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On global regular solutions to the Navier—Stokes equations
with heat convection

by P10TR KACPRzZYK (Warszawa)

Abstract. Global existence of regular solutions to the Navier—Stokes equations for
velocity and pressure coupled with the heat convection equation for temperature in a
cylindrical pipe is shown. We assume the slip boundary conditions for velocity and the
Neumann condition for temperature. First we prove long time existence of regular solu-
tions in [kT, (k + 1)T]. Having T sufficiently large and imposing some decay estimates
on || f(t)lLy(2)s [1f.2s(t)||Lo(2) We continue the local solutions step by step up to a global
one.

1. Introduction. We consider the problem

vi+v-Vo—divT(v,p) = «(f)f in 2 xRy,

dive =0 in 2 x Ry,
0i+v-VO0—xA)=0 in 2 xRy,

(L1) n-DW) - Ta =0, a=1,2, on S x R,
v-n=0, n-V=0 on S x R4,
V|t=0 = vo, B|i=0 = b in 12,

where o € C?(R), 2 C R? is a bounded domain, S = 902, v = (vi(z,1),
va(m,t),v3(z,t)) € R? is the velocity of the fluid, = 0(z,t) € R is the tem-
perature, p = p(x,t) € R is the pressure, f = (fi(z,t), fa(x,t), f3(z,t)) € R3
the external force, v > 0 is the constant viscosity coefficient, x > 0 is the
constant heat coefficient. We introduce the Cartesian system x = (z1, x2, x3)
such that the cylinder {2 is parallel to the x3 axis. We assume that S =
S1U.Ss, where Sy is the part of the boundary which is parallel to the z3 axis
and S9 is perpendicular to x3. Hence
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S1 = {z € R3: p(v1,22) = co, —a < a3 < a},
Sa(—a) ={z € R : p(x1,22) < co, x3 = —a},
Sa(a) ={x € R3 : o(x1,x2) < Co, T3 = a},

where a, ¢y are given positive numbers and ¢(x1,x2) = ¢o describes a suf-
ficiently smooth closed curve in the plane x3 = const. Next 7 is the unit
outward vector normal to S and 7., o = 1,2, are tangent vectors to .S.
By T(v,p) we denote the stress tensor
T(v, p) = vD(v) —pI,
where [ is the unit matrix and
D(v) = {viz; + Vj; }ij=123
is the dilatation tensor.

The aim of this paper is to prove the existence of global regular solutions
to problem (1.1) without smallness restrictions on the initial velocity and the
initial temperature. Since (1.1) is a coupling of the Navier—Stokes equations
with the heat equation the aim cannot be achieved without any restrictions,
because the regularity problem for the Navier—-Stokes equations is up to
now an open problem. However, there are already some results on regularity
of weak solutions to the Navier-Stokes equations (see |7, 13} 14} [15 [16]).
These results describe solutions which are close either to two-dimensional
(see [7, 13]) or to axially-symmetric (see [I4] 15 [16]) solutions. In the first
case the Lo norm of the derivative of the initial velocity with respect to x3
must be sufficiently small. The existence of global regular solutions which
are either two-dimensional or axially symmetric was proved in [5]. Looking
for solutions which are close to two-dimensional solutions requires that the
domain {2 be a cylinder.

Therefore to prove the existence of global regular solutions to the Navier—
Stokes equations which are close to 2d-solutions we need analytical
([[v0,25l Lo (2) to be small) and geometrical (§2 a cylinder) restrictions.

In this paper we generalize results on the Navier—Stokes equations to the
system (1.1) (see also [8,[9]). Moreover, the results from [8, 9] are extended
because the global existence is proved.

The problem of existence of global regular solutions to the Navier—Stokes
equations with slip boundary conditions which are close to two-dimensional
solutions has a long history. In the first paper [12] in this direction, long time
existence of regular solutions to the Navier—Stokes equations was proved by
using a complicated technique of Besov spaces. A simplified and more elegant
revision of the proof from [I2] was given in [7], where Sobolev spaces were
used only.

In [6] the long time solution from [7] was prolonged in time up to infinity.
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Finally in [I3] the global existence of regular solutions to the Navier—
Stokes equations was proved step by step in time up to infinity.

Problem (1.1) is a nontrivial generalization of the Navier—Stokes equa-
tions. The proof of the existence of a global regular solution to problem (1.1)
is divided into two steps. In the first step we consider problem (1.1) in the
interval [kT, (k + 1)T], where k € NU {0} and 7" > 0 is a given number.
Hence problem (1.1) takes the form

vi+v-Vo—divT(v,p) =a(f)f in QTERY — 0 5 (KT, (k + 1)T),

dive =0 in QT(k+l),

(1.2) 0;+v-V0—xA) =0 in QT+
D) Ta=0, a=1,2, on ST+ — § 5 (KT, (k 4+ 1)T),
v-n=0, n-V=0 onST(kH),

Vli=kr = v(KT), Oli=pr = 0(KT) in (2,
where v(kT), O(kT) are treated as given.
Let us introduce the quantities
G1(k,T) = || fll Lo b, (ks 1y (2)) + 10D [ 11 (12
0D 11 () + 10,25 (KT) | m1.(2) + 10,25 (KT) | 111(02)
Nk, T) = ||l Lo(2x er,(e+1)1)) + 1 F3ll Lo (82 % (k7 (54+1)T))
+ 0,05 (RT) | Lo (02) + 10,05 (KT)[| £y(52)-
Then the following local regularity result holds.

THEOREM 1.1. Assume that G is finite and n is sufficiently small. Then
there ezists a solution (v,0,p) to problem (1.2) such that

0,04, 0,0 25 € Wy (2 x (KT, (k + 1)T)),
Vp,Vp ey € La(£2 x (KT, (k+ 1)T))
and

1
(1.3) Z(HaﬂlﬂSU”WzQ’l(Qx(kT,(k+1)T)) + HaﬂlﬂBGHWZQ’I(Qx(kT,(k—i—l)T))

=0
+ IVl Ly ox k754 1)T))) < B(G1(k,T)) = A(k, T),
where B is an increasing positive function.

From the form of G we see that A(k,T") does not increase with 7.

The proof of Theorem 1.1 is divided into the following stages. First the
a priori estimate (1.3) is shown by applying the energy method, estimates
for the Stokes system (2.2) and the parabolic problem (2.4), using smallness
of the quantity n. This smallness does not imply smallness of the initial data
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v(kT'), 0(kT) but only smallness of its derivatives with respect to the variable
along the axis of the cylinder in the Lo-norm. The estimate is proved in
Section 4. The final result is formulated in Lemma 4.8. Having the a priori
estimate the existence is proved by using the Leray—Schauder fixed point
theorem.

In the second step we prove

MAIN THEOREM. Assume that
IF @O0y < e £0) (),

(1.4) 1 25 () La(2) < €21 s (0) | L2y,
f3|s2 =0, 6> 0.

Then

(1.5) [a((k + D)D)l 10 < BT 512,

where o replaces v, 0, U gy, 0 4., for any k € NU{0}. Moreover, Theorem 1.1
implies global existence of solutions to problem (1.1).

Estimates (1.5) are proved in Section 6. The crucial elements of the proof
are decays (1.4) and the fact that the quantity A(k,T) does not increase
with T'. The last property explicitly appears in the proof of Lemma 4.8.

