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Abstract. This is the second part of A. Piękosz [Ann. Polon. Math. 107 (2013),
217–241]. The categories GTS(M), with M a non-empty set, are shown to be topological.
Several related categories are proved to be finitely complete. Locally small and nice weakly
small spaces can be described using certain sublattices of power sets. Some important
elements of the theory of locally definable and weakly definable spaces are reconstructed
in a wide context of structures with topologies.

1. Introduction. This paper is the second part of [P2], which described
the origins of the notion of generalized topology in the sense of H. Delfs and
M. Knebusch and gave the basic theory of generalized topological spaces and
of the special case of small spaces, as well as the proof of the fact that both
the categories GTS and SS are topological.

Here we prove that the subcategories LSS, NWSS, WSS1 of GTS
are finitely complete. We find several interesting characterizations of our
categories. The category LSSpt of partially topological locally small spaces
is isomorphic to the category UBorOB of bornological universes having
open bases. The whole category LSS is isomorphic to the category Sublat
defined here, and the category NWSS of nice weakly small spaces admits
an embedding into Sublat. We also deal here with paracompactness and
Lindelöfness of locally small spaces.

Then the categoryGTS is used to build some natural categories of spaces
over model-theoretic structures. A natural setting here for topological consid-
erations is assuming a topology on the underlying setM of a model-theoretic
structure M, and putting the product topologies on the Cartesian powers
of M . Such structures are called here weakly topological. They are more gen-
eral than the first order topological structures of [Pil, M] and structures with
definable topologies of [S]. We prove that the category GTS(M) of general-

2010 Mathematics Subject Classification: Primary 54A05; Secondary 03C07, 46A17,
06B99.
Key words and phrases: generalized topological space, topological structure, bornological
universe, sublattice.

DOI: 10.4064/ap108-2-4 [185] c© Instytut Matematyczny PAN, 2013



186 A. Piękosz

ized topological spaces over a set M is topological (as a construct), and its
full subcategories ADS(M, σ), DS(M, σ), LDS(M, σ), WDS1(M, σ) are
finitely complete for a weakly topological (M, σ) with underlying set M .

Separate subsections are devoted to the separation axioms (in the “defin-
able” case) and completeness (in all cases).

We keep the notational conventions of [P2].

2. Generalized topological spaces

2.1. Locally small spaces. In this subsection we rebuild the theory of
locally semialgebraic spaces from [DK] on a purely topological level.

Definition 2.1.1. A gts is locally small if there is an admissible covering
of the whole space by small open subsets. In other words: a gts X is locally

small iff X =
a⋃

SmopX . Locally small gts’s form a full subcategory LSS of
GTS.

Definition 2.1.2 (cf. [DK, p. 31]). On locally small spaces we consider a
topology, called in [DK] the strong topology, whose basis is the family of open
sets of the gts. (The members of the strong topology are exactly the weakly
open subsets of the space. The strong topology is the topology generated by
the open sets of the generalized topology.)

Definition 2.1.3. A subset Y of a locally small space X is locally con-
structible if each intersection Y ∩U with a small open U ⊆ X is constructible
in U (so also in X). A family U of subsets of X is locally essentially finite if
this family is essentially finite on each small open set.

Remark 2.1.4. The Boolean algebra of locally constructible subsets of
a locally small space may be strictly larger than the Boolean algebra of
constructible subsets (to see this, one can construct a sequence Xn of con-
structible subsets of small spaces Zn, each Xn needing at least n open sets
in the description, and then take the direct sum of all the Zn to get a needed
locally small space; one may take for each Zn the space from [P2, Example
2.3.7]).

Definition 2.1.5. We will say that a locally small space has the closure
property (CPL) if the weak closure of any small locally closed subset is a
closed subset.

Proposition 2.1.6.

(1) Each locally essentially finite union of closed (open, respectively) sub-
sets of a locally small space is closed (open, respectively).

(2) Each locally essentially finite union of locally constructible sets is
locally constructible.
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Proof. (1) Let Z be a locally essentially finite union of closed sets. Take
an admissible covering U of the space by small open subsets. For each element
U of U , the set Z ∩ U is a finite union of relatively closed subsets of U , so
it is relatively closed. Each relative complement Zc ∩ U is open in U . By
regularity, the set Zc is open, hence Z is closed. The case of open sets follows
from regularity.

(2) Similar to the proof of the previous case.

A strong inverse to (2) of the previous proposition is the following

Proposition 2.1.7. Each locally constructible subset of a locally small
space is a locally essentially finite union of small locally closed subsets.

Proof. If X =
a⋃
αXα with each Xα in SmopX , and W is a locally con-

structible subset of X, then for each α we get W ∩Xα = Wα,1∪· · ·∪Wα,k(α)

with some locally closedWα,i ⊆ Xα. Then the union
⋃
α,iWα,i = W is locally

essentially finite.

Proposition 2.1.8. If a locally small space has the closure property
(CPL), then the weak closure of each locally constructible set is a closed
set.

Proof. By Proposition 2.1.7, the weak closure of each locally construc-
tible set is the union of the weak closures of some locally essentially finite
family of small constructible sets. But the family of these closures is also
locally essentially finite, and the assertion follows from Proposition 2.1.6.

Remark 2.1.9. By the above, if a locally small space X has the clo-
sure property (CPL), then the closure operator of the generated topology
restricted to the class LocConstrX of locally constructible sets may be con-
sidered as the closure operator of the generalized topology

· : LocConstrX → ClX .

Fact 2.1.10. Each locally small space with the closure property (CPL)
and with a regular (Hausdorff ) strong topology is weakly regular.

Example 2.1.11. Each topological discrete space is locally small (and it
is not small, if infinite).

