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On some subspaces of Morrey–Sobolev spaces
and boundedness of Riesz integrals
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and Moumine Sanogo (Bamako)

Abstract. For 1 ≤ q ≤ α ≤ p ≤ ∞, (Lq, lp)α is a complex Banach space which is
continuously included in the Wiener amalgam space (Lq, lp) and contains the Lebesgue
space Lα.

We study the closure (Lq, lp)αc,0 in (Lq, lp)α of the space D of test functions (infinitely
differentiable and with compact support in Rd) and obtain norm inequalities for Riesz
potential operators and Riesz transforms in these spaces. We also introduce the Sobolev
type space W 1((Lq, lp)α) (a subspace of a Morrey–Sobolev space, but a superspace of the
classical Sobolev space W 1,α) and obtain in it Sobolev inequalities and a Kondrashov–
Rellich compactness theorem.

1. Introduction. Let d be a fixed positive integer. The space Rd is
endowed with its usual scalar product (x, ξ) 7→ x · ξ, Euclidean norm | · | and
Lebesgue measure.

For 1 ≤ p ≤ ∞ we denote by ‖ ‖p the usual norm on the classical
Lebesgue space Lp = Lp(Rd) and by p′ the conjugate of p (1/p+ 1/p′ = 1).

Let Iγ (0 < γ < 1) be the Riesz potential operator defined by

Iγf(x) =
�

Rd
|x− y|d(γ−1)f(y) dy.

N. C. Phuc and M. Torres [P-T] have obtained a result which contains the
following assertion:

Proposition 1.1. Let d/(d− 1) < α∗ < ∞ and f be a non-negative
locally integrable function on Rd. The following assertions are equivalent:

(i) The equation divF = f has a solution F in (Lα
∗
)d.

(ii) I1/df ∈ Lα
∗
.
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In the proposition below we recall the classical Hardy–Littlewood–Sobo-
lev inequality (see [St]) and a result contained in [D-F-K] [see Section 2 for
definition of (Lq, lp)α].

Proposition 1.2. Let 0 < γ < 1, 1/(1− γ) < α∗ < ∞ and 1/α =
1/α∗ + γ. Then

Lα ⊂ {f ∈ L1
loc | Iγf ∈ Lα

∗} ⊂ closure of Lα in (L1, lα
∗
)α.

The classical Sobolev spaces Wm,α = Wm,α(Rd) (m ∈ N∗, α ∈ [1,∞])
have offered a fruitful framework for the study of partial differential equa-
tions (see [Br]). The density of smooth functions in Lα (for α <∞), Sobolev–
Poincaré inequalities and the Kondrashov–Rellich compactness theorem are
among the most important tools in this field.

In view of Propositions 1.1 and 1.2 it is worth:

• introducing Sobolev type spaces W 1((Lq, lp)α) for which the spaces
(Lq, lp)α will take the place of the Lebesgue spaces Lα in the definition
of W 1,α;
• examining the existence in these new spaces of analogues for classical

tools useful in the study of partial differential equations.

The paper deals with these questions. Section 2 contains notations,
definitions and some known results. In Section 3 we introduce the space
W 1((Lq, lp)α) and study the closure in (Lq, lp)α of the space C∞ = C∞(Rd)
of infinitely differentiable real functions on Rd. Section 4 is devoted to the
boundedness of Riesz potential operators and Riesz transforms on (Lq, lp)α,
and analogues of the Sobolev inequality and of the Kondrashov–Rellich com-
pactness theorem in the set up of W 1((Lq, lp)α). In Section 5 we prove an
existence theorem for the equation divF = f with data f ∈ (Lq, lp)α.

2. Preliminaries

Notations 2.1. For any subset E of Rd, χE denotes its characteristic
function and |E| its Lebesgue measure.

Let r be a positive real number. We set

Irk =

d∏
j=1

[kjr, (kj + 1)r), k = (k1, . . . , kd) ∈ Zd,

Jrx =
d∏
j=1

(xj − r/2, xj + r/2), x = (x1, . . . , xd) ∈ Rd.
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Definition 2.1. Let 1 ≤ q, p ≤ ∞. For any f in L1
loc = L1

loc(Rd) we set

r‖f‖q,p =


[ ∑
k∈Zd

(‖fχIrk‖q)
p
]1/p

if p <∞,

sup
x∈Rd

‖fχJrx‖q if p =∞,

and we define
(Lq, lp) = {f ∈ L1

loc | 1‖f‖q,p <∞}.
The Wiener amalgam spaces (Lq, lp) (1 ≤ q, p ≤ ∞) were introduced in

1926 by Norbert Wiener who considered the special cases (L1, l2), (L2, l∞),
(L∞, l1) and (L1, l∞) (see [Wi1] and [Wi2]). In 1975 Finbar Holland under-
took the first systematic study of these spaces (see [Ho]). Since then, much
work has been dedicated to them (see the survey paper [F-S] and the refer-
ences therein) and to their generalizations introduced by Hans Feichtinger
in 1980 (see [Fe1], [Fe2]).

Let us recall the following results (see [Ho] and [Fo3]).

Proposition 2.1. Let 1 ≤ q, p ≤ ∞.
(a) ((Lq, lp), 1‖ ‖q,p) is a Banach space and (Lq, lq) = Lq.
(b) If q, p <∞ then there exist real numbers A and B such that

A r‖f‖q,p ≤ r−d/p
{ �

Rd

[ �

Jrx

|f(y)|q dy
]p/q

dx
}1/p

≤ B r‖f‖q,p

for all f ∈ L1
loc, r > 0.

Definition 2.2. Let 1 ≤ q ≤ α ≤ p ≤ ∞. For any f in L1
loc we set

‖f‖q,p,α = sup
r>0

rd(1/α−1/q) r‖f‖q,p,

|||f |||q,p,α = sup
r>0

rd(1/α−1/q−1/p)
{ �

Rd

[ �

Jrx

|f(y)|q dy
]p/q

dx
}1/p

if p <∞,

and we define
(Lq, lp)α = {f ∈ L1

loc | ‖f‖q,p,α <∞}.
The spaces (Lq, lp)α were introduced in 1988 by Ibrahim Fofana (see

[Fo1]–[Fo3]). Results about multipliers and Fourier multipliers between Le-
besgue spaces and continuity properties of fractional maximal operators and
Riesz potential operators were obtained in this framework (see [Fo3], [Fo4],
[F-F-K], [D-F]). We recall some of their properties below (see [Fo3]).