Now we justify the dividing of the proof of global existence of regular
solutions to (1.1) into two steps: Theorem 1.1 and Main Theorem. Setting
k = 0 in Theorem 1.1 we actually have global existence because the quantity
A(k,T) does not increase with T'. Then estimate (1.3) implies strong decays
of v, # and p in time. To omit this restriction we need the Main Theorem.

2. Notation and auxiliary results. To simplify considerations we in-
troduce the following notation:

lulp,g = lullz,@): Qe{R",5",02,5}, pel,o0
lulls.o = llullr=(q) Q € {12, 8}, s e Ry U{0},
HUHS,QT = HUHW;»S/Z(QT)v Q € {‘Qa S}7 S R-‘r U {0}7

|u|p,q7QT = ||u||Lq(O,T;Lp(Q))7 Q € {'Qa S}’ D,q e [15 OO],
||u||s,q,QT = ||U||qu,s/2(QT), Q € {'Qa 5}7 5 € R+ U {O}a AS [1700]7
||U||s,q,Q = ||u”Wq§(Q)7 Q € {Q,S}, s € R+ U {O}’ qec [1700]

We denote by ¢ a generic constant which changes its magnitude from formula
to formula. By ¢&(o), 5(0) we denote generic functions which are always
positive and increasing. Finally, we do not distinguish scalar and vector-
valued functions in notation.
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We denote
QTF = 0 x (k= 1)T,kT), Q71 =0 x (T1,Ty).
We introduce the quantities

h:'l)@?), q = P,x3> g:f,ac:w ¢:0,x37

w = vg3, X = U2,x1 - vl,IQ'

(2.1)
Moreover, we introduce the space

V(@™ = {u s ullyg o) = esssup ful s
(S

(fHVu Ol dt) /2<oo}, k € NU{0}.

Let us consider the Stokes problem

vy —divT(v,p) = f in 027,
dive = in 27,
(2.2) D) Ta=ga, a=12 onST,
v-n=d on ST,
V]i=0 = v in (2.

THEOREM 2.1 (see [I]). Let f € Ly(QT), d € W2 /171246y oy €
Wq2_2/q((2) Ja € I/V1 a1/ I/Qq(ST), a =12 q € (1,00). Assume the
compatibility conditions i - D(vg) * Tals = gali=0, @ = 1,2, in qu_g/q(S)
for ¢ > 3 and ng - vols = d|=0 in Wq273/q(5) for ¢ > 3/2. Then there

exists a unique solution (v,p) to problem (2.2) such that v € W2 (27T),
Vp € Ly(927) and

(23)  ollyz ory + 19Dl zymy < (I zymy + vollya-2sa g

2
o Ny 2ssa1-1/2 5y + D Wally-v/aria-1/20 g, )

a=1
Next we consider the following problem:
0,—A0=f in 07,
(2.4) n-Ve=d on ST,
Olt=0 = 0o in 2.

THEOREM 2.2 (see [, Ch. 4]). Let f € Ly(227), 6o € W2 2%(R), d €
qu_l/q’l/2_1/2q(ST), q € (1,00). Then there exists a unique solution 6 to
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problem (2.4) such that 0 € WqQ’l(QT) and
25) Bl gy < el gory + Dol o + Iy 1700220

REMARK. In view of the considerations in [I3] we know that the con-
stants ¢ in (2.3) and (2.5) do not depend on 7.

THEOREM 2.3 (Korn inequality, see [14]). Assume that 2 C R™ is not
wvariant with respect to any rotation. Assume that
(2.6) ID(u)||Ly(0) <00, u-fi|ls =0, divu=0.
Then [Jull g1 () < cl|D(w)|r,y(0)-
We now show estimates for the temperature. Applying the classical
De Giorgi methods (see also [4]) to problem (2.4) we get
LEMMA 2.4. Assume that (0) > ¢; > 0. Then solutions to (2.4) satisfy
(2.7) 0(t) >c1, t=>0.
Proof. Let (0 — ¢1)— = min{0,6 — ¢;}. Multiplying (1.1)3 by (6 —c1)—
and integrating over 2 we obtain
1d
SN0 =) de+x | IV(0—c1) Pdz=0.
2 dt
9] )
Integrating with respect to time we have

(6 — Cl)—”%w(O,T;LQ(Q)) + V(6 - Cl)—Hig(QT) <|(6- Cl)—(O)H%Q(Q)-
Since (6 — ¢1)-(0) = 0 we conclude the proof. m

LEMMA 2.5. Assume that 6y € La(£2). Then solutions to problem (2.4)
satisfy

(2.8) 1017 . 0.7:22002)) + V012, ry < 11602,

Proof. Multiplying (1.1)3 by 6 and integrating over {2 using (1.1)2.45, we
obtain
(2.9) ~—\0Pdz+ x| |VOPdz=0.

2 dt
9] 2

Finally integrating with respect to time we obtain (2.8). =

LEMMA 2.6. Assume that 0(0) < ca. Then solutions to problem (2.4)
satisfy
(2.10) 0(t) <co, t>0.

Proof. Let (6 — c2)+ = max{0,0 — c2}. Multiplying (1.1)3 by (6 — c2)+
and integrating over {2 we obtain

10— o)t de+x | IV(0— o) [Pdz =0.
2 k0]

DO | =
=
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Integrating with respect to time we have
16 = c2)+ 117 0751502 F IV (0 = e2)41[7,ory < 118 = c2)+(0)][17,0)-
Since (6 — c2)+(0) = 0 we conclude the proof. m

LEMMA 2.7. Assume that f € La(Ry, Lg/5(£2)), v(0) € L2(£2) and ¢; <
0(t) < c2, a € CO(R). Then

(2.11) [0 ra2) < el fllLa®y Lo 52)) + 10(0) I 22(2))
for anyt > 0. Next
(212)  vllveoxwrey) < CULflagr s+1)T;Lg 5(2)) + 1VED) [ Ly(2)

< [ flnayszg s + 10O Lo2)) =1, t € (BT, (k4 1)T).

Proof. Multiplying (1.1); by v and integrating over {2 using the boundary
conditions, the Korn inequality, Lemmas 2.4, 2.6 and the fact that o € C°(R)
we obtain

d
(2.13) %HUH%Q +lolf ) < clellvliZoe) + e/l flise)-
Integrating (2.13) with respect to time we obtain (2.11). Finally integrating
(2.13) with respect to time from kT to ¢t € (KT, (k+ 1)T) yields (2.12). u

3. Basic formulations. To prove the existence of global solutions to
problem (1.1) we follow [I0} [I3]. Therefore we need problems for quantities
(2.1). First we have

LEMMA 3.1 (see [10]). The quantities h,q are solutions to the problem

hiy—divT(h,q) = —v-Vh—h-Vo+agpf+ag in QT k1)

divh =0 in Tk
n-h=0 on S;‘F(kﬂ),
(31) 7-D(h) 7 =0, a=1,2 on STHHD,
hi =0, i=1,2, on STHFD,
h3zs =0 on S, (kﬂ)
hli=kr = h(KT) in 2,

where v and 0 are treated as given.