Example 2.1.12. Any metric space (X, d) has a natural generalized
topology, where OpY = τ(d) is the topology induced by the metric and
CovX is the family of open families essentially finite on each bounded set in
the sense of the metric. Then SmX is exactly the family B(d) of bounded
sets, and (X,OpX ,CovX) is locally small.

Example 2.1.13. Each topological space (X, τ) can be made a locally
small space relative to a chosen open covering U of the whole of X in the
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following way: we take smallifications of members of U , and the generalized

topology on X is then given by the formula X =
a⋃

sm(U).

Remark 2.1.14. Notice that the T -space X of [EP] may be interpreted
as a locally small space in the above sense with T being the family SmopX .
This fact is the cause of introducing the family Tloc and the Grothendieck
site XTloc in [EP].

Definition 2.1.15. By a small space of type Rnsth we will understand a
gts (Rn,Op,EssFin(Op)), where Op is some basis of the natural topology of
Rn such that each of the open balls Bn centered at the origin with radius
n ∈ N \ {0} belongs to Op.

For such spaces we will consider their localization (Rnsth)loc in the follow-
ing sense: the admissible union of the family of open small balls Bn in the
space Rnsth. In symbols we write

(Rnsth)loc =
a⋃

n>0

Bn.

Example 2.1.16. The spaces Rnalg,Rnsalg,Rnts from Example 2.2.14 of [P2]
are small of type Rnsth. The spaces Rnsan, Rnsuban as well as the localizations
(Rnalg)loc, (Rnsalg)loc, (Rnts)loc are locally small, but not small.

Definition 2.1.17. A family of subsets of a locally small space is called
locally finite if each small open set of the space meets only finitely many
members of the family.

Proposition 2.1.18. An open family of a locally small space is admis-
sible if and only if it is locally essentially finite.

Proof. Each admissible family is locally essentially finite by the definition
of a small subset. If an open family V is locally essentially finite, then it is
essentially finite on members of an admissible covering U of the space by open
small subspaces. This means that for each member U of U , the family U ∩1V
is admissible. By the transitivity axiom, the family U ∩1 V is admissible. By
the saturation axiom, the family V is admissible.

Corollary 2.1.19. Each locally finite open family in a locally small
space is admissible.

Fact 2.1.20. If U = {Ui}i∈I is a locally finite open family in some locally
small space, and for each i ∈ I some open Vi ⊆ Ui is given, then {Vi}i∈I is
locally finite, thus admissible.

Fact 2.1.21. In a locally small gts each small set is contained in a small
open set, that is: the family SmopX is a basis (see [H-N]) of the bornology
SmX .
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Proposition 2.1.22. Let X,Y be objects of LSS. For a mapping f :
X → Y the following conditions are equivalent:

(a) f is strictly continuous,
(b) SmopX � f−1(SmopY ) and f |U : U → Y is continuous for each

U ∈ SmopX ,
(c) f is bounded continuous.

Proof. Follows from of [P2, Propositions 2.2.26, 2.2.45, and Fact 2.3.8],
and from Fact 2.1.21.

Fact 2.1.23. The preimage of a locally constructible set under a strictly
continuous mapping of locally small spaces is locally constructible.

Proposition 2.1.24. Each subset Y of a locally small space X =
a⋃
αXα

(with each Xα small) forms an initial subobject in LSS given by the formula

Y =
a⋃
α(Xα ∩ Y ).

Proof. Remember that 〈CovX ∩2Y 〉 is the generalized topology of the
initial subobject on the set Y in GTS. On the other hand, the formula

Y =
a⋃
α(Xα∩Y ) defines a locally small space (Y,CovY ). We will prove that

these two spaces are equal. By [P2, Propositions 2.2.44, 2.2.37], we get

CovY =
〈
{Xα}α ∩1 Y,

⋃
α

CovXα∩Y

〉
=
〈
{Xα}α ∩1 Y,

(⋃
α

CovXα

)
∩2 Y

〉
⊆
〈
{Xα}α ∩1 Y,

〈
{Xα}α,

⋃
α

CovXα

〉
∩2 Y

〉
= 〈{Xα}α ∩1 Y,CovX ∩2Y 〉 = 〈CovX ∩2Y 〉.

On the other hand

CovX ∩2Y =
〈
{Xα}α,

⋃
α

CovXα

〉
∩2 Y

⊆
〈
{Xα}α ∩1 Y,

(⋃
α

CovXα

)
∩2 Y

〉
.

Since CovY is a generalized topology, CovY = 〈CovX ∩2Y 〉.

Question 2.1.25. Is such a Y always a strict subspace of X?

Lemma 2.1.26. The construct LSS has concrete finite products.

Proof. For a family X1, . . . , Xk of locally small spaces assume that
U1, . . . ,Uk are their respective admissible coverings by small open subsets.
Then the product space is given by the formula

X1 × · · · ×Xk =

a⋃
U1 ×1 · · · ×1 Uk.
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The projections πi : X1 × · · · ×Xk → Xi are obviously strictly continuous,
and for given strictly continuous fi : Y → Xi, the mapping (f1, . . . , fk) :
Y → X1 × · · · × Xk is also strictly continuous, since “admissible” means
“locally essentially finite”.

The example below suggests LSS does not have concrete products.

Example 2.1.27. Consider the topological discrete space N. This space
is locally small. The countable product NN exists in Top, but contains no
non-empty small open sets, so is not an object of LSS. That is why the
analogous concrete product in the category of locally noetherian spaces does
not exist.

The equalizers for parallel pairs of morphisms exist in LSS by Proposition
2.1.24. Together with Lemma 2.1.26, this gives

Theorem 2.1.28. The construct LSS is finitely complete, and its finite
limits are concrete.

Fact 2.1.29. The construct LSS has concrete direct sums.

Fact 2.1.30. Passing to the strong topology yields a functor ()top : LSS
→ Top, which is a restriction of the functor top : GTS→ Top.