Proposition 2.2. Let 1 ≤ q ≤ α ≤ p ≤ ∞.

(a) ((Lq, lp)α, ‖ ‖q,p,α) is a Banach space.
(b) ||| |||q,p,α is a norm equivalent to ‖ ‖q,p,α on (Lq, lp)α if p <∞.
(c) ‖f‖q,p,α ≤ ‖f‖α for f ∈ L1

loc, and therefore Lα ⊂ (Lq, lp)α.
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(d) (Lq, lp)α = Lα when α ∈ {q, p}.
(e) If q < α < p then there exists a real number C such that

‖f‖q,p,α ≤ C‖f‖∗α,+∞, f ∈ L1
loc,

where

‖f‖∗α,+∞ = sup
λ>0

λ|{x ∈ Rd | |f(x)| > λ}|1/α

and therefore the weak-Lebesgue space Lα,+∞ = {f ∈ L1
loc | ‖f‖∗α,∞

<∞} is contained in (Lq, lp)α.
(f) (Lq, lp)α ⊂ (Lq1 , lp)α if 1 ≤ q1 < q, and (Lq, lp)α ⊂ (Lq, lp1)α if

p < p1 ≤ ∞.
Let us recall that the convolution product f ∗ g of f, g in L1

loc is given by
the formula

f ∗ g(x) =
�

Rd
f(x− y)g(y) dy

at all points x ∈ Rd where this integral is defined. It satisfies the following
Young inequality (see [Fo3]).

Proposition 2.3.

(a) Let 1 ≤ q1 ≤ α1 ≤ p1 ≤ ∞, 1 ≤ q2 ≤ α2 ≤ p2 ≤ ∞, 1/p1+1/p2−1 =
1/p ≥ 0, 1/α1 + 1/α2 − 1 = 1/α and 1/q1 + 1/q2 − 1 = 1/q. Then
for any f1 in (Lq1 , lp1)α1 and f2 in (Lq2 , lp2)α2,

‖f1 ∗ f2‖q,p,α ≤ C‖f1‖q1,p1,α1‖f2‖q2,p2,α2

where C is a real number not depending on f1 and f2.
(b) In particular if 1 ≤ q ≤ α ≤ p ≤ ∞ then for any (ϕ, f) in L1 ×

(Lq, lp)α,

‖ϕ ∗ f‖q,p,α ≤ C‖ϕ‖1‖f‖q,p,α
where C is a real number not depending on f and ϕ.

We recall that in the theory of Sobolev spaces, approximation of an
element of a Lebesgue space by elements of C∞ is an important device based
on the continuity of the convolution product (Young inequality) and of the
translation operator τu with translation vector u ∈ Rd, defined by

(τuf)(x) = f(x− u), x ∈ Rd, f ∈ L1
loc.

It is easy to verify the following assertion.

Proposition 2.4. Let 1 ≤ q ≤ α ≤ p ≤ ∞. Then (Lq, lp)α is translation
invariant and there is a real number C such that

‖τuf‖q,p,α ≤ C‖f‖q,p,α, u ∈ Rd, f ∈ L1
loc.
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However an analogue of the following property of Lebesgue spaces:

lim
u→0
‖τuf − f‖α = 0, f ∈ Lα, 1 ≤ α <∞,

is not true in (Lq, lp)α when 1 ≤ q < α < p ≤ ∞. So, I. Fofana [Fo3] has
considered some special subspaces of (Lq, lp)α defined below.

Definition 2.3. For 1 ≤ q ≤ α ≤ p ≤ ∞ we set

(Lq, lp)αc =
{
f ∈ (Lq, lp)α

∣∣∣ lim
u→0
‖τuf − f‖q,p,α = 0

}
,

(Lq, lp)α0 =
{
f ∈ (Lq, lp)α

∣∣∣ lim
R→∞

‖fχRd\JR0
‖q,p,α = 0

}
,

(Lq, lp)αc,0 = (Lq, lp)αc ∩ (Lq, lp)α0 .

Let us fix some notations.

Notations 2.2.

• ρ is a fixed element of C∞, non-negative, with support included in the
unit ball B(0; 1) = {x ∈ Rd | |x| ≤ 1} and satisfying

	
Rd ρ(x) dx = 1.

• ρm(x) = mdρ(mx), x ∈ Rd, m ∈ N∗.
• ω is a fixed element of C∞ satisfying χJ1

0
≤ ω ≤ χJ2

0
.

• ωm(x) = ω(x/m), x ∈ Rd, m ∈ N∗.

The following results are contained in [Fo3].

Proposition 2.5. Let 1 ≤ q ≤ α ≤ p ≤ ∞.
(a) (Lq, lp)αc is a closed subspace of (Lq, lp)α.
(b) If α <∞ then Lα ⊂ (Lq, lp)αc .
(c) (Lq, lp)αc = L1 ∗ (Lq, lp)αc = L1 ∗ (Lq, lp)α.
(d) limm→∞ ‖ρm ∗ f − f‖q,p,α = 0 for f in (Lq, lp)αc , where ρm is defined

as in Notations 2.2.

We list below some useful properties of (Lq, lp)α0 and (Lq, lp)αc,0.

Proposition 2.6. Let 1 ≤ q ≤ α ≤ p ≤ ∞.

(a) (Lq, lp)α0 and (Lq, lp)αc,0 are closed subspaces of (Lq, lp)α.
(b) limm→∞ ‖(fωm) ∗ ρm − f‖q,p,α = 0 for f ∈ (Lq, lp)αc,0, where ωm and

ρm are defined as in Notations 2.2.

Proof. (a) It is clear that (Lq, lp)α0 and (Lq, lp)αc,0 are subspaces of (Lq, lp)α.

Suppose that (fn)n≥1 is a sequence of elements of (Lq, lp)α0 converging
in (Lq, lp)α to some f . Let ε > 0. For any real R > 0 we have

|f − fχJR0 | ≤ |f − fn|+ |fn − fnχJR0 |+ |(f − fn)χJR0
|

≤ 2|f − fn|+ |fn − fnχJR0 |, n ≥ 1.
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There are nε ≥ 1 and Rε > 0 such that

‖f − fnε‖q,p,α ≤ ε/3 and ‖fnε − fnεχJR0 ‖q,p,α ≤ ε/3, R ≥ Rε,
and therefore

‖f − fχJR0 ‖q,p,α < ε, R ≥ Rε.