LEMMA 3.2 (see [10]). The function x = va 4, — V1,2, 1S a solution to the
problem
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X+ 0 VX = haX + how ey — haw g, —vAxY =Fs in QT
X = =0i(1a; 715+ Tie; )
= T(k+1
(3-2) +v-T (712,:;:1 - Tll,:pg) = Xx on S1 (kt ),
X,z =0 on SQT(kH),
Xlt=kr = X (kT) in {2,
where v, h, w are assumed to be given and
n ) 0 — RIS 0 - _
n‘Sl = W? 7_1’51 = (90;29%2)’ 7—2‘51 = <O707 1) = €3,
nls, =3, Tils, =€1, Tols, = e,

where w = v3, €1 = (1,0,0), e2 = (0,1,0) and F3 = (fou, — fiz.)o +
05’9(073;1 f2 - 97$2f1)'
Finally differentiating (1.1)s with respect to z3 we get

0i4+v-Vo+h-VO—xAp=0 in QT*+D

Yo =0 T+,
(3.3) neve o

=0 on SQT(kH),

Pli=kr = p(kT) n §2,

where v, h, 0 are treated as given.

4. Estimates. First we examine problem (3.2). The aim is to obtain an
energy type estimate for solutions to (3.2). Since (3.2) has non-homogeneous
Dirichlet boundary condition such approach is not possible. To make it pos-
sible we introduce a function x as a solution of the problem

Xt —vAx =0 in QTk+D

%= on SlT(kH)

bl

(4.1) —_—
X2z =0 0n5’2(+)

Xlt=kT = kT in 2.
Introducing the new function y’ = y — ¥ we see that it is a solution to the
problem
Xt +v- VX = h3(v2z, — Vie,) + how e, — hiw g,
—vAY = F3—v-Vy in _QT(k'H),
(4.2) ' =0 on ST,

il

Xfm =0 on SQT(kH),

X'e=kr = x(kT) in 0.
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LEMMA 4.1. Assume that h € Ls(QT*+D) By € L10/7(QT(1‘7+1)), (NS

Loo(KT, (k + 1)T; L3(S1)), v' = (v1,v2), ve W2 (QT*+D)) with 5/r — 3/2
< s, X(kT) € Lo(£2). Assume also that v is a weak solution to problem
(1.1) satisfying (2.12). Then every solution x to problem (3.2) satisfies the
inequality

t

43)  xOBe+ | IxFedt <@V 17 gy + 7la.guer)
kT

VI, g + Bl e + XTI 0),
where F3 is given by (3.2), 11(t) is given by (2.12) and t € (KT, (k+ 1)T).
Proof. Multiplying (4.2); by x’ and integrating the result over 2 we get
1d

5 X OBo +vIVX B0 = | (v20) = v1.0,)hax’ da
Q
— S(h2w7a¢1 — hiw 4,)X dz + S v Vxx dx + S F3x' da.
Q Q Q

Utilizing the Poincaré inequality and integrating with respect to time yields

t

44) WOBe+ | IXE)IEod
kT

<c( [ 1hal 90| Y| dae e

0LET

t
+ | vl \X’\d:cdt’—ir‘s [ o) - V@)W () da dt
kT

Qt.kT (0]

+ § IR dedt + X(RT)B g).

Qt.kT

We estimate the first term on the r.h.s. of (4.4) by |hs|5 gerr|VV'|y gear -
|X,|10/3’_Qt,kT and the second by ‘v,w‘Q’Qt,kT|h,‘5’gt,kT|X,’10/3’_Qt,kT. The third
term on the r.h.s. of (4.4) can be expressed in the form

]— ) -V ()R dedt | = T
kT 2

and estimated as follows:
2 2 ~12
I< 5HX/HL2(1<;T¢;H1(Q)) + HU”Lz(kT,t;Hl(_Q)) |X|3,oo,ka

< EHX/H%Q(kT7t;H1(Q)) + 1 |>~(|§’Oo,gt,kT-
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We bound the fourth integral on the r.h.s. of (4.4) by
|X,’10/3,Qtva|F3|10/7,Qf»’€T'
Utilizing the above estimates in (4.4) we obtain

t

%,Q + S ”X,(t/)H%,Q dt' < 0(5(\X/|§0/3,Qt,w + |VX/|§,Qt,kT)
kT

+ l% |X|§7m’9t,kT + |h|§79t,kT‘vv|§7Qt,kT + |F3|§0/77_Qt,kT + Ix(k‘T)I%,Q)

Applying the transformation Y’ = x — ¥, for sufficiently small € we have

X'

t

OB+ § IO g dt < e(BIRE o guer + 1 gur [V gk

kT
t

+ X3 o0 uar + S IX()1T 0 dt' + |F3|%0/7,Qt,kT + |X(kT)|gQ>
kT

Now using the inequalities
|U‘10/3,Qt,kT < C(|U|2,oo,ka + ||U”L2(kT,t;W21(Q))) < CHUHS,T,Qt’kTv
where 5/r —3/2 < s, r < 2, we obtain

t

OB+ | INOIE g dt < c@BIR1 o grar + BIBE grsr
kT

<112 2 2
+ XIS oenr + [E3lTo /7 gear + IX(RT) 2 0)-
Finally, using the inequalities
HXHS,T,_Qt'kT < CHX*HS,l/T,T-’Si’kT < CHU,HS,T,Qtva
and
|>~<|37007“Qt’kT S |v,|3,OO,S?kT,
we obtain (4.3). m

Having energy type estimates for x and h we are able to consider the
problem

. /
Ul,xz - U?,:m =X m Q )

. /

(4.5) Vg, T V2,2, = —hg in (2,
v'on' =0 on 57,

where 2 = 2N {x3 = const € (—a,a)}, S; = S1 N{x3 = const € (—a,a)},
and x3,t are treated as parameters.

LEMMA 4.2. Let the assumptions of Lemma 4.1 be satisfied. Then every
solution v' = (v1,v2) to problem (4.5) satisfies
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(46) s [o'(t)
kT<t'<t

2 2
L0+ HUIHLQ(kT,t;HQ(Q))

S C(l%(‘h‘;gt,kT + 1) + ”U,”z,r,ﬁtva + |F3’%0/77~Qt’kT
t

+IX(*kT)Bo+ sup [h(t)Ee+ | Hh(t/)lligdt/),
ET<t'<t kT

whenever 5/r —3/2 < s, r < 2.
Proof. For solutions to problem (4.5) we get the estimates
1T o < ellxlzo +1hslo), W30 < ellixlia + Ihs]E2),

where v/ = (v1,v9). Integrating the above estimates with respect to z3 and
the second one also with respect to time, and adding them, we obtain

a t a
sup S Hv’(a:g,t')HiQ/ dzs + S S Hv’(a:g,t/)H%’Q, dxs dt’
KT<t'<t ", N —a
a a
gc( sup | IX(®)Bdes+ sup | |ha(t)]3 o dus
KT<t'<t ", KT<t'<t °,
t t
+ § @B gt + § s} gt ).
kT kT

Adding to both sides the expression supyp<y<; |P'[3 o + SZT [0 ()1 ¢ at,
we obtain
¢ ¢

sup o' + | HU/H%,thISC( sup [x()5.0+ | IIX(@)IIF ¢ dt
KT<t'<t T KT<t'<t T

t

+ sw |pEg+ | B30 dt).
ET<t'<t WT

Utilizing (4.3) to estimate the first norm in the last inequality and the in-
equality

|U'|3yoo75?kT < el o ersm ) + c(1/e)vls o0 e,
we obtain (4.6). m
Next, we examine problems (3.1) and (3.3).
LEMMA 4.3. Assume that v is a weak solution to problem (1.1) and
feLy(kT, (k+1)T;L3(R2)), g e Ly(2Tk+1))
fs € La(S; 1Y), h(kT), p(KT) € La(12),
v,0 € Lo(KT, (k + 1)T; W4 (02)).
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Then @, h defined by (2.1), which are solutions to problem (3.3), (3.1), re-
spectively, satisfy

t

(4.7 le®)o+h@Eo+ | (o)
kT

S Cexp(lvvlg’zgt,kT + |vg|§’2’9t,kT + |f|§’2’9t,kT)
< (1913 grar + 1f3l3 goar + IRGKT)B o + [0 (RD)13 )

= cexp(n1(t))n*(t)
whenever t € (KT, (k+1)T).