Proposition 2.1.31. The functor ubor restricted to the category LSSpt

of partially topological locally small spaces has an inverse lss : UBorOB→
LSSpt from the full subcategory of bornological universes having open bases
UBorOB in UBor.

Proof. Recall ubor(X, τ,CovX) = (X, τ, SmX) and ubor(f) = f . Define
lss as the restriction of gts to the category UBorOB, i.e. lss(X, τ,B) =
(X, τ,EF(τ,B)), where EF(τ,B) is defined as in [P2, Proposition 2.2.71],
and lss(f) = f .

The composition gts ◦ ubor restricted to LSSpt is the identity functor.
Indeed, EF(τ,SmX) is the family of open families that are essentially fi-
nite on small sets. By Proposition 2.1.18 and Fact 2.1.21, EF(τ,SmX) =
EF(τ,SmopX) = CovX .

The composition ubor ◦ gts restricted to UBorOB is also the identity
functor. Indeed, the family of small sets Sm(EF(τ,B)) always contains B, and
if τ ∩ B is a basis of B then τ ∩ B ∈ EF(τ,B). For a set Z ∈ Sm(EF(τ,B))
also (B ∩ τ) ∩1 Z is essentially finite, hence Z =

⋃
(B ∩ τ) ∩ Z = B ∩ Z for

some B ∈ B ∩ τ , so Z ∈ B. This means B = Sm(EF(τ,B)).

Definition 2.1.32. Define the category Sublat as follows: objects are
pairs (X,L), where X is any set and L is a sublattice of P(X) containing
the empty set and covering the set X, morphisms are mappings f : X → Y
such that LX � f−1(LY ) and f−1(LY ) ∩1 LX ⊆ LX .
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Theorem 2.1.33. The categories LSS and Sublat are isomorphic.

Proof. Define a functor F : LSS→ Sublat by

F (X,OpX ,CovX) = (X,SmopX), F (f) = f.

Define a functor G : Sublat → LSS by G(X,L) = (X,Op(L),Cov(L)),
G(f) = f , where

Op(L) = {U ⊆ X | U ∩1 L ⊆ L},
Cov(L) = EF(Op(L),L)

= {U ⊆ Op(L) | U ∩1 L ∈ EssFin(L) for each L ∈ L}.

Notice that

GF (X,OpX ,CovX) = (X,Op(SmopX),Cov(SmopX)) = (X,OpX ,CovX).

Indeed, for any locally small space a set is open iff all its intersections with
small open sets are small open; and each open family is admissible iff it is
essentially finite on all small open sets.

Moreover, FG(X,L) = (X,Smop(EF(Op(L),L))) = (X,L). Indeed, it
is clear that L ⊆ Smop(EF(Op(L),L)). Notice that L ∈ EF(Op(L),L). For
each small open subset S in EF(Op(L),L) we get an admissible family S∩1L
with union S. Since S is small, this means that S is a subset of some L ∈ L,
and S ∩ L = S ∈ L. The inclusion Smop(EF(Op(L),L)) ⊆ L is proved.

Finally, the notions of morphism in both categories agree. A morphism
in LSS maps a small open set onto a small set contained in a small open
set, and the preimage of a small open set is open, hence “locally” small open.
Each morphism f : X → Y in Sublat is strictly continuous in the general-
ized topologies Cov(LX) and Cov(LY ). Indeed, notice first that f−1(LY ) ⊆
Op(LX). We will prove that f−1(Op(LY )) ⊆ Op(LX). If U ∈ Op(LY ), then
consider the intersection f−1(U)∩L where L ∈ LX . Since f(L) ⊆M ∈ LY ,
we get f−1(U)∩L = f−1(U)∩ f−1(M)∩L = f−1(U ∩M)∩L ∈ Op(LX)∩1
LX ⊆ LX , hence f−1(U) is in Op(LX). Now the families from Cov(LY ) are
exactly subfamilies of Op(LY ) that are essentially finite on members of LY .
Their preimages under f are, in particular, essentially finite on every member
of LX . We have proved that f−1(Cov(LY )) ⊆ Cov(LX).

Proposition 2.1.34. A locally finite subspace of a strongly T1 locally
small space is a closed subspace and a topological discrete space.

Proof. Closedness is obvious. Since by [P2, Proposition 2.3.20], the sub-
space is topological discrete on each small open set, it is topological dis-
crete.

Definition 2.1.35 (cf. [DK, I.4]). A locally small space is called para-
compact if there is a locally finite covering of the space by small open subsets,
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and Lindelöf if there is a countable admissible covering of the space by small
open subsets.

Fact 2.1.36. Each topological discrete space is paracompact, and is Lin-
delöf if countable.

Remark 2.1.37. Each connected paracompact locally small space is Lin-
delöf (the proof of [DK, I.4.17] is purely topological).

Proposition 2.1.38 (cf. [DK, I.4.6]). For each paracompact locally small
space X, the weak closure Y (that is, the closure in the strong topology) of a
small set Y is small.

Proof. Take a locally finite covering U of X by small open subsets. The
set Y is covered by a finite subcover U0 of U of all members of U that meet Y.
Then Y and the union of U \U0 are disjoint, and Y is contained in the union
of U0, which is a small set.

Proposition 2.1.39. Each locally small space satisfying (AQC) has a
locally finite family of its quasi-components. Each locally small space satis-
fying (ACC) has a locally finite family of its connected components.

Proof. Follows from [P2, Proposition 2.3.23].

Proposition 2.1.40. If X is a small space and Y is a locally small
space, then the canonical projection π2 : X × Y → Y is an open and closed
mapping.

Proof. For each U ∈ SmopY the projections π2 : X × U → U and
πc2 : X × U → U are open by [P2, Proposition 2.3.15]. Since SmopY is
admissible, both π2 : X × Y → Y and πc2 : X × Y → Y are open by
regularity.