Thus f ∈ (Lq, lp)α0 . This means that (Lq, lp)α0 is closed in (Lq, lp)α. Fur-
thermore, by Proposition 2.5(a), (Lq, lp)αc is also closed in (Lq, lp)α. Thus
(Lq, lp)c,0 is also closed.

(b) Let f be in (Lq, lp)αc,0. We have

‖f − (fωm) ∗ ρm‖q,p,α ≤ ‖f − f ∗ ρm‖q,p,α + ‖(f − fωm) ∗ ρm‖q,p,α, m ≥ 1,

and therefore, by Proposition 2.3(b),

‖f − (fωm) ∗ ρm‖q,p,α ≤ ‖f − f ∗ ρm‖q,p,α + ‖f − fωm‖q,p,α, m ≥ 1.

It is clear that
|f − fωm| ≤ |f − fχJm0 |, m ≥ 1,

and so

‖f − (fωm) ∗ ρm‖q,p,α ≤ ‖f − f ∗ ρm‖q,p,α + ‖f − fχJm0 ‖q,p,α, m ≥ 1,

which implies that limm→∞ ‖f − (fωm) ∗ ρm‖q,p,α = 0.

Notice that Propositions 2.5(d) and 2.6(b) together with Proposi-
tion 2.2(c) imply that in (Lq, lp)α:

• (Lq, lp)αc is the closure of (Lq, lp)αc ∩ C∞,
• (Lq, lp)αc,0 is the closure of D (and also of Lα if α <∞).

It is worth recalling the following extension of the well known Kolmogo-
rov–Riesz–Tamarkin compactness theorem (see [S-F]):

Proposition 2.7. Let 1 ≤ q ≤ α ≤ p ≤ ∞ with α < ∞. Any closed
subset H of (Lq, lp)α satisfying the following conditions:

(i) supf∈H ‖f‖q,p,α <∞,
(ii) limu→0 supf∈H ‖f − τuf‖q,p,α = 0,

(iii) limR→∞ supf∈H ‖f − fχJR0 ‖q,p,α = 0,

is compact in (Lq, lp)α.

3. Sobolev spaces. We fix q, α, p ∈ [1,∞] such that q ≤ α ≤ p and
q <∞.

Definition 3.1. Let E be one of the spaces (Lq, lp)α, (Lq, lp)αc or
(Lq, lp)αc,0. We define

W 1(E) = {f ∈ E | ∂f/∂xj ∈ E for j ∈ {1, . . . , d}}
where ∂f/∂xj = Djf stands for the distributional partial derivative.
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For any f in W 1((Lq, lp)α) we set

‖f‖W 1((Lq ,lp)α) = ‖f‖q,p,α +
d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

.

We point out that:

• W 1((Lq, lp)α) is a subspace of a more general Sobolev type space in-
troduced by Domion Douyon in his thesis ([Do]).
• W 1((Lq, l∞)α) is the Morrey–Sobolev space W 1,(q,d(1−q/α))(Rd) consi-

dered by G. Cupini and R. Petti and used in the study of the regularity
of minimizers for functionals ([C-P]) and solutions of elliptic equations
([F-L-Y]).

It is easy to verify

Proposition 3.1.

(a) W 1((Lq, lp)α) is a subspace of W 1,q
loc = {f ∈ Lqloc | f ∈ W

1,q(Ω) for

any bounded open subset Ω of Rd}.
(b) (W 1(E), ‖ ‖W 1((Lq ,lp)α)) is a Banach space if E is any of the spaces

(Lq, lp)α, (Lq, lp)αc and (Lq, lp)αc,0.

Let us recall the following well known result (see [K-J-F]).

Lemma 3.2. Suppose that f ∈ Lqloc and Djf ∈ Lqloc for some j ∈
{1, . . . , d}. Then

ρm ∗ f ∈ C∞, Dj(ρm ∗ f) = (Djρm) ∗ f = ρm ∗ (Djf), m ∈ N,
Dβ(ρm ∗ f) = (Dβρm) ∗ f, (β,m) ∈ Nd × N∗,

lim
m→∞

‖(ρm ∗ f − f)χJrx‖q = 0 = lim
m→∞

‖[Dj(ρm ∗ f)−Djf ]χJrx‖q,

(x, r) ∈ Rd × (0,∞),

where ρm is as in Notations 2.2.

From the lemma above and the proof of Proposition IX in [Br] we readily
obtain the following result.

Lemma 3.3. Suppose that f ∈W 1,q
loc . Then

�

Jrx

|τuf(y)− f(y)|q dy

≤ |u|q
1�

0

�

Jrx

|∇f(y − tu)|q dy dt, (u, x, r) ∈ Rd × Rd × (0,∞).

The lemma above leads to the following property of our Sobolev type
space.
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Proposition 3.2. There exists a real number C such that

‖τuf − f‖q,p,α ≤ C|u| ‖ |∇f | ‖q,p,α, u ∈ Rd, f ∈W 1((Lq, lp)α),

and therefore W 1((Lq, lp)α) ⊂ (Lq, lp)αc .

Proof. Suppose that p < ∞, f ∈ W 1((Lq, lp)α), u ∈ Rd and r ∈ (0,∞).
From Lemma 3.3 we get

I :=
{ �

Rd

[ �
Jrx

|τuf(y)− f(y)|q dy
]p/q

dx
}1/p

≤ |u|
{ �

Rd

[ 1�
0

�

Jrx

|∇f(y − tu)|q dy dt
]p/q

dx
}1/p

.

Therefore, by the Minkowski inequality for integrals (see [St, p. 271])

I ≤ |u|
{1�

0

[ �
Rd

( �

Jrx

|∇f(y − tu)|q dy
)p/q

dx
]q/p

dt
}1/q

.