10+ 1) o) dt’

Proof. Multiplying (3.3); by ¢ and integrating over {2 and by parts yields

(4.8)

50+ |Velso < S |h - Voo| dx
Q
2 - 2
< c(eleld o +e(1/2) VO olhl3 o).
Next multiplying (3.1); by h and integrating over {2 and by parts using the
Korn inequality, we get

4
at'?

d
(4.9) 2o+ viIklie <elh

%,Q + 5(1/5)’VU|§,QW%,Q

+c(lelz ol fILa o) + 1906/5.0 + I f3l3.5,)-
Assuming ¢ is sufficiently small and adding (4.8) and (4.9) we have

2
2,0

d
Z(elo+hEa) + ellie + k] e

< c(|Vul3 o+ 130 + VO3 o) (930 + [h3.0) + C(\g\g/s,(z + 1 f3l5.5,)-

Integrating the above inequality with respect to time from ¢t = kT to t €
(KT, (k + 1)T] we obtain (4.7). =

Now we increase the regularity of v. From (4.6) we derive

(4.10) Hv/H%oo(kT,t;Hl(Q)) + HUIH%Q(kT,t;HZ(Q))
< e(|hlZ guar + HhH%/QO(ka) V112, gear + B30 7 grar + 1
Il gpar + XGT)B o)
and
|F3|10/7,0t0r < eIV fliojz.arir 41 fl7/2,00,0t67 VO3 grar)
< 6(02)(Wf|10/7,9t1kT + |f|7/2,oo,Qtva)7

where we used (2.8) and (2.10).
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Using the notation
Hy (KT, t) = |hl5 gt + [hllvo(quary,
K1(KT,t) = [V fliojr,aeir + 1 fl7 /2,00, 0007,
Dy (kT) = [x(kT)|2,0,
we write (4.10) in the form
(4.11) (o'l (urry
< ¢(Hy(KT,t) + K1 (KT, t) + D1(KT) + [|V'[|5 . et + 11).
In view of (4.11) we are in a position to consider the Stokes system

vy —divT(v,p) = —v' - Vo —vsh+ a(0)f in QT(k+1)

divo =0 in QTR+
(4.12) ,

v-n=0, n-DWw) T,=0 «a=1,2 on § kD)

'U’t:kT = 'U(kT) in £2.

LEMMA 4.4. Assume that Ho(kT,t) < oo, Ko(kT,t) + Da(kT,t) =
A1 (KT, t) < o0, v € Wf’S/Q(Qt’kT), 5/r—3/2 < s, r <2 and v(kT) €
W3(£2), where Ha, Ka, Do are given by (4.14). Then every solution (v, p) of
(4.12) satisfies
(4.13) [v]l2, 0057 + [VDlo,guer < €(l)Hi + B(A1).
where
Hs = Hq, K2:K1+’f’279t,kT,

Dy = Dy + |[v(kT)|12,0-
Proof. By Theorem 2.1 with ¢ = 5/3 and (4.11) we have

(4.14)

(4.15) ”U||2,5/3,_Qtva + |Vp|5/3,ka < C(HU,HV;(QLW)|VU|2,QtJ€T

+ [vsl1o/3,0t87 | Al /3,000 + | fls 3,0tk + |0(KT)[|4/5 5/3,2)
< e(l)(Hao (KT, t) + Ka(KT,t) + Do(kT) + 11),

where we used that

1V lls 000 < €llv'lla 573,000 + c(1/)[0"]o,grar,

whenever 5/r —3/2 < s, r < 2. In view of (4.14) we obtain for solutions to
problem (4.12) the inequality
(4.16) ”U||2,2,QWVT + |VP\2,9tva < C(|U/|10,Qt»kT|VU|5/2,Qt»kT
+ |vsls, oerr|hliojs,0uer + | flooerr + |0(ET)||1,2,02)-
From (4.11), (4.14) and (4.15) we obtain the estimate
(4.17) ||'U,||V21(_Qt,kT) < é(ly)(Hao(kT,t) + Kao(kT, t) + Da(kT) + 11).
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Using (4.14) and (4.17) in (4.16) yields
[0]la2, 0657 + [Vplo,grar < ¢((Ha(KT,t) + Ko(KT,t) + Do(KT) + 1)
+ [flo,ter + v(ET)|[1,2,2)- =
Next we consider the problem
0;— A0 =—0'VO —vzp in NTEFD,
(4.18) n-Vh=0 on ST(+1),
Oli—pr = O(KT) in £2.

LEMMA 4.5. Assume Ho(KT,t) <oo, Aa(KT,t)=A1(kT,t)+|0(kT)|1,2,0
< 00, ¢ € Lyg/3(2°*T) and §(kT),v(kT) € W3(£2). Then every solution 6
of (4.18) satisfies

(419) (Bl cnir < el ) (HA(T, 1) + A3(KT, 1) + Ay (T, 1)
+ |¢li0/3,004T)-

Proof. In view of Theorem 2.2 we have

(4.20) H‘9||2,5/3,Qt,kT < C(|U/’10,Qt,kT|V9|2,Qtva‘U3|10/3,Qt’kT|90’10/3,Qt7kT
+ [|0(KT) |4/5,5/3,2)-
Using (2.8) and (4.17) in (4.20) we obtain
(4.21) H@’ 2,5/3,QtkT < E(ll, CQ)(HQ(kT, t) + Al(kT, t)
+ [eloys,0urr + |0(KT)|4/5,5/3,0)-

In view of (4.20) we obtain for solutions to problem (4.18) the inequality

(4.22) ||0H2,2,Qtv’€T < C(|U/|1o,mva|V‘9|5/2,QtwkT + |U3|5,Qt1kT|‘p|10/3,Qt’kT
+ 10RT) [[1.2,02)-
Using (4.17) and (4.21) in (4.22) implies (4.19). =
Finally we consider the problem
i —xAp=—v-Vo—h-Vl in QT

- _ T(k+1)
(4.23) n-Vo =0 on S ,

p=0 on Sg(kﬂ),

@ik = @(kT) in £2.