The following example shows that if X is only locally small, then π2 :
X × Y → Y may be neither open nor closed.

Example 2.1.41. Let X = (Rsalg)loc and Y = Rsalg. Consider the open
set C =

⋃∞
n=0(n, n+ 1)× (n, n+ 1) and the closed set D =

⋃∞
n=0{n} × {n}

in X × Y . Then π2(C) is not open, and π2(D) is not closed in Y .

Question 2.1.42. Does LSS have (concrete) coequalizers?

2.2. Weakly small spaces. In this subsection we reintroduce the the-
ory of weakly semialgebraic spaces from [K] on a topological level.

Definition 2.2.1 (cf. [K, IV.1, Definition 6]). A weakly (or piecewise)
small space is a gts X having a family (Xα)α∈A of closed small (so strict)
subspaces indexed by a partially ordered set A such that the following con-
ditions hold:

(W1) X is the union of all Xα’s as sets,
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(W2) if α ≤ β then Xα is a (closed, small) subspace of Xβ ,
(W3) for each α ∈ A there are only finitely many β ∈ A such that β < α,
(W4) for each pair α, β ∈ A there is γ ∈ A such that Xα ∩Xβ = Xγ ,
(W5) for each pair α, β ∈ A there is γ ∈ A such that γ ≥ α and γ ≥ β,
(W6) the gts X is the inductive limit in GTS of the direct family

(Xα)α∈A, which means:

(a) a subset U of X is open iff each set Xα ∩ U is open in Xα,
(b) an open family U is admissible iff for each α ∈ A the family
U ∩1 Xα is admissible (= essentially finite) in Xα.

Such a family (Xα)α∈A is called an exhaustion of X. Members of an
exhaustion will be called pieces of X. If (Xα)α∈A is an exhaustion of X,

then we will write X =
e⋃
α∈AXα. The family of all small closed subsets of

X will be denoted by SmclX.

The condition (W6) has the following consequences:

Fact 2.2.2. An open family is admissible in a weakly small space iff it
is “piecewise essentially finite” (i.e. essentially finite on every member of the

exhaustion considered). In other words: if X =
e⋃
αXα, then 〈CovXα〉∗α =

CovX .

Fact 2.2.3. A subset Y of a weakly small space X is open (closed,
respectively) if and only if it is piecewise open (closed, respectively).

Definition 2.2.4 (cf. [K, p. 13]). The index function for the exhaustion
(Xα)α∈A is the function η : X → A given by the formula

η(x) = inf{α ∈ A | x ∈ Xα}.
Here the infimum exists thanks to (W3). The index function η gives a decom-
position of the space X into small locally closed subspaces X0

α = η−1(α) =
Xα \

⋃
β<αXβ .

Definition 2.2.5. The full subcategory in GTS of weakly small spaces
will be denoted by WSS.

Definition 2.2.6 (cf. [K, p. 25]). The strong topology on X =
e⋃
α∈AXα

is the topology on the set X that makes X the inductive limit of the direct
system of the topological spaces (Xα)top. Its members are all the piecewise
weakly open subsets, not only the weakly (piecewise) open subsets.

Remark 2.2.7. The open sets from the generalized topology may not
form a basis of the strong topology (see [K, Appendix C]). Another unpleas-
ant fact about weakly small spaces (compared with locally small spaces) is
that points may not have small neighbourhoods (consider an infinite wedge
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of circles as in Example 4.1.8 of [K]). Notice that the strong topology and
the generated topology coincide on every piece.

Definition 2.2.8 (cf. [K, IV.3, Definition 1]). A weakly (or piecewise)
constructible subset is a subset Y ⊆ X that has constructible intersections
with all members of any chosen exhaustion (Xα)α∈A.

Proposition 2.2.9.

(1) A piecewise essentially finite union of closed (open, respectively) sub-
sets of a weakly small space is closed (open, respectively).

(2) A piecewise essentially finite union of piecewise constructible subsets
of a weakly small space is piecewise constructible.

Proof. (1) An essentially finite union of closed (resp. open) subsets is
closed (resp. open). Hence a piecewise essentially finite union of closed (resp.
open) sets is piecewise closed (resp. open), thus closed (resp. open).

(2) Similar to the proof of the previous case.

Remark 2.2.10. Notice that each exhaustion of a weakly small space
is a piecewise essentially finite (relative to this exhaustion) family of closed
sets, and remember that a constructible subset of a piece is a finite union of
locally closed subsets of the piece.

Proposition 2.2.11. Piecewise constructible subsets of a weakly small
space are exactly piecewise essentially finite unions of locally closed subsets
of pieces.

Proof. The proof is similar to the proof of Proposition 2.1.7. Each piece-
wise constructible subset is a piecewise essentially finite union of locally
closed subsets of pieces. A piecewise essentially finite union of locally closed
subsets of pieces has a constructible trace on each piece, hence is piecewise
constructible.

Definition 2.2.12. We will say that a weakly small space has the closure
property (CPW) if the following holds: the weak closure of a locally closed
subset of a piece is a closed subset.

Remark 2.2.13. If the space X has the closure property (CPW), then
the topological closure operator restricted to the class ConstrPX of con-
structible subsets of pieces of X may be treated as the closure operator

· : ConstrPX → ClX

of the generalized topology.

Example 2.2.14. Each topological discrete space is weakly small. An
exhaustion is the family of finite subsets of the space with its natural partial
ordering.
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Example 2.2.15. Each topological space (X, τ) may be made weakly
small relative to any covering {Fβ}β∈B by closed sets satisfying the condition

Fβ0 \
⋃
β 6=β0 Fβ 6= ∅. Then we consider X =

e⋃
α∈AXα with the exhaustion

Xα =
⋃
β∈α sm(Fβ) with α ∈ Fin(B).