From the inequality above and Proposition 2.4, we obtain

I ≤ C1|u|
{1�

0

[||| |∇f | |||q,p,αrd(1/q+1/p−1/α)]q dt
}1/q

= C1|u| ||| |∇f | |||q,p,αrd(1/q+1/p−1/α)

where C1 is a real number not depending on f , u and r. Therefore, by
Proposition 2.2(b) we have

‖τuf − f‖q,p,α ≤ C|u| ‖ |∇f | ‖q,p,α
where C is a real number not depending on f and u.

In the case p =∞ a similar proof works.

From Propositions 2.5 and 3.2 we deduce the following result.

Proposition 3.3. Suppose that q < ∞. Then the following assertions
are equivalent:

(i) f ∈ (Lq, lp)αc .
(ii) f = limm→∞ ρm ∗ f in (Lq, lp)α where ρm is as in Notations 2.2.

(iii) f belongs to the closure in (Lq, lp)α of

C∞(Lq ,lp)α = {g ∈ C∞ | Dβg ∈ (Lq, lp)α for all β ∈ Nd}.

Proof. (i)⇒(ii) by Proposition 2.5(d).
Suppose that (ii) is true. Fix a positive integer m and β ∈ Nd. By

Lemma 3.2, ρm ∗ f ∈ C∞ and Dβ(ρm ∗ f) = (Dβρm) ∗ f . As Dβρm ∈ L1,
Proposition 2.3(b) shows that Dβ(ρm ∗ f) ∈ (Lq, lp)α. Therefore ρm ∗ f ∈
C∞(Lq ,lp)α . Furthermore limm→∞ ‖ρm ∗ f − f‖q,p,α = 0 (Proposition 2.5(d)).

Thus (ii)⇒(iii).
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Suppose that (iii) is true: there exists a sequence (gm)m≥1 ⊂ C∞(Lq ,lp)α
converging to f in (Lq, lp)α. It is clear that any gm (m ∈ N∗) belongs to
W 1((Lq, lp)α). Therefore, from Proposition 3.2 we have

gm ∈ (Lq, lp)αc , m ∈ N∗.
(Lq, lp)αc being closed in (Lq, lp)α (Proposition 2.5(a)), f clearly belongs to
(Lq, lp)αc . Thus (iii)⇒(i).

Proposition 3.2 leads to the following characterization of W 1((Lq, lp)α).

Proposition 3.4. Suppose that f ∈ (Lq, lp)α. Then the following asser-
tions are equivalent:

(i) f ∈W 1((Lq, lp)α).
(ii) There exists a real number C such that

‖τuf − f‖q,p,α ≤ C|u|, u ∈ Rd.

Proof. The implication (i)⇒(ii) follows readily from Proposition 3.2.
Conversely, suppose that (ii) is true. Denote by {ej | 1 ≤ j ≤ d} the

canonical basis of Rd.
(a) Let Ω be any bounded open subset of Rd and Q a closed and bounded

cube in Rd such that Ω ⊂ Q. We have

‖(τuf − f)χΩ‖q ≤ ‖(τuf − f)χQ‖q ≤ 2d/p
′ |Q|1/q−1/α‖τuf − f‖q,p,α

≤ 2d/p
′
C|Q|1/q−1/α|u|, u ∈ Rd,

and

‖s−1(τsejf − f)χΩ‖q ≤ 2d/p
′ |Q|1/q−1/αC, j ∈ {1, . . . , d}, s ∈ (0,∞).

Hence {s−1(τsejf − f)χΩ | s ∈ (0,∞), j ∈ {1, . . . , d}} is a bounded subset
of Lq. Therefore there exists a sequence (sm)m≥1 in (0,∞) such that

lim
m→∞

sm = 0,

for any j ∈ {1, . . . , d}, (s−1m (τsmejf − f)χΩ)m≥1 weakly converges

in Lq to some gj .

Notice that, for any j ∈ {1, . . . , d} and any ϕ ∈ C∞ with support in Ω,�

Rd
ϕ(x)gj(x) dx = lim

m→∞

�

Rd
ϕ(x)s−1m [f(x− smej)− f(x)] dx

= − lim
m→∞

�

Rd
s−1m [ϕ(x+ smej)− ϕ(x)]f(x) dx

= −
�

Rd

∂ϕ

∂xj
f(x) dx.

That is, gj = ∂f/∂xj in Ω for j ∈ {1, . . . , d}. Therefore f ∈W 1,q
loc .
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(b) Suppose that p =∞. Let R be a bounded and closed cube, 0 < ε < 1,
Q = (1 + ε)R the cube with side length (1 + ε)|R|1/d and the same center
as R, and Ω = Q̇ the interior of Q.

Using the notations in (a) we have, for any j ∈ {1, . . . , d} and any ϕ ∈ C∞
with support in Ω,∣∣∣∣ �

Rd

∂f

∂xj
(x)ϕ(x) dx

∣∣∣∣ = lim
m→∞

∣∣∣ �
Rd
s−1m [f(x− smej)− f(x)]ϕ(x) dx

∣∣∣
≤ lim sup

m→∞
‖(τsmejf − f)χQ‖q‖ϕ‖q′s−1m

≤ lim sup
m→∞

‖τsmejf − f‖q,∞,α|Q|1/q−1/α‖ϕ‖q′s−1m

≤ C|Q|1/q−1/α‖ϕ‖q′ ,
and so∥∥∥∥ ∂f∂xj χR

∥∥∥∥
q

≤
∥∥∥∥ ∂f∂xj χΩ

∥∥∥∥
q

≤ C|Q|1/q−1/α = (1 + ε)d(1/q−1/α)C|R|1/q−1/α.

Letting ε go to zero, we get, for any j ∈ {1, . . . , d},∥∥∥∥ ∂f∂xj χR
∥∥∥∥
q

≤ C|R|1/q−1/α.