LEMMA 4.6. Assume H3(kT,t)=Hy(kT,t)+|h|3 o gtor <oo, A3(KT,t)
= Aa(ET,t) + |@(kT)|2,0 < 00, Aa(kKT,t) = Az(kT,t) + ||p(KT)|1,2,2. Then
every solution ¢ of (4.23) satisfies
(420)  Nplluparir < alea) (Ha(kT,1) + As(T, 1)),

(4.25) lplla,2,qear < iy, e2) (HE (KT, t) + B(A4(KT 1))).
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Proof. Multiplying (4.23) by ¢, integrating over (2 x (kT,t), using the
boundary conditions and initial conditions we obtain
lellvo ey < elely grur + (/RIS o uir VO3 guar + clo(RT)I3 o
Assuming that ¢ is sufficiently small and using (2.8) and (2.10) we have
(4.26) lellvo(aurry < elc)lhl3 o0 prrr + C|<P(kT)\%,Q-

Hence, (4.24) holds.
In view of (4.26) we derive from (4.19) the inequality

(427) [0l nsr < clln,ea)(HET, 1) + AZ(KT, 1) + Ha(KT, 1) + A3(KT, 1))
Applying Theorem 2.2 to (4.23) yields
(4.28) lg

2,5/3,0t67 < c([0]10, 0trr |Voly grrr + |hl1g /s ourr [VO]1g /3 orer
+ | (ET)4/5,5/3,0)
< el e2)(H3 + B(A3)) + cllo(kT)lass5/3.0,
where in the second inequality we used (4.13), (4.24) and (4.27).

Applying again Theorem 2.2 and employing (4.13), (4.27) and (4.28) we
obtain

(4.29)  |lpllg,o,0urr < c(|vlio,0urr[Vls o gurr + [R5 grrr V0|13, oner
+ (kT [l 2.02) < &(l1, c2) (HE (KT, t) + B(A4)). =
LEMMA 4.7. Assume v € Wy (20T, g € Lo(2P4T), ¢ € Ly 3(£255T),
h(kT) € La(02) and f € Ls(2VFT). Then every solution (h,q) of (3.1) satis-
fies
(4.30)  ||Allg,z,0uer + [Valg gurr < c(B(||vll22,0tm) | hlg, gurr
+ [elos,0urr [ fl5,0urr + [[RET)[[1,2,2 + 1gla, ),
where B an increasing positive function.
Proof. From (3.1) we get
(4.31) HhHZQ’Qt,kT + ’Vq‘zﬂt,kT < C(”U . Vhb,_(zt,kT + ’h . V’U|279t,kT
+ [loss,ourr [ fl5,0uer + [[MET)[[1,2,2 + 9l 0t6r).
Using the Hoélder inequality in (4.31) we obtain
12ll2,2,0t0r 4 [Vl gear
< c(|vhio,0err|Vhls 0 grer + |Bls guer|Volig s grer
+ |lvo/s,0t67 | s orrr + [|R(ET) 12,0 + [gla,0trr).

Now using the interpolations

|U|10,Qtva|Vh|5/2,nykT < 5||h||2,2,ka + 801(|U’10,Qt1kT)‘h|2,Qt1kT
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and
‘VU’10/3,Qt1kT|h|5,mva < €”h”2,2,m7kT + 802(|VU|10/3,Qt7kT)|h|2,ka7
where 1, @9 are increasing positive functions, we obtain (4.27). =
Finally, we derive an a priori estimate for solutions to problem (1.1). Let
Gi(k,t) = [[v(ET)[l12,0 + 10T 12,20 + |A(KT) 12,2 + [0 (KT)]1,2,2
F 1 fl Loo (kT (2)) T 192,007
(k1) = |glo,ouir + | faly gewr + [MET) 2,0 + @(RT)|2,0-

LEMMA 4.8. Assume that G1(k,t) < oo, n(k,t) is sufficiently small, t €
[kT, (k + 1)T], k € No. Then there exists a constant A(k,t) > 0 such that
solutions (v, p,8) of (1.1), (h,q) of (3.1), and ¢ of (3.3) satisfy

(4.32)  |vllog,gtrr + |Bllog grrr + 10ll2,2 0t + [[@]l2,2 ot kT
+ [Vpla,guir + |[Valy guir < A(k,t) = a(Gi(k, 1)),
where « is an increasing positive function.
Proof. Using (4.7), (4.13), (4.27) in (4.30) and employing the imbedding
Hy(KT, ) < cl[hlly.cor
we obtain from (4.30) the inequality
(433)  [lbaguer < (Al qner, Gk )0k, t) + B(Ga (k. 1),

where (3 is an increasing positive function and ¢ € [kT, (k + 1)T.
For n(k,t) sufficiently small and a fixed point argument we obtain from
(4.33) the estimate

[hll2,2,006r < B(G1(k, ).
Then from (4.13), (4.25) and (4.27) we obtain (4.32). =
5. Existence. We prove the existence of solutions by the Leray—Schau-
der fixed point theorem (see [4]). Define
1w, Dl peoresny = 10l Lagr sy, @) T 10awrwrnrwy, 4 2)
v s ger, e nyrawy, s(2)
+ ”67433HL4(kT,(k+1)T;W112/5(Q))7
M(QTED) = {(0,0) : [|(v,0)[| vy rrsny < 00},
||(U79)||N(QT(k+1)) = HU||W22’1(QT(’C+1)) + ||0||W22’1(_()T(k+1))

o lwz grieny + 10wz oy,
N(27ED) = {(0,0) [ (0,0) Ly (griesn) < oo}
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LEMMA 5.1. We have:

o (M(QTHE+D) | m(ort+1)y) is @ Banach space.

o (N(QTEFDY | | Ar(ort+1)) s a Banach space.

o |lull peoreiny < cllullyoretny foru € N(QTED) and the imbedding
N(QTEEDY ¢ M(QTEHDY s compact.

Proof. This follows from imbeddings between Sobolev spaces. =

Let us consider the problems

vy —divT(v,p) = =A[0- Vi + () f],

divw =0,
(5.1) ﬁ'D(U)-fa|ST(k+1) =0, a=12,
n-v|gre+ =0,
v\t:kT = U(kT),
and
0, — xA0 = —\v- V9,
(5.2) n - V0| grusy =0,

0| = 0(kT),
where A € [0,1] is a parameter and ,6 are treated as given functions.
LEMMA 5.2. Assume that 0 < ¢; < 0 < ¢,
(5,0) € M(QTFD) f e Ly(QT®D) - o(kT) € Wy (£2).
Then there exists a unique solution (v,p) to problem (5.1) such that
v e Wt (QTED) € Ly(kT, (k + 1)T; Wiy 5(2))

and
Il s ey msws, 5 (2)) < €l groen,

< (18,813 ras iy Acsl Fll Ly orosny + 10T Iz ()-
Proof. We have

10 Vol L, orerny < ellOll L, er, e ) Tiaa( @) IV O Ly e, (bt 1) T L1 (27010

< CH5||%4(kT,(k+1)T;W112/5(_Q)) < C|!17,¢9||i4(9mk+1)).
and 3
[a(O) fl L, ore+ny < sl fll L,y orekny-
By Theorem 2.1 the proof is complete. =
LEMMA 5.3. Assume that 0 < ¢; <0 < ca,

(4,0) € M(TEEDY QKT € WH).
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Then there exists a unique solution 6 to problem (5.2) such that
0 € Wy'(2") C La(kT, (k + 1)T; Wiy 5(£2))
and
191l Zaomwrs 52 < €Oz gran)
< (@, )|y growsnry + IOKT) Iz ()-
Proof. We have
15+ V0| ey < ellBll oy wery ks 7saa@) I VO Ly ey L1ay5(2))
< cllvll Ly, mrymiwg, 5 2 10 O k1) T W, 5(2))