Example 2.2.16. For the space from [P2, Example 2.3.7] consider the
exhaustion Xn = {0, . . . , n}, n ∈ N. Then N becomes a weakly small space.
The whole space is small, but is not contained in a piece.

Proposition 2.2.17. Each object of WSS is a direct limit (taken in
GTS) of the diagram of all its small closed subsets with inclusions as mor-
phisms.

Proof. Notice that CovX = 〈CovX ∩2Xα〉∗α = 〈CovX ∩2F 〉∗F∈SmclX
.

Corollary 2.2.18. Let X =
e⋃
α∈AXα, Y be weakly small spaces. For

a mapping f : X → Y , the following conditions are equivalent:

(a) f is strictly continuous,
(b) f |Xα is strictly continuous for each α ∈ A,
(c) f |F is strictly continuous for each F ∈ SmclX.

Fact 2.2.19. The preimage of a constructible subset of a piece by a
strictly continuous mapping of weakly small spaces is always constructible,
but may not be small.

Fact 2.2.20 (cf. [K, Example IV.1.10]). The construct WSS has con-
crete direct sums.

Proposition 2.2.21. If a weakly small space X satisfies (AQC), then
the family of its quasi-components is piecewise finite. If a weakly small space
X satisfies (ACC), then the family of its connected components is piecewise
finite.

Proof. Follows from [P2, Proposition 2.3.23].

Definition 2.2.22. A weakly small space X will be called nice if some
of its exhaustions is a basis of the bornology SmX , i.e. SmX = ↓{Xα}α in
P(X). We will denote by NWSS the full subcategory of WSS consisting of
nice weakly small spaces.

Remark 2.2.23. The space from Example 2.2.16 is an object of NWSS,
since one can take a one-element exhaustion of this space.

Remark 2.2.24. In any object X of NWSS the family SmclX is a closed
basis of the bornology SmX .
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Proposition 2.2.25. Let X, Y be objects of NWSS, with X=
e⋃
α∈AXα

giving a basis of the bornology SmX . For a mapping f : X → Y , the following
conditions are equivalent:

(a) f is strictly continuous,
(b) f is bounded continuous,
(c) f |F is bounded continuous for each F ∈ SmclX,
(d) f |Xα is bounded continuous for each α ∈ A.
Proof. The downward implications are trivial. If f is bounded continuous

on each piece of the chosen exhaustion, then each such restriction both in the
domain and codomain is strictly continuous by [P2, Fact 2.3.8]. By Corollary
2.2.18, the whole f is strictly continuous.

Proposition 2.2.26. Each subset Y of an object X =
e⋃
αXα (with

this exhaustion generating SmX) of NWSS forms, by the formula Y =
e⋃
α(Xα ∩ Y ), an initial subobject in NWSS.

Proof. Consider an object Z =
e⋃
γ Zγ (with this exhaustion generating

SmZ) of NWSS and a mapping h : Z → Y such that iY X ◦h is strictly con-
tinuous. Then for every γ0 the restriction iY X ◦ h|Zγ0 has image its in some
Xα0∩Y by the assumption. We will see that h|Zγ0 : Zγ0 → Y ∩Xα0 is strictly
continuous. It suffices to check continuity. But (h|Zγ0 )−1(OpXα0∩Y ) =

(h|Zγ0 )−1(OpXα0 ) ⊆ OpZγ0 , since iY X ◦ h|Zγ0 : Zγ0 → Xα0 is continuous.
Now apply Corollary 2.2.18 to get strict continuity of h.

Question 2.2.27. When is (Y, 〈CovXα∩Y 〉∗α) an initial subobject of
(X,CovX) in GTS?

Theorem 2.2.28. The construct NWSS is finitely complete, and its fi-
nite limits are concrete.

Proof. Since each subset of an object in NWSS with the induced ex-
haustion forms an initial subobject in NWSS, the existence of equalizers
for pairs of parallel mappings is clear.

It is enough to consider binary products. Assume X, Y have exhaustions
(Xα)α∈A, (Yβ)β∈B generating the bornologies SmX , SmY , respectively. Then
(Xα×Yβ)(α,β)∈A×B is an exhaustion defining the weakly small space X × Y
and the canonical projections are strictly continuous. Hence the chosen ex-
haustion generates the bornology SmX×Y , and X×Y is an object of NWSS
with the canonical projections being morphisms.

For strictly continuous f : Z → X, g : Z → Y , the mapping (f, g) : Z →
X × Y is strictly continuous, since if Z =

e⋃
γ∈Γ Zγ , then for each Zγ0 there

are Xα0 and Yβ0 such that f(Zγ0) ⊆ Xα0 and g(Zγ0) ⊆ Yβ0 . The mapping
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(f, g)|Zγ0 is strictly continuous from [P2, Fact 2.3.12]. Now (f, g) is strictly
continuous by Corollary 2.2.18. Thus X × Y with the canonical projections
is the product of X and Y in NWSS.

Theorem 2.2.29. The category NWSS admits a full embedding into
Sublat.

Proof. Define a functor I : NWSS → Sublat by I(X,ClX , IntX) =
(X,SmclX) and I(f) = f . Obviously SmclX is a sublattice of P(X) contain-
ing the empty set and covering X. If f : X → Y is a strictly continuous
mapping, then f−1(SmclY) � SmclX and f−1(SmclY) ∩1 SmclX ⊆ SmclX.
Hence f is a morphism in Sublat. The functor I is obviously faithful. Notice
that I is injective on objects, since the family SmclX uniquely determines
IntX (and ClX). Namely,

ClX = {G ⊆ X | G ∩1 SmclX ⊆ SmclX}, IntX = 〈Noeth(ClF)〉∗F∈SmclX
.