Thus ‖∂f/∂xj‖q,∞,α ≤ C for j ∈ {1, . . . , d}.
(c) Suppose that p < ∞. Let (r,m) be any element of (0,∞) × N∗. Set

Kn = {k ∈ Zd | |k| ≤ n},
Q = {x = (xj)1≤j≤d | −(n+ 1)r ≤ xj ≤ (n+ 2)r for 1 ≤ j ≤ d},

and Ω = Q̇. For any k ∈ Kn, let ϕk ∈ C∞0 with support in Irk and ‖ϕk‖q′ ≤ 1.
Using the notations in (a) we have, for |sn| < mink∈Kn d(suppϕk, ∂I

r
k) and

j ∈ {1, . . . , d},[ ∑
k∈Kn

∣∣∣ �
Rd
s−1m (τsmejf − f)(x)ϕk(x) dx

∣∣∣p]1/p
≤
[ ∑
k∈Kn

(s−1m ‖(τsmejf − f)χIrk‖q‖ϕk‖q′)
p
]1/p

≤ s−1m
[ ∑
k∈Kn

‖(τsmejf − f)χIrk‖
p
q

]1/p
≤ s−1m ‖τsmejf − f‖q,p,αrd(1/q−1/α) ≤ Crd(1/q−1/α),

and therefore [ ∑
k∈Kn

∣∣∣∣ �
Rn

∂f

∂xj
ϕk(x) dx

∣∣∣∣p]1/p ≤ Crd(1/q−1/α).
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Thus [ ∑
k∈Kn

∥∥∥∥ ∂f∂xj χIrk
∥∥∥∥p
q

]1/p
≤ Crd(1/q−1/α).

Letting n go to infinity, we obtain

r

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p

≤ Crd(1/q−1/α).

Finally, ∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

≤ C, j = {1, . . . , d}.

W 1((Lq, lp)αc,0) has the following approximation property.

Proposition 3.5. We have

lim
m→∞

‖f − (fωm) ∗ ρm‖W 1((Lq ,lp)α) = 0, f ∈W 1((Lq, lp)αc,0)

where ρm and ωm are as in Notations 2.2.

Proof. Let f ∈W 1((Lq, lp)αc,0). By Proposition 2.6(b), ((fωm) ∗ ρm)m≥1
converges to f in (Lq, lp)α. For any (j,m) ∈ {1, . . . , d} × N∗ we have

∂

∂xj
((fωm) ∗ ρm) =

(
∂f

∂xj
ωm

)
∗ ρm +

(
f
∂ωm
∂xj

)
∗ ρm,

so ∥∥∥∥ ∂f∂xj − ∂

∂xj
((fωm) ∗ ρm)

∥∥∥∥
q,p,α

≤
∥∥∥∥ ∂f∂xj − ∂f

∂xj
∗ ρm

∥∥∥∥
q,p,α

+

∥∥∥∥( ∂f

∂xj
− ∂f

∂xj
ωm

)
∗ ρm

∥∥∥∥
q,p,α

+

∥∥∥∥(f ∂ωm∂xj

)
∗ ρm

∥∥∥∥
q,p,α

and therefore, by Proposition 2.3(b),∥∥∥∥ ∂f∂xj − ∂

∂xj
((fωm) ∗ ρm)

∥∥∥∥
q,p,α

≤
∥∥∥∥ ∂f∂xj − ∂f

∂xj
∗ρm

∥∥∥∥
q,p,α

+

∥∥∥∥ ∂f∂xj χRd\Jm0

∥∥∥∥
q,p,α

+
1

m

∥∥∥∥ ∂ω∂xj
∥∥∥∥
∞
‖fχJ2m

0 \Jm0 ‖q,p,α.

Thus

lim
m→∞

∥∥∥∥ ∂f∂xj − ∂

∂xj
((fωm) ∗ ρm)

∥∥∥∥
q,p,α

= 0.

Notice that, by the result above, W 1((Lq, lp)αc,0) is the closure in

W 1((Lq, lp)α) of D and therefore of W 1,α if α <∞.
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4. Boundedness of singular integrals. In [F-L-Y] several results on
the boundedness of singular integrals in Morrey spaces were given. In this
section we shall establish an analoguous result in (Lq, lp)α for Riesz potential
operators and deduce from it Sobolev type inequalities.

Proposition 4.1. Suppose that 1 < q ≤ α < p ≤ ∞, 0 < γ < 1/α−1/p,
1/q∗ = 1/q − γ and 1/α∗ = 1/α − γ. Then, for any f in (Lq, lp)α, Iγf
belongs to (Lq

∗
, lp)α

∗
and ‖Iγf‖q∗,p,α∗ ≤ C‖f‖q,p,α where C is a real number

not depending on f .

Proof. (a) Let f ∈ (Lq, lp)α be non-negative and (x, r) ∈ Rd × (0,∞).
We have

f =
∑
n≥0

fx,r,n

where

fx,r,0 = fχJ2r
x
, fx,r,n = fχTx,r,n with Tx,r,n = J2n+1r

x \ J2nr
x for n ≥ 1.

f being non-negative, the monotone convergence theorem gives

Iγf =
∑
n≥0

Iγfx,r,n.

By the Hardy–Littlewood–Sobolev theorem for fractional integration there
is a real number A not depending on f or r such that

‖Iγfx,r,0‖q∗ ≤ A‖fx,r,0‖q = A‖fχJ2r
x
‖q.

Therefore

‖(Iγf)χJrx‖q∗ ≤
∑
n≥0
‖(Iγfx,r,n)χJrx‖q∗

≤ A‖fχJ2r
x
‖q +

∑
n≥1

[ �
Jrx

( �

Tx,r,n

f(y)

|z − y|d(1−γ)
dy

)q∗
dz

]1/q∗
Notice that for n ≥ 1, z ∈ Jrx and y ∈ J2n+1r

x \ J2nr
x , we have

|z − y| ≥ 2nr

2
− r

2
=

(2n − 1)r

2
≥ 2n−1r

2
.

Thus we get

‖(Iγf)χJrx‖q∗ ≤ A‖fχJ2r
x
‖q +

∑
n≥1

2d(1−γ)rd/q
∗

(2n−1r)d(1−γ)

�

Tx,r,n

f(y) dy

≤ A‖fχJ2r
x
‖q + 22d(1−γ)

∑
n≥1

(2d − 1)1−1/q

2nd(1/q−γ)
‖fχ

J2n+1r
x

‖q

≤ Bq,∞,α‖f‖q,∞,αrd(1/q−1/α)
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with

Bq,∞,α =

[
A+ 22d(1−γ)

∑
n≥1

(2d − 1)

2nd(1/α−γ)

]
2d(1/q−1/α) <∞

because 1/α− γ ≥ 1/α− γ − 1/p > 0.

(b) Let f ∈ (Lq, lp)α. By Proposition 2.2(f), f ∈ (Lq, l∞)α, that is,
‖f‖q,∞,α <∞.

