alpha\|_{1}}, \frac{B c_{2}^{2}-8 B d^{2}}{\Gamma\left(c_{2}\right)\|\alpha\|_{1}-\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x}[,
$$

problem (3.3) admits at least one positive weak solution $\bar{u} \in X$ such that

$$
\frac{A}{B} c_{1}^{2}<\|\bar{u}\|^{2}<\frac{B}{A} c_{2}^{2} .
$$

Proof. Put $f(x, \xi):=\alpha(x) \gamma(\xi)$ for all $(x, \xi) \in[0,1] \times \mathbb{R}$. Clearly, $F(x, t)=$ $\alpha(x) \Gamma(t)$ for all $(x, t) \in[0,1] \times \mathbb{R}$. Therefore, taking into account that Γ is a non-decreasing function, Theorem 3.1 and the strong maximum principle (see, e.g., [12, Theorem 11.1]) yield the conclusion.

An immediate consequence of Corollary 3.4 is the following.
Corollary 3.5. Assume that there exist positive constants c and d with $2 \sqrt{2} d<c$ such that

$$
\left(\mathrm{A}_{7}\right) \frac{\Gamma(c)\|\alpha\|_{1}}{c^{2}}<\frac{1}{8} \frac{\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x}{d^{2}}
$$

Then, for each

$$
\lambda \in] \frac{8 B d^{2}}{\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x}, \frac{B c^{2}}{\Gamma(c)\|\alpha\|_{1}}[
$$

problem 3.3 admits at least one positive weak solution $\bar{u} \in X$ such that $|\bar{u}(x)|<c$ for all $x \in[0,1]$.

Proof. This follows directly from Theorem 3.2.
REMARK 3.6. Theorem 1.1 in the introduction is an immediate consequence of Corollary 3.5, on choosing $g(u)=-u, h \equiv 1, c=5$ and $d=1$.

Here, we point out another relevant consequence of Corollary 3.5.
Theorem 3.7. Assume that
$\left(\mathrm{A}_{8}\right) \lim _{t \rightarrow 0^{+}} \frac{\gamma(t)}{t}=+\infty$.
Then, for each

$$
\lambda \in] 0, \frac{B}{\|\alpha\|_{1}} \sup _{c>0} \frac{c^{2}}{\Gamma(c)}[
$$

problem (3.3) admits at least one positive weak solution.
Proof. For fixed λ as in the conclusion, there is $c>0$ such that $\lambda<$ $B c^{2} /\|\alpha\|_{1} \Gamma(c)$. Moreover, assumption (A_{8}) implies that $\lim _{t \rightarrow 0^{+}} \Gamma(t) / t^{2}$ $=+\infty$. Therefore, there is $d<\frac{\sqrt{2}}{4} c$ such that

$$
\frac{\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x}{8 B d^{2}}>\frac{1}{\lambda}
$$

Hence, Corollary 3.5 implies the conclusion.
Remark 3.8. Taking (A_{8}) into account, fix $v>0$ such that $\gamma(t)>0$ for all $t \in] 0, v[$. Then, put

$$
\lambda_{v}:=\frac{B}{\|\alpha\|_{1}} \sup _{c \in] 0, v[} \frac{c^{2}}{\Gamma(c)}
$$

Now, fix $\lambda \in] 0, \lambda_{v}[$ and argue as in the proof of Theorem 3.7 to find $c \in] 0, v[$ and $d<\frac{\sqrt{2}}{4} c$ such that

$$
\frac{8 B d^{2}}{\Gamma(d) \int_{1 / 4}^{3 / 4} \alpha(x) d x}<\lambda<\frac{B c^{2}}{\|\alpha\|_{1} \Gamma(c)}
$$

Hence, Corollary 3.5 ensures that, for each $\lambda \in] 0, \lambda_{v}[$, problem (3.3) admits at least one positive weak solution $\bar{u} \in X$ such that $|\bar{u}(x)|<v$ for all $x \in[0,1]$.

Remark 3.9. We would like to stress that our results generalize those of [4]. In fact, we can consider problem (1.1) as a generalization of problem $\left(D_{\lambda}\right)$ of [4]. Specifically, Theorem 3.1 improves Theorem 3.1 of 4 . Corollaries 3.4 and 3.5 provide extensions of Corollary 3.2 and Theorem 3.3 in 4], respectively. Theorem 3.7 and Remark 3.8 also extend Remark 3.9 and Theorem 3.8 in [4], respectively.