Assume that two objects (X,ClX , IntX), (Y,ClY , IntY ) of NWSS are
given. If g : (X,SmclX) → (Y,SmclY) is a morphism in Sublat, then g
is bounded. Similarly to the proof of Theorem 2.1.33, the preimage of a
closed set is closed, hence g is continuous. By Proposition 2.2.25, g is strictly
continuous. This proves I is full.

Theorem 2.2.30 (cf. [K, IV.2.1]). If a weakly small space X =
e⋃
α∈AXα

is strongly T1, and L is a small space, then for each strictly continuous
mapping f : L→ X there is α0 ∈ A such that f(L) ⊆ Xα0.

Proof. Let η : X → A denote the index function for the exhaustion
(Xα)α∈A. If η(f(L)) were infinite, then for each α ∈ η(f(L)) we could choose
xα ∈ f(L) with η(x) = α and some yα ∈ f−1(xα). Set S = {xα : α ∈
η(f(L))}. For each γ ∈ A, the set S ∩ Xγ is finite. Since X is strongly T1,
the set S is closed, as also is each of its subsets, so S is topological discrete.
Then {yα | α ∈ η(f(L))} ⊆ f−1(S) is a topological discrete, infinite, and
small subset of L. This is a contradiction.

Hence η(f(L)) is finite, and there is α0 ≥ η(f(L)). We get f(L) ⊆ Xα0 .

Theorem 2.2.31 (cf. [K, IV.2.2]). If a weakly small space X with an
exhaustion (Xα)α∈A is strongly T1, then each small subspace L of X is
contained in some Xα0. In particular, each member Xβ of any exhaustion
(Xβ)β∈B of X is contained in some member Xα0 of the initial exhaustion.

Proof. For each such L, the inclusion mapping i : L → X is strictly
continuous. By Theorem 2.2.30, the set i(L) = L is contained in a member
of the exhaustion (Xα)α∈A.

Definition 2.2.32. Denote byWSS1 the full subcategory ofWSS com-
posed of the strongly T1 objects of WSS.
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Fact 2.2.33. WSS1 is a full subcategory of NWSS.

Remark 2.2.34. In WSS1 the term “piecewise” may be reinterpreted
as “when restricted to a closed small set” (and then it does not depend on
the choice of an exhaustion). Passing to the strong topology yields a functor
()stop : WSS1 → Top.

Corollary 2.2.35. Each small set in an object X of WSS1 is contained
in an element of any exhaustion.

Proposition 2.2.36. Each subset Y of an object X =
e⋃
αXα of WSS1

provides, by the formula Y =
e⋃
α(Xα ∩ Y ), an initial subobject in WSS1.

Proof. Follows from Proposition 2.2.26.

Theorem 2.2.37. The construct WSS1 is finitely complete, and its finite
limits are concrete.

Proof. Since each subset taken with the induced exhaustion provides an
initial subobject in WSS1, the existence of equalizers for pairs of parallel
mappings is clear. It is enough to consider binary products. If X, Y are
objects of WSS1, then their product in NWSS is an object with a pair of
morphisms of WSS1. Hence it is their product in WSS1.

Proposition 2.2.38. A piecewise finite subspace of an object of WSS1

is a closed subspace and a topological discrete space.

Proof. Closedness is obvious. Since by [P2, Proposition 2.3.20] the sub-
space is topological discrete on each piece, it is topological discrete.

Proposition 2.2.39. If X is a small space and Y is an object of WSS1,
then the canonical projection π2 : X×Y → Y is an open and closed mapping.

Proof. Similar to the proof of Proposition 2.1.40.

Example 2.1.41 shows that if X is only an object of WSS1, then π2 :
X × Y → Y may be neither open nor closed. (One may take the closed
covering [n, n + 1], n ∈ Z, to get an exhaustion of (Rsalg)loc as in Example
2.2.15.)

Question 2.2.40. Do WSS1 and NWSS have (concrete) infinite prod-
ucts?

Question 2.2.41. Do WSS1 and NWSS have (concrete) coequalizers?

3. Spaces over structures. In this section, we deal with locally de-
finable and weakly definable spaces over structures (in the sense of model
theory).
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3.1. Generalized topological spaces over sets. Let M be any non-
empty set.

Definition 3.1.1 (cf. [P1]). A function sheaf over M on a gts X is a
family F of functions h : U →M , where U ∈ OpX , which is closed under:

(a) restrictions to open subsets V ⊆ U ,
(b) gluings of compatible families of functions defined on members of any

admissible family U ∈ CovX .

For such a function sheaf, define F(U) = {h : U → M | h ∈ F}. Denote by
FSh(X,M) the family of all function sheaves on a gts X over a set M , and
by FShGTS(M) the class of all function sheaves on generalized topological
spaces over set M .

Remark 3.1.2. Notice that we may identify FSh(X,M) with a subset
of P2(X × M), and each function sheaf F with the family of graphs of
its members. The function sheaves of FSh(X,M) are partially ordered by
inclusion, which may be understood as inclusion in P2(X ×M).

Definition 3.1.3. We will call a function sheaf F ∈ FSh(X,M) empty
if for each non-empty open subset V of X the family F(V ) is empty. In other
words: F is empty iff it is a singleton of the empty function (defined on the
empty set). The empty sheaf on X will be denoted Empty(X). We will call
a function sheaf F ∈ FSh(X,M) full if for each V ∈ OpX the family F(V )
equals MV (the family of all functions from V to M). The full sheaf on X
will be denoted Full(X).

Definition 3.1.4. For function sheaves F ∈FSh(X,M), G∈FSh(Y,M)
and a strictly continuous mapping f : X → Y , define the following families

f∗F = {h : V →M | V ∈ OpY , h ◦ f ∈ F},
f−1G = G ◦ f = {h ◦ f | h ∈ G}.