Since |f | is a non-negative element of (Lq, lp)α, by the results in (a) we
have

‖(Iγ(|f |)χJrx‖q ≤ Bq,∞,α‖f‖q,∞,αr
d(1/q−1/α) <∞, (x, r) ∈ Rd × (0,∞).

This implies that for almost every z ∈ Rd, Iγ(|f |)(z) < ∞ and therefore

Iγf(z) =
	
Rd

f(y)

|z−y|d(1−γ) dy converges and satisfies |Iγf(z)| ≤ Iγ(|f |)(z).
Consequently, for any (x, r) ∈ Rd × (0,∞) we have

‖(Iγf)χJrx‖q∗ ≤ A‖fχJ2r
x
‖q + 22d(1−γ)

∑
n≥1

(2d − 1)1−1/q

2nd(1/q−γ)
‖fχ

J2n+1r
x

‖q,(?)

‖(Iγf)χJrx‖q∗ ≤ Bq,∞,α‖f‖q,∞,αr
d(1/q−1/α).(??)

Now, (??) ends the proof for p =∞. In the case p <∞, (?) implies( �

Rd
[‖(Iγf)χJrx‖q∗ ]

p dx
)1/p

≤ A
( �

Rd
[‖fχJ2r

x
‖q]p dx

)1/p
+ 22d(1−γ)

∑
n≥1

(2d − 1)1−1/q

2nd(1/q−γ)

( �

Rd
[‖fχ

J2n+1r
x

‖q]p dx
)1/p

≤ Bq,p,α|||f |||q,p,αrd(1/q+1/p−1/α)

with

Bq,p,α =

[
A+ 22d(1−γ)

∑
n≥1

(2d − 1)1−1/q

2nd(1/α−1/p−γ)

]
2d(1/q+1/p−1/α) <∞

because 1/α− 1/p− γ > 0.

Thus, by Proposition 2.2(b),

‖Iγf‖q∗,p,α∗ ≤ C‖f‖q,p,α
where C is a real number not depending on f .

The proposition above has the following consequence.

Corollary 4.1. Suppose that 1 < q ≤ α < p ≤ ∞, 0 < γ < 1/α− 1/p,
1/q∗ = 1/q − γ and 1/α∗ = 1/α − γ. Then for any f in (Lq, lp)αc,0, Iγf

belongs to (Lq
∗
, lp)α

∗
c,0.
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Proof. Let f ∈ (Lq, lp)αc,0. There is a sequence (gn)n≥1 ⊂ Lα converging
to f in (Lq, lp)α. By the Hardy–Littlewood–Sobolev inequality and Propo-
sition 4.1, we have

Iγgn ∈ Lα
∗
, n ≥ 1,

and

0 = lim
n→∞

‖Iγ(gn − f)‖q∗,p,α∗ = lim
n→∞

‖Iγgn − Iγf‖q∗,p,α∗ .

Therefore Iγf ∈ (Lq
∗
, lp)α

∗
c,0.

The results above give the following Sobolev inequality.

Proposition 4.2. Suppose that 1 < q ≤ α < p ≤ ∞, 1/d < 1/α− 1/p,
1/q∗ = 1/q− 1/d and 1/α∗ = 1/α− 1/d. Then W 1((Lq, lp)αc,0) ⊂ (Lq

∗
, lp)α

∗
c,0

and there is a real number C such that

‖f‖q∗,p,α∗ ≤ C‖ |∇f | ‖q,p,α, f ∈W 1((Lq, lp)αc,0).

Proof. (a) Let ϕ ∈ D. It is known (see [St]) that

|ϕ| ≤ A
d∑
j=1

I1/d

(∣∣∣∣ ∂ϕ∂xj
∣∣∣∣)

where A is a real number not depending on ϕ. Therefore, by Proposition 4.1,

‖ϕ‖q∗,p,α∗ ≤ C
d∑
j=1

∥∥∥∥ ∂ϕ∂xj
∥∥∥∥
q,p,α

where C is a real number not depending on ϕ.

(b) Let f ∈ W 1((Lq, lp)αc,0). For any integer m ≥ 1, we set ϕm =
(fωm)∗ρm where ρm and ωm are defined as in Notations 2.2. Then (ϕm)m≥1
is a sequence of elements of D which converges to f in W 1((Lq, lp)α) (see
Proposition 3.5) and therefore is a Cauchy sequence. Furthermore, by the
result in (a) we have

‖ϕm − ϕn‖q∗,p,α∗ ≤ C
d∑
j=1

∥∥∥∥∂ϕm∂xj
− ∂ϕn
∂xj

∥∥∥∥
q,p,α

, m, n ∈ N∗.

Thus (ϕm)m≥1 is a Cauchy sequence and therefore converges in (Lq
∗
, lp)α

∗

to an element which is nothing other than f . So f ∈ (Lq
∗
, lp)α

∗
and

‖f‖q∗,p,α∗ = lim
m→∞

‖ϕm‖q∗,p,α∗ ≤ C lim
m→∞

d∑
j=1

∥∥∥∥∂ϕm∂xj

∥∥∥∥
q,p,α

= C

d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

.



Subspaces of Morrey–Sobolev spaces 147

As in the classical case, from the above Sobolev inequality we may deduce
a Kondrashov–Rellich compactness theorem in W 1((Lq, lp)α). For its proof
we shall need the following results.

Lemma 4.2.

(a) Suppose that 1 ≤ q ≤ α ≤ p ≤ ∞, 1 ≤ q∗ ≤ α∗ ≤ p∗ ≤ ∞, 0 < t < 1,

1

q̃
=

1− t
q

+
t

q∗
,

1

α̃
=

1− t
α

+
t

α∗
,

1

p̃
=

1− t
p

+
t

p∗
.

Then there exists a real C such that

‖f‖q̃,p̃,α̃ ≤ C‖f‖1−tq,p,α‖f‖tq∗,p∗,α∗ , f ∈ L0.

(b) Suppose that 1 < q ≤ α < p ≤ ∞, 1/q∗ = 1/q − 1/d > 0, 1/α∗ =
1/α− 1/d, 0 < t < 1,

1

q̃
=

1− t
q

+
t

q∗
and

1

α̃
=

1− t
α

+
t

α∗
.