< ¢||(v, 9>||M(QT(k+l))' m

LEMMA 5.4. Assume that 0 < ¢; < 0 < co, h(kT) € W (£2),
(#,8) € M(QTHHD) fe Ly k) g Ly(Tk),

where g = f z,. Let (v, p) be the unique solution to problem (5.1) and h = v 4,
q = Das- Then

h e Wyt (270D € Ly(kT, (k + 1)T; Wi, 5(£2))

and

1Pl Ly, ey, 20y < bl graen)

12/
< c(All(v, 9)||M(QT(k+1)) + Acs||(@, 9)||M(QT(k+1>)”fHL4(9T<k+1>)
+ Algll Ly ey + 1MET) Iy (2))-
Proof. The function h is a solution to the problem

hy—divT(h,q) = N[~ -Vh —h -V

+ag(0)0,4,f + (0)g] in QT+,
divh =0 in QT(k'H)
Ah=0 n-Dh) 7=0 a=12 onS &,
hi=0, i=1,2 hgs =0 on SL Y,
hli=o = h(kT") in {2,

where h = 0.4,, » = 0 »,. We have
[|©- VEHLQ(QT < c|l0)l Ly rr, (k)T Lan(2) | VRl Ly i (kD) T3 L1 5(2))
< clloll oy, (k1) Wi,y (2 H | Lok, (k1) T Wi, 5(2))

< ¢[|(2, 0)||M(QT(’9+1))7
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1 - V5| sy < ellbll Lagr, k1) TsLa2(2) | VOl La o, (et )T 5 (2))

< ||l er (o 1y

1,5(2) 101l £y ez, (k1)1 W, 5(2))

< ell(9, 0)|3 rsnys
o0 ) :rgf||L2 (T (k+1)) < C3H9||L4(kT (k+1)T5W, /5 (£2) )||f||L4(QT(k+1))
< es(o, 9)”/\4(QT(1<+1))HfHL4(QT<k+1>)
and 3
(@) gl reny < esllgllzy@ra) < esllglly@ra,).
Thus by Theorem 2.1 the proof is complete. n

LEMMA 5.5. Assume that 0 < ¢; < 0 < ¢, @(kT) € W4 (), (8,0) €
M(QTEHD) Let 0 be the unique solution to problem (5.2) and ¢ = 0 .
Then

p € Wit (D) € Ly(kT, (k + 1)T5 Wiy 5(12))

and
(@) < cllellyzgrasn,

< eI, 0) A rasny + 10T lwi (2))-
Proof. The function ¢ is a solution to the problem

pr— xAp = —)\[fL VO +0- V@] in QT k+1),

HQD||L4(kT,(k+1)T Wi

n-Vep=20 on ST(kH),
o= 0 on ST(k+1)’
30|t:kT = SD(kT) in Qv

where ¢ = 9~x3 We have
1 - N0l 1y orarny < Nl Ly e, T3 0 (@) IV O L (k1) T L1 5 (2))

< C||i~L”L4(kT,(k+1)T;W1 (Q))||§||L4(kT,(k+1)T Wy 5(62))

12/5
< C||(579~)||3\4(9Tw+1))
and
10 V& 1, reny < ||;L||L4 KT (k+ DT Lo () |V O Ly T (k1) T3 L1 5 (02))

H‘P”L4(kT (k4+1)T;W.

< ellvll . er, e vy L5

12/5

< ¢||(o, Q)HM(QT(HU)- L]

2))

From Lemmas 5.1-5.5 it follows that if (0
exists a unique solution (v,6) to problems
./\/l( QT(k-‘rl))'

6) € M(Q2TH+1) then there
D.

E 1)-(5.2) such that (v,0) €
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To prove the existence of solutions to the problem (1.1) we apply the
Leray—Schauder fixed point theorem. Therefore we introduce the mapping
¢ : [0,1] x M(QTEHD) 5 M(QTHEEDY (X, 5,0) — (X, 0,0) = (v,0), where
(v,0) is the solution to problems (5.1)—(5.2).

For A = 0 we have the existence of a unique solution. For A = 1 every
fixed point is a solution to problem (1.1).

LEMMA 5.6. Let the assumptions of Lemmas 5.2-5.5 be satisfied and f €
Loo (2TG+D) - Then, the mappings

d(N, ) s M(QTEFDY 5 pm(TEF) X e (o, 1],
are completely continuous.

Proof. By Lemmas 5.1-5.5 the mappings ¢(), -), A € [0, 1], are compact.
It follows that bounded sets in M(QTEDY are transformed into bounded
sets in M(QTEFD) Tet (9;,0;) € M(QTHEFD) i = 1,2, be two given ele-
ments. Then (v;,0;), i = 1,2, are solutions to the problems
’Umg — div T(Ui,pi) = —)\(ﬁi . Vf)i + Oz(éz)f),
divy; =0
(5.3) 1 D(vi) - Talgrern =0,
n - 'Uj|sT(k+1) =0,
'Uz"t:kT = U(kT), 1= 1, 2,
and
9@715 — XAQZ' = —)\TN)Z‘ . Véz,
n-Vo; =0,
(5.4) " ls7oe+1)
n - Vi gre+y =0,
Oile=kT = O(KT), i=1,2.
To show continuity we introduce the differences
(5.5) V=vi—wvy, P=p—ps, T=01-0
which are solutions to the problems
Vi —divT(V,P) = —A[V - Vi1 + 59 - VV + (a(f1) — a(62))f],
divV =0,
(56) ’FLD(V) '7_'a|ST(k+1) = O, o = 1,2,

V. ﬁ|ST(k+1) =0,
Vl=rr =0,
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and
Ti — XAT = =A[V -V + 05 - VT,
(5.7) n - VT|ST(k+1) =0,
Tlt=kr = 0,
where V = & — 3, T = 01 — 0. For problems (5.6), (5.7) we have

5:8) MVl oraeny + 1Tz oroen)
< AV La b1 T5Laa () IV B Ly b (k4 )51 5 (2)
+ 1182 l| Ly k7, (k1) Lo () |V VN Ly T (k1) T L1z 5 (2))
+ 3l Tl o er e 1yrw (o) 11l gm0y
+ H1~12||L4(kT,(k+1)T;L12(Q))||V7-||Loo(kT,(k+1)T;L12/5(Q))
V| o (k)7 Lo () | VO b (k1) T L1z 5 20))

B C(HV”M(QT(IHU) + ||7~’||M(QT(’€+1)))'

Let hi = Vigs, @i = Pigs> Pi = Vias, iLZ = Vigs, Pi = 9113 The functions
hi, @i, © = 1,2, are solutions to the problems
hit — div T(hs, g;)
= i - Vi + 0 - Vhi + g(0:)@if + a(fi)g] i QTEFD

divh; =0 in QT(k+1),
A-hi=0, n-Dh)-7a=0 a=12 i=12 onS "
hi =0, i=1,2, on STHFY,
higzs =0 on S, (k+1)
hilt=kr = h(kT) in 12,

and
©it — XApi = —A[hi - VO +0; - V] in QTEFD,

n-Ve; =0 on S, (k+1)
;=0 on S, (kH),
©ili=kr = @(kT) in 0.