They will be called the image of F , and the preimage of G, respectively.
Remark 3.1.5. The image of a function sheaf is always a function sheaf,

but the preimage of a function sheaf may not be a function sheaf.

Fact 3.1.6. For each family of function sheaves on the same gts X, the
intersection of this family is a function sheaf.

Definition 3.1.7. For each family F of functions defined on open sets in
a gts X the smallest function sheaf containing F will be called the function
sheaf generated by F or the sheafification of F and denoted by F+.

Fact 3.1.8. For each strictly continuous function f : X → Y if G is
a family of functions defined on open sets in Y with values in M , then
f−1(G+) ⊆ (f−1G)+.
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Definition 3.1.9 (cf. [P1, Section 2]). A generalized topological space
(gts) over M is a pair (X,OX), where X is a gts and OX is a function
sheaf over M on X. A morphism f : (X,OX)→ (Y,OY ) of gts’s over M is a
strictly continuous mapping f : X → Y such that OY ⊆ f∗OX (equivalently:
f−1OY ⊆ OX).

We get a category GTS(M) of generalized topological spaces over M
and their morphisms. (Objects of GTS(M) may be identified with members
of FShGTS(M).)

Fact 3.1.10. If X =
a⋃
αXα, then the object (X,OX) of GTS(M) is

uniquely determined by the system (Xα,OXα)α, since OX = (
⋃
αOXα)+.

Being a morphism is a local and sublocal property.

Proposition 3.1.11. Let X =
a⋃
U and Y be objects of GTS(M). For

a mapping f : X → Y , the following conditions are equivalent:

(a) f is a morphism in GTS(M),
(b) f |U is a morphism in GTS(M) for each U ∈ U .
Proof. By [P2, Proposition 2.2.45] the equivalence holds in the category

GTS. Notice that OX is generated by all OU with U ∈ U and a similar fact
holds for the family f−1OY . The proposition follows.

Proposition 3.1.12. Let X =
a⋃
U and Y be objects of GTS(M). For

a mapping f : Y → X, the following conditions are equivalent:

(a) f is a morphism in GTS(M),
(b) the family f−1(U) is admissible and f |f−1(U) : f−1(U) → U is a

morphism in GTS(M) for each U ∈ U .
Proof. The equivalence holds on the level of strictly continuous map-

pings by [P2, Proposition 2.2.47]. If f is a morphism in GTS(M), then
f−1OX |f−1(U) = f−1(OX |U ) for each strict subspace U ∈ U . If the fam-
ily f−1(U) is admissible and each f |f−1(U) : f−1(U) → U is a morphism in
GTS(M) for U ∈ U , then (f |f−1(U))

−1(OX |U ) = f−1OX |f−1(U) for each U .

Definition 3.1.13 (cf. [K, IV.1, Definitions 3 and 4]). For an object
(X,OX) ofGTS(M) and a subset Y ⊆ X we induce a gts overM on Y in the
following way: take the generalized topology CovY = 〈CovX ∩2Y 〉 induced
by (X,CovX) on Y , and take the function sheaf OY = (i−1Y XOX)+. Such
an object (Y,CovY ,OY ) of GTS(M) will be called a subspace in GTS(M)
of (X,CovX ,OX); it is a strict subspace in GTS if CovY = CovX ∩2Y
and OY = i−1Y XOX . An open (small, respectively) subspace is a subspace
(Y,CovY ,OY ) as above with Y ∈ OpX (Y ∈ SmX , respectively).

Fact 3.1.14. Each open subspace is strict.
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Remark 3.1.15. All subspaces in our sense are initial subobjects and
extremal subobjects in GTS(M).

Remark 3.1.16. The construct GTS(M) has discrete objects and in-
discrete objects. The former are given by the discrete functor D : Set →
GTS(M), and the latter by the indiscrete functor I : Set → GTS(M),
where

D(X) = (X,P2(X),Full(X)),

I(X) = (X,EssFin({∅, X}),Empty(X)).

Theorem 3.1.17. The construct GTS(M) is topological.

Proof. For a source (X, fi) with mappings fi : X → Yi indexed by a class
I, we may assume that I is a set. Assume each Yi has a generalized topology
Covi and a structure sheaf Oi. Give X the initial generalized topology for
the family (fi)i∈I and OX generated by all f−1i (Oi).

For any (Z,CovZ ,OZ) and a mapping h : Z → X, if all fi ◦ h are
morphisms in GTS(M), then h is a morphism in GTS by [P2, Theorem
2.2.60]. Also

⋃
i h
−1(f−1(Oi)) ⊆ OZ . Since OZ is a function sheaf, it also

contains (
⋃
i h
−1(f−1(Oi)))+ and, by Fact 3.1.8, h−1((

⋃
i f
−1(Oi))+). We

have proved that h is a morphism in GTS(M). By [AHS, Theorem 21.5],
only one object of GTS(M) in the fibre of the set X can do this job (the pair
(GTS(M), UM ) is amnestic, where UM : GTS(M) → Set is the forgetful
functor).

Corollary 3.1.18 ([AHS, Theorem 21.17]). The category GTS(M) is
complete, co-complete, wellpowered, co-wellpowered, (Epi, Extremal Mono-
Source)-category, has regular factorizations and has separators and cosepa-
rators.

Remark 3.1.19. For any non-empty set M , the category GTS may be
fully embedded into GTS(M). Choose, for example, an element m0 ∈ M
and for each open U of X define Cm0(U) to be the singleton of the constant
function with value m0. Then X → (X, Cm0) defines a faithful, injective on
objects, and full functor from GTS to GTS(M).

Fact 3.1.20 ([AHS, Proposition 21.15]). The forgetful functor UM from
GTS(M) to Set preserves and uniquely lifts (small) limits and colimits. In
particular, all (small) limits and colimits in GTS(M) are concrete.