Then there exists a real number C such that

‖f‖q̃,p,α̃ ≤ C‖f‖1−tq,p,α‖ |∇f | ‖tq,p,α, f ∈W 1((Lq, lp)αc,0).

Proof. (a) Let f ∈ L1
loc.

(i) From the Hölder inequality we obtain, for any (x, r) ∈ Rd × (0,∞),

‖fχJrx‖q̃ ≤ ‖fχJrx‖
1−t
q ‖fχJrx‖

t
q∗

and therefore

rd(1/α̃−1/q̃−1/p̃)‖fχJrx‖q̃
≤ [rd(1/α−1/q−1/p)‖fχJrx‖q]

1−t[rd(1/α
∗−1/q∗−1/p∗)‖fχJrx‖q∗ ]

t.

(ii) First case: p = p∗ =∞. The result in (i) immediately yields

‖f‖q̃,∞,α̃ ≤ ‖f‖1−tq,∞,α‖f‖tq∗,∞,α∗ ,
that is,

‖f‖q̃,p̃,α̃ ≤ ‖f‖1−tq,p,α‖f‖tq∗,p∗,α∗ .
(iii) Second case: p∗ <∞ = p. Using the result obtained in (i) we get

rd(1/α̃−1/q̃−1/p̃)‖fχJrx‖q̃
≤ ‖f‖1−tq,∞,α[rd(1/α

∗−1/q∗−1/p∗)‖fχJrx‖q∗ ]
t, x ∈ Rd, r > 0,

and therefore, as p̃ = p∗t−1 <∞,

rd(1/α̃−1/q̃−1/p̃)
{ �

Rd
‖fχJrx‖

p̃
q̃ dx

}1/p̃

≤ ‖f‖1−tq,∞,αr
d(1/α∗−1/q∗−1/p∗)t

{ �

Rd
‖fχJrx‖

tp̃
q∗ dx

}1/p̃
, r > 0,
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that is,

rd(1/α̃−1/q̃−1/p̃)
{ �

Rd
‖fχJrx‖

p̃
q̃ dx

}1/p̃

≤ ‖f‖1−tq,∞,αr
d(1/α∗−1/q∗−1/p∗)t

{ �

Rd
‖fχJrx‖

p∗

q∗ dx
}t/p∗

, r > 0.

Taking the supremum with respect to r > 0, we obtain

|||f |||q̃,p̃,α̃ ≤ ‖f‖1−tq,p,α|||f |||tq∗,p∗,α∗ .

In the case p < ∞ = p∗, the inequality above is obtained by a similar
argument.

(iv) Third case: p <∞ and p∗ <∞. By the result in (i) and the Hölder
inequality we get

rd(1/α̃−1/q̃−1/p̃)
{ �

Rd
‖fχJrx‖

p̃
q̃ dx

}1/p̃

≤
{
rd(1/α−1/q−1/p)p

�

Rd
‖fχJrx‖

p
q dx

}(1−t)/p

× rd(1/α∗−1/q∗−1/p∗)t
{ �

Rd
‖fχJrx‖

p∗

q∗ dx
}t/p∗

, r > 0,

and therefore

|||f |||q̃,p̃,α̃ ≤ |||f |||1−tq,p,α|||f |||tq∗,p∗,α∗ .

An application of Proposition 2.2(b) ends the proof.

(b) is an immediate consequence of (a) and Proposition 4.2.

Proposition 4.3. Suppose that 1 < q ≤ α < p ≤ ∞, 1/d < 1/α− 1/p,
1/q∗ = 1/q − 1/d, 1/α∗ = 1/α− 1/d, 0 < t < 1,

1

q̃
=

1− t
q

+
t

q∗
,

1

α̃
=

1− t
α

+
t

α∗

and H is a bounded subset of W 1((Lq, lp)αc,0) satisfying

lim
ρ→∞

sup
f∈H
‖f − fχJρ0 ‖q,p,α = 0.

Then H is a relatively compact subset of (Lq̃, lp)α̃.

Proof. (a) By Lemma 4.2(b) there is a real number C such that for any
f ∈ H,

‖f‖q̃,p,α̃ ≤ C‖f‖1−tq,p,α‖ |∇f | ‖tq,p,α.
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Therefore

sup
f∈H
‖f‖q̃,p,α̃ ≤ C sup

f∈H

[
‖f‖q,p,α +

d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

]
<∞.

Thus H is a bounded subset of (Lq̃, lp)α̃.

(b) It is clear that τuf − f ∈ W 1((Lq, lp)αc,0) for any (u, f) in Rd × H.
Therefore, by Lemma 4.2(a), Proposition 3.2, Proposition 4.2 and Proposi-
tion 2.4, there are C1, C2, C3, C4 > 0 such that, for any (u, f) ∈ Rd ×H,

‖τuf − f‖q̃,p,α̃ ≤ C1‖τuf − f‖1−tq,p,α‖τuf − f‖tq∗,p,α∗
≤ C2|u|1−t‖ |∇f | ‖1−tq,p,α‖ |∇(τuf − f)| ‖tq,p,α
≤ C3|u|1−t‖ |∇f | ‖q,p,α

≤ C4|u|1−t
[
‖f‖q,p,α +

d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

]
.

Thus

sup
f∈H
‖τuf − f‖q̃,p,α̃ ≤ C4|u|1−t sup

f∈H

[
‖f‖q,p,α +

d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

]
and

lim
u→0

sup
f∈H
‖τuf − f‖q̃,p,α̃ = 0.

(c) Let θ ∈ C∞ satisfy χRd\J1
0
≤ θ ≤ χRd\J1/2

0

and

θR(x) = θ(x/R), x ∈ Rd, R > 0.

It is clear that, for any (f,R) ∈ H × (0,∞),

|fχRd\JR0
| ≤ |fθR| ≤ |fχRd\JR/20

|

and therefore, by Lemma 4.2(a) and Proposition 4.2, there are C1, C2, C3 > 0
not depending on (f,R) such that

‖fχRd\JR0
‖q̃,p,α̃ ≤ C1‖fχRd\JR/20

‖1−tq,p,α‖fθR‖tq∗,p,α∗

≤ C1‖fχRd\JR/20

‖1−tq,p,α‖f‖tq∗,p,α∗

≤ C2‖fχRd\JR/20

‖1−tq,p,α‖ |∇f | ‖tq,p,α.