We introduce the differences

H=h—hy, Q=q—q, R=yp1—ps,

which are solutions to the problems
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H;—divT(H,Q) = —A[H - Vi; + hy - VV +V - Vhy

+ 0y - VH + (a,p(01) — a(02))@1f + cg(02) RS

+ (a(f1) — a(f2))g] in T,
divH =0 in QT+
ﬁ-D(H)'fa’SiF(kﬂ) =0, a=1,2, ﬁ-H’Sir(kH) =0,

Hi‘sg“(kﬂ) =0, 21=1,2, H37x3|sg“(k‘+1) =0,

H|t:kT = 07
and
Ri—XAR = —\H -V, 4+ hy- VT +V -V, + 5y - VR] in QTE+D
n-VR=0 on Sf(kﬂ),
T(k+1
R=0 on S, ( ),
R’tZkT =0 in Q)

where H = ﬁl — ﬁg, R = p1 — p2. Then we have
[ 21 oraeny + 1By oraen,
< N H | L e (k1) T3 L12(2) | VO L BT (b1 T3 15 (2))
+ |2l Ly kT, (e 1) T L1 (2) ||Vf/||L4(kT,(k+1)T;L12/5(Q))
+ IV Lo (e )y 7 Lo () | VP | Lo (k1) T 5 ()
1920 2y k7 k4 ) 7302 () IV H | LT 1) 713 5 (2)

+ 03|!;f||L4(kT,(k+1)T;W112/5(Q))||S51||L4(kT,(k+1)T;W1 @Il Lo (reeny

12/5

+ 3l BN e ey, @1 1o @resn)y

12/5

+c3 HT"L4(kT,(k+1)T;W112/5(Q)) ||9||L4(QT<k+1))

+ HFIHL4(]€T7(’€+1)T§L12(Q))val||L4(kT,(k+1)T;L12/5(Q))

+ 1l Ly (ke (k4 1)T3Lan (2) |V T LT (b1 T3 Lz 5(42))

IV Lo e )7 Lo (@) [V 21l L b (k4 )T 5 (2))

1102 | yhT, (k+ 1)L () |V B La o (k4 ) T (20)]
< C(HﬁHM(QT(Hl))] + ||7~d||M(QT(k+1))-

Now from (5.8) and Lemma 5.1 we obtain

H(V7 T)HM(QT(’V+1)) < CH(V7 )HM(QT<’“+1>)'

So continuity of ¢ follows.
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Proof of Theorem 1.1. In view of the above considerations the assump-
tions of the Leray—Schauder fixed point theorem are satisfied. Hence the
main theorem is proved. m

6. Global existence. To prove the global existence of solutions to the
problem (1.1) we have to show that the constant A appearing in Theorem
1.1 does not depend on k. For this purpose we have to show that

[v((k + D)D) 12y < l0(ED) | 12
10((k + D)D) g2y < 10T | 51(2)s
[h((k + 1)) 1) < Hh(kT)HHl(Q),

lo((k 1)T)HH1(Q) < o(BT) | 102
To show (6.1) we need

LEMMA 6.1. Asume that there exists a local solution to problem (1.2) in
the interval [kT, (k + 1)T] and there exists 6 > 0 such that

1fF @O () < Hf(kT)HHl(Q)e—(S(t—kT),

(6.1)

(6.2)1 o

19Ol o) < gD poye D, ¢ e (KT, (k + 1)T1.
Then
(6.2)2 [o(k + DT |31 < ce —OTte(AkT) )Hf(kT)HLQ

1 e~ T+a(A(KT)) Hv(kT)HHl(O)’

where ¢1 > 26, the constants ¢, c¢1 are independent of T, and « is an in-
creasing positive function of A(k,T), which in view of (6.2)1 and (4.32) does
not increase with T .

Proof. Multiplying (1.2); by divT(v,p) and integrating the result over
2 yields

(6.3)  { v divT(v,p)de — | |divT(v,p)|* do
Q Q
— S v+ Vo -divT(v,p)dz + S a(0)f - divT(v,p) de.
Q Q
Integrating the first integral by parts leads to

64)  VviaTij(v,p) 2y dv = { (014 Tij(v,0)) i, d = | Vi, Tij (v, p) d

9] (9} 2
1
S 'Ui,xthij (2)) dr = —5 S Dij(vt)Dij (U) dx
2 2
1d
=1 | D()|? da,
(9}
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where
D(v) = {Dj;j(v)}ij=123, T(v,p) ={Ti(v,p)}ij=1.23-
Using (6.4) in (6.3) we obtain
1d 2 Lo 9 ) )
1 dt})ID(v)\ dx + 2§)|d1VT(v,p)\ dx < C(§)|v v dw+§2f dw).

Using Theorem 2.1 and the Korn inequality we have

(6.5) % (i g D(v)[? dg:) + cli ;} D(v)| dz
| D) d + es]| £113, ),
2

| =

< ellvll7 (o)
where ¢q, c2, ¢c3 do not depend on f. From (6.5) we have

66) 2 (1 | ID(v)[? dare 2 T l0()I2 _ g dt’>
2

2 t—ca it )2 dt!
< 3| fII2, (et e MO lic )

for all t € (KT, (k+ 1)T). Integrating (6.6) with respect to time yields

t /
| D) do < il ey | |7, g r 14 ar
2 kT

el L (T P,
19

(6.7) i

where v = HU(t)H%OO(Q). Since we assume (6.2)1, (6.7) implies

t

L —c co (! / o1 — ’
1 | ID®)]? do < cser T2 ler YWY £(RT)|F, ) | €720 at
2 kT
T emalt=kDreliprd 1§ (k7)) 2 da
4 2
Hence
1 .1
(6.8) 5 | ID(u(t)de < ese 2D el dd — || f(kT)|2 o)
4 N Cc1 — 25

el S Do (T)) P do
2
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Setting ¢t = (k+ 1)T and using the Korn inequality we obtain from (6.8) the
relation

(6.9)  [o((k+1)T) 31

—26T+c2 {57 (1)

12 oyt 1 2
< cse too(€2) m”f(kT)HLQ(Q)

(k+1)T
+ematreda T Ol @)y (6T |3
From (6.9) we obtain (6.2)2. =

LEMMA 6.2. Assume that there ezists a local solution (v, p,0) to problem
(1.2) 4n the interval [T, (k + 1)T]. Then

(6.10) 10k + D) |31y < e A IVORT) |, )
+ 0K, (0

where the constant c1 is independent of T, and « is an increasing positive
function of A(k,T), which in view of (6.2); and (4.32) does not increase
with T.

Proof. Multiplying (1.2)3 by # and integrating the result over (2 yields
d
(6.11) £||9\|12(Q) <0.