Finally, we present the following example to illustrate the result.
Example 3.10. Consider the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=\left[\lambda e^{x}\left(1+e^{-u^{+}} u^{+}\left(2-u^{+}\right)\right)+u^{+}\right]\left(2+x+\cos u^{\prime}\right)^{-1} \quad \text { in }(0,1), \tag{3.4}\\
u(0)=u(1)=0,
\end{array}\right.
$$

where $u^{+}:=\max \{u, 0\}$. Let $\alpha(x)=e^{x}, \gamma(t)=1+e^{-t^{+}} t^{+}\left(2-t^{+}\right), g(t)=t^{+}$ and $h(x, t)=(2+x+\cos t)^{-1}$ for all $x \in[0,1]$ and $t \in \mathbb{R}$, where $t^{+}:=$ $\max \{t, 0\}$. It is clear that $\lim _{t \rightarrow 0^{+}} \gamma(t) / t=+\infty$. Pick $v=1$. Hence, taking Remark 3.8 into account, by applying Theorem 3.7, since $B=17 / 8$, for every $\lambda \in] 0, \frac{17}{8(e-1)} \frac{e}{e+1}[$, problem (3.4) has at least one positive classical solution $\bar{u} \in X$ such that $\|\bar{u}\|_{\infty}<1$.

Acknowledgments. Research of S. Heidarkhani was supported in part by a grant from IPM (No. 91470046).

References

[1] G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), 2992-3007.
[2] G. Bonanno, B. Di Bella and D. O'Regan, Non-trivial solutions for nonlinear fourthorder elastic beam equations, Comput. Math. Appl. 62 (2011), 1862-1869.
[3] G. Bonanno and P. Pizzimenti, Neumann boundary value problems with not coercive potential, Mediterr. J. Math. 9 (2012), 601-609.
[4] G. Bonanno and A. Sciammetta, An existence result of one nontrivial solution for two point boundary value problems, Bull. Austral. Math. Soc. 84 (2011), 288-299.
[5] M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Ser. Math. Appl. 37, Oxford Univ. Press, New York, 2008.
[6] S. Heidarkhani, Non-trivial solutions for a class of $\left(p_{1}, \ldots, p_{n}\right)$-biharmonic systems with Navier boundary conditions, Ann. Polon. Math. 105 (2012), 65-76.
[7] S. Heidarkhani, Non-trivial solutions for two-point boundary-value problems of fourth-order Sturm-Liouville type equations, Electron. J. Differential Equations 2012, no. 27, 9 pp.
[8] S. Heidarkhani, Existence of non-trivial solutions for systems of n fourth order partial differential equations, Math. Slovaca, to appear.
[9] S. Heidarkhani and D. Motreanu, Multiplicity results for a two-point boundary value problem, Panamer. Math. J. 19 (2009), 69-78.
[10] A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia Math. Appl. 136, Cambridge Univ. Press, Cambridge, 2010.
[11] P. Pizzimenti and A. Sciammetta, Existence results for a quasi-linear differential problem, Matematiche (Catania) 66 (2011), 163-171.
[12] P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations 196 (2004), 1-66; Erratum ibid. 207 (2004), 226-227.
[13] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.
[14] B. Ricceri, Nonlinear eigenvalue problems, in: D. Y. Gao and D. Motreanu (eds.), Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010, 543-595.
[15] G. Talenti, Some inequalities of Sobolev type on two-dimensional spheres, in: W. Walter (ed.), General Inequalities, Vol. 5, Int. Ser. Numer. Math. 80, Birkhäuser, Basel, 1987, 401-408.
[16] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. II/B and III, Springer, New York, 1990 and 1985.

G. A. Afrouzi, A. Hadjian
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran
Babolsar, Iran
E-mail: afrouzi@umz.ac.ir a.hadjian@umz.ac.ir
S. Heidarkhani
Department of Mathematics
Faculty of Sciences
Razi University
67149 Kermanshah, Iran and
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395-5746
Tehran, Iran
E-mail: s.heidarkhani@razi.ac.ir

Received 9.7.2012
and in final form 20.10.2012

[^0]: 2010 Mathematics Subject Classification: Primary 34B15; Secondary 34B18.
 Key words and phrases: Dirichlet problem, critical points, variational methods.