≤ C3‖fχRd\JR/20

‖1−tq,p,α

[
‖f‖q,p,α +

d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

]t
.
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Thus,

sup
f∈H
‖fχRd\JR0

‖q̃,p,α̃

≤ C3 sup
f∈H
‖fχRd\JR/20

‖1−tq,p,α sup
f∈H

[
‖f‖q,p,α +

d∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
q,p,α

]t
and

lim
R→∞

sup
f∈H
‖fχRd\JR0

‖q̃,p,α̃ = 0.

An application of Proposition 2.7 ends the proof.

In the case where q = α, the proposition above is read as follows.

Proposition 4.4. Suppose that 1<α<∞, 1/α∗= 1/α−1/d, 0<t< 1,
1/α̃ = (1− t)/α+ t/α∗ and H is a bounded subset of W 1,α satisfying

lim
ρ→∞

sup
f∈H
‖f − fχJρ0 ‖α = 0.

Then H is a relatively compact subset of Lα̃.

This result improves on Theorem 10 of [H-H] because it does not use the
hypothesis limR→∞ supf∈H ‖ |∇f |χRd\JR0

‖α = 0.

Proposition 4.1 has the following generalization.

Proposition 4.5. Suppose that

• 1 ≤ q ≤ α < p ≤ ∞, 0 ≤ γ < 1/α − 1/p, 1/q∗ = 1/q − γ, 1/α∗ =
1/α− γ.
• T is a bounded linear map of Lq into Lq

∗
such that, for any f in Lq

with compact support K and any x in Rd \K,

|Tf(x)| ≤ A
�

Rd

|f(y)|
|x− y|d(1−γ)

dy

where A is a real number not depending on f and x.

Then T admits a unique bounded linear extension defined on (Lq, lp)αc,0.

Proof. (a) Let f ∈ Lq ∩ Lα. Using the notations in the proof of Propo-
sition 4.1, for any (x, r) in Rd × (0,∞) we have

f =
∑
n≥0

fx,r,n in Lq,

T f =
∑
n≥0

Tfx,r,n in Lq
∗
;
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furthermore,

‖Tfx,r,n‖q∗ ≤ A
{ �

Jrx

[ �

Tx,r,n

|f(y)|
|z − y|d(1−γ)

dy

]q∗
dz

}
, n ≥ 1,

‖(Tfx,r,0)χJrx‖q∗ ≤ B‖fχJ2r
x
‖q

where B is a real number not depending on (f, x, r). An argument similar
to the proof of Proposition 4.1 leads easily to

‖Tf‖q∗,p;α∗ ≤ C‖f‖q,p;α
where C is a real number not depending on f .

(b) Notice that (Lq, lp)αc,0 is the closure of Lq ∩Lα in (Lq, lp)α. Therefore
the result follows from (a).

Remark 4.3. Let S denote the Schwartz space of test functions on Rd
and let j ∈ {1, . . . , d}. It is well known (see [Gr]) that the Riesz transform
Rj defined by

Rjf(x) = lim
ε→0+

Γ
(
d+1
2

)
π(d+1)/2

�

|x−y|≥ε

f(y)
xj − yj
|x− y|d+1

dy,

x = (x1, . . . , xd) ∈ Rd, f ∈ S.

extends to a bounded linear operator on Lq for 1 < q < ∞. Furthermore,
for any f in Lq with compact support K and any x in Rd \K we have

|Rjf(x)| ≤
Γ
(
d+1
2

)
π(d+1)/2

�

Rd

|f(y)|
|x− y|d

dy.

Therefore, as a particular case of Proposition 4.5, we have the following
result.

Corollary 4.4. Suppose 1 < q ≤ α < p ≤ ∞. Then the Riesz trans-
forms Rj (j ∈ {1, . . . , d}) extend to bounded linear operators on (Lq, lp)αc,0.

5. Application. We suppose d ≥ 3.

(a) Let ϕ ∈ D. The boundedness properties of the operators I1/d and Rj
(j ∈ {1, . . . , d}) yield

φj = Rj [I1/d(ϕ)] ∈
⋂

s>d/(d−1)

Ls, j ∈ {1, . . . , d}.

As 2>d/(d−1), we can use the Fourier transform to obtain cd
∑d

j=1 ∂φj/∂xj
= ϕ where cd is a real number depending only on d (for a similar formula
see [St, p. 125].
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(b) Let 1 < q ≤ α < p ≤ ∞ with 1/p < 1/α− 1/d and let f ∈ (Lq, lp)αc,0.
We are interested in the equation

(Ef ) divF = f.

Fix an integer n ≥ 1 and put fn = ρn ∗ (ωnf) where ρn and ωn are as in
Notations 2.2. As fn ∈ D, the result in (a) implies that the equation

(Efn) divF = fn

admits a solution Fn = (Fnj )1≤j≤d with

Fnj = cdRj [I1/dfn] ∈
⋂

s>d/(d−1)

Ls, j ∈ {1, . . . , d}.

Using Proposition 2.3, Proposition 4.1, Corollary 4.1 and Corollary 4.4, we
find that

• (fn)n≥1 converges to f in (Lq, lp)αc,0,
• for any j ∈ {1, . . . , d}, (Fnj)n≥1 converges to Fj = cdRj [I1/df ] in

(Lq
∗
, lp)α

∗
c,0,

with 1/q∗ = 1/q − 1/d and 1/α∗ = 1/α− 1/d.
Therefore, for any ϕ in D,

�

Rd
divF (x)ϕ(x) dx = −

d∑
j=1

�

Rd
Fj(x)

∂ϕ

∂xj
(x) dx

= lim
n→∞

[
−

d∑
j=1

�

Rd
Fnj(x)

∂ϕ

∂xj
(x) dx

]
= lim

n→∞

�

Rd

( d∑
j=1

∂Fnj
∂xj

(x)

)
ϕ(x) dx

= lim
n→∞

�

Rd
fn(x)ϕ(x) dx =

�

Rd
f(x)ϕ(x) dx,

that is, equation (Ef ) admits the solution F = (Fj)1≤j≤d in [(Lq
∗
, lp)α

∗
c,0]

d.
It is worth noting the link between the above result and Proposition 1.1

in the light of Proposition 1.2.
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