Next multiplying (1.1)3 by Af and integrating the result over {2 and by parts
yields
1d

S IVOI ) + X403, o) < 2 Q012 ) + €(1/2) | [0+ VO

[0
Using T heorem 2.2 we obtain

(6.12) V0|1, 00 Tl V0L, < c2llvlli o) VOIIZ, o)

2 dt”

where ¢1, ¢2 do not depend on 7. From (6.12) we have
d 2 cit—ca §t v dt!
(6.13) = (V6% 2l vty <,

for all t € (KT, (k + 1)T'), where v = Hv(t)||2Loo(Q). Integrating (6.13) with
respect to time yields

—c1(t— ca it !
(6.14) IVOO7, () < e DT TO(RT) |7, )
Integrating (6.11) with respect to time we obtain
(6.15) 10117,y < NIOGRT)IZ,(2)-

Adding (6.14), (6.15) and setting t = (k + 1)T we have
e c (k+1)T ’
16((k + D)T) 30 < e T H2her 2 VORT) |1,y + 10KT)IIZ ()
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LEMMA 6.3. Assume that there exists a local solution (v,p, @) to problem
(1.2) in [T, (k + 1)T]. Then

(6.16)  [lo((k + DT)|Fn 0
< e T AEDN(\VO(T)| 17, () (A, T)) + 0 (kT) |31 (02))»

where the constant ¢y is independent of T and o is an increasing positive
function of A(k,T), which in view of (6.2); and (4.32) does not increase
with T

Proof. Multiplying (3.3) by Ay and integrating the result over {2 and by
parts yields

1d

<ellAplZ, ) + C(l/e)(HhHLm(Q)HVGH%Q(Q) + ol o) IVl )

Using Theorem 2.2, from (6.17) we have

(6.17)

d o —ch (& ot !
618) 5 (GIVolE o4 O )

_c(t 2
< 1Bl o V11" 2 e I e

for all t € (KT, (k + 1)T). Integrating (6.18) with respect to time yields

1
(6.19) §”V<P(t)”%2(9)
t ’
< ALY [ (o) IVl et 2 e a
kT

! el !
1 e (t=kT) 4 gy dt va(kT)H%Q(n)

where v = Hv(t)H%OO(Q). From (6.19) we get

(620) HVSO(t)H%Q(_Q) < e—c/1t+C,2 S;T’Ydtl
t / t/ "
. S Hh(t/)”%oo(g)efcl(t/*kT)Jr@ S?@T'Ydtl/+clltlfc’28kT'ydt dt’HVG(kJT)H%Z(Q)
kT
/(4 o t /
+ e AR W T (RT)|17, )

We assume that ¢; in (6.12) is equal to ¢} in (6.18). Then from (6.20) we get
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(621)  [IVe®)lZ, )

t
_ 7 (t ’ (k+1)T
<e cit+ch Sy oy dt S Hh( ) dt/ec1kT+03 Ser ~vdt

kT
_ o t ’
VORI, ) + e~ TR T Vo (kT 170

17

Setting ¢t = (k + 1)T and using the Poincaré inequality we get (6.16). =

LEMMA 6.4. Assume that there ezists a local solution (v, p,0) to problem
(1.2) in [ET, (k 4+ 1)T] and there exists § > 0 such that

LF Ol () < 1 RT) s ye ",
g L) < IgRD) | Lyepe 0, t e (6T, (k + 1)T],
and f3|s, = 0. Then

(6.22)

(6.23)  [[A((k+ D)T)|Fp () < e T AEINRRET) 3 )
+ ce A (a(A(k, T)) | f(KT) 17, + 19T 17 50)-

where the constants ¢, c¢1 are independent of T, ¢y > 26, and « is an in-
creasing positive function of A(k,T), which in view of (6.22) and (4.32) does
not increase with T .

Proof. Multiplying (3.1); by divT(h,q) and integrating the result over
O yields

(6.24) | - divT(h,q) dz — | |divT(h, ¢)|* du
02 02

—\(w-Vh+h-Vv)divT(h,q)dz

Shy

-+ S agpf + ag)divT(h,q) dx.

Repeating the considerations from Lemma 6.1 we have
1d 9
(6.25) | hedivT(h,q)de=—>— g ID(h)[* dz + | h3iTss(h, q) dSa,

4 dt
n Sa

where the last term equals
S h3,t(2h3,x3 + C_I) dSQ = S h‘g,’tfg dSQ
52 SQ

Since we do not know how to cope with this term, we have assumed that

(6.26) f3ls, = 0.
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Then (6.25) implies

d1

(627) = 7 VD) dx + | |divT(h,q) do

2 2
< & | |divT(h, q)* dz + e(1/e)(10l17 _ ) + V0] T 10l 710
(9
+e(1/e)(lellz . o) 1o + l9l7,)-

Repeating the considerations from the proof of Lemma 6.1 we obtain

(6.28) | D(h(t)* da

[0
t

< cge 1o ir () dt/( V1RG0 at|| F (RT3, )
KT
t

| e g (T3 )
kT
+ e—cl(t—kT)-‘rcz §r o (v+8) dt’ S ‘]D)(h(kT))’Q dz,
2
where v = [|v]|1_ (o) and 8 = ||v[|1, (o). We estimate

t
629) I3 (e at’

kT ;
t
_ "y 12 1 (c1—28)t
= L IR oy et s
t ot
+25—c) § § IR () d"e 20" at
kT kT

t
< VIR  dt'e 200

kT
Using (6.29) in (6.28), setting t = (k 4+ 1)T and using the Korn inequality
we obtain (6.23). m

To prove the global existence of solution to problem (1.1) we have to

prove inequalities (6.1) for any k € Ny. For this purpose we use Lemmas
6.1-6.4. Let us introduce some assumptions. Assume that for some § > 0,

1F Ol a2 < NFET)| i gye?EFD,
19| Lo(2) < Nlg(RT)|| (e 0.

Moreover, assume that

(6.30)
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ce 0T +AD) | £(0) —aT+a(AM) |14(0)

a1 (2) < HU(0)||12L11(9),
6_01T+Q(A(T))HVQ(O)H%Q(Q)—’_HG(O)”LQ(Q) < HH(O)H%{I(Q)’
(6:31) e THAD(IV0(0)[17, ) AT+ (0) 371 () < 120011125
e~ ARO[ g +ee” T THAI (AT £(O) 17,0
+H19(0)17,(0)) < 11800) 171 (2
where ¢; > 26, « is a polynomial and A(T) = A(0,T).

Proof of Main Theorem. Take k = 0. Then in view of assumptions (6.30),
(6.31) we obtain

2
17,2yt

[v(T) ) < [vO) a1 ()
10D 12y < HQ(O)HHI(Q),
(M) (2) < )l (2
1P(T) |1 () < Hh(O)HHl(n
and so A(1,T) < A(0,T).
Take k = 1. Then in view of (6.31) we can repeat the proof of Theorem 1.1
in the interval [T, 2T]. The assumptions (6.1) imply

CO o) < @M lla @) < lvO)la1(2),
D) a0 < 10T a1 (0) < 16(0) |5

leT) 1 (2) < Nle(T) 1 (2) < lle(0 )HHl(Q )
1RCT) a2y < MDD m1(0) < 1R(O0) |1 (o)

so A(2,T) < A(1,T). Repeating the above considerations we prove the Main
Theorem. =

(6.32)

[v

16
(6.33)

REMARK. Since we assumed the decay estimates

6.34) /Ol < IFOm@e™s 19®)lLo2) < 1900) e,
we find that for any k € Ny, A(k,T) decreases with time. Therefore for T'
sufficiently large, —c;T + a(A(k,T)) is as small as we need.

Instead of the decay estimates (6.34) it is sufficient to assume that all time
integrals of norms of f increase less than linearly. Then the above assertion
holds too.
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