3.2. Weakly topological structures

Definition 3.2.1. A structure with a topology is a pair (M, σ) composed
of a (first order, one-sorted) structureM = (M, . . . ) and a topology σ given
on the underlying set M of M. This means the product topologies σn are
defined on Cartesian powersMn and the induced topologies σD exist on each
definable (with parameters) set D in any Mn. The system (M, (σD)D) will
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be called the corresponding weakly topological structure and briefly denoted
also by (M, σ).

Then all the projections πn,i : Mn → Mn−1 (forgetting the ith coordi-
nate) are continuous and open.

Remark 3.2.2. This setting seems to coincide with the case (i) in the
introduction of [Pil]. We do not explore a special language Lt for topological
structures considered in the case (ii) of the introduction of [Pil] or in [FZ].

Remember (after [Pil]) that a structure M is a first order topological
structure (called in [FZ] a topological structure with explicitly definable topol-
ogy) if the basis of the topology on M is uniformly definable inM. (There
is a formula Φ(x, ȳ) of the (first order) language ofM such that the family
{Φ(x, ā)M | ā ⊆ M} is the basis of the topology of M .) We will write M
instead of (M, σ) in this situation.

Example 3.2.3. Any o-minimal structure (M,<, . . . ) with < being a
dense order without endpoints together with the natural order topology
yields a topological structure.

Example 3.2.4. The field of complex numbers (C,+, ·) considered with
the Euclidean topology (but not with the Zariski topology) on every Cn (as
in [Pil]) is a weakly topological structure.

Example 3.2.5. The fields Qp of p-adic numbers considered with their
natural topologies (coming from valuations) and the product topologies on
Cartesian powers Qn

p (as in [Pil]) are topological structures.

Remark 3.2.6. We will deal with sets (such as definable sets of affine
spacesMn or of definable spaces over (M, σ)) equipped with topologies com-
ing from σ (as opposed to other topologies). For simplicity, we will speak
about σ-open sets and σ-continuous functions or mappings in such situa-
tions.

Definition 3.2.7. For each definable (with parameters) set D ⊆ Mn

of a weakly topological structure (M, σ), we set (as in [P1, Fundamental
Example 1]):

(a) an open subset of a gts D means a relatively σ-open, definable subset;
(b) an admissible family of a gts D means an essentially finite open

family.

Each such D becomes a small gts, and πn,i : Mn → Mn−1 become strictly
continuous and open. We define the structure sheaf DCD as the function
sheaf of all definable σ-continuous functions from (gts-)open subsets U ⊆ D
into M . Thus (D,DCD) becomes a small (generalized topological) space
over M , respecting the pair (M, σ).
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Fact 3.2.8. Always τ(OpMn) ⊆ σn, and equality holds when OpMn is a
basis of σn.

Remark 3.2.9. In general σ has nothing to do with the structureM. If
we assume σ = τ(OpM ), then σn = τ(OpM )n = τ(OpMn). For first order
topological structures the natural topology onM satisfies σ = τ(OpX).

Example 3.2.10. All partially topological small spaces (X, τ,EssFin(τ))
may be seen as definable sets M1. Just put M = X, σ = τ and take all
members of τ as relations of the language ofM.

Remark 3.2.11. For each definable D ⊆ Mn the function sheaf DCD
contains the projections πi : D →M (i = 1, . . . , n). The identity idD is their
diagonal product. More generally, all diagonal products of members of DCD
are definable σ-continuous.

Remark 3.2.12. Notice that each function in DCD is also strictly con-
tinuous with respect to the small space (D,EssFin(OpD)) induced on D.

Proposition 3.2.13. For a mapping f : D → E with definable D ⊆Mm

and E ⊆Mn, the following conditions are equivalent:

(a) f is a morphism of GTS(M),
(b) f is definable and σ-continuous,
(c) f is a diagonal product of functions from DCD.
Proof. Left to the reader.

Definition 3.2.14. We say that (M, σ) satisfies (DCD) ifM admits a
(finite) decomposition into definably connected definable sets: for each finite
family of definable sets in some Mn there is a finite decomposition of Mn

into definably connected definable sets compatible with the original family.
(For stronger (cell) decompositions see [M] or [S].)

Remark 3.2.15. All o-minimal structures M (with their order dense
without endpoints) satisfy (DCD), but t-minimality in the sense of [S] does
not guarantee (DCD).

3.3. Definable spaces over structures. From now on assume that
some weakly topological structure (M, σ) is given.

Definition 3.3.1 (cf. [D, p. 157]). An affine definable space over (M, σ)
is an object of GTS(M) isomorphic to a definable subset of some Mn con-
sidered with its structure (from Definition 3.2.7) of a small space over M .

Definition 3.3.2 (cf. [D, p. 156]). A definable space over (M, σ) is an
object of GTS(M) that has a finite open covering by affine definable sub-
spaces. Since the open affine subspaces are strict, the structure sheaf is de-
termined in an obvious way.
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Definition 3.3.3. Morphisms of affine definable spaces and definable
spaces over (M, σ) are their morphisms in GTS(M). We get full subcate-
gories ADS(M, σ), DS(M, σ) of GTS(M).

Proposition 3.3.4. The open subsets in a definable space are exactly
the σ-open definable subsets. The morphisms of definable spaces are exactly
the σ-continuous definable mappings.

Proof. Follows from Definition 3.2.7 and Proposition 3.2.13.

Fact 3.3.5. Definable sets are stable under images and preimages of mor-
phisms of DS(M, σ).

Remark 3.3.6. In general ADS(M, σ) and further categories do not
have indiscrete objects. That is why the class of epimorphisms may be dif-
ferent from the class of surjective morphisms.

Definition 3.3.7. A subspace of a definable space (X,OX) given by a
finite open covering (Xi,OXi) by affine definable spaces is a definable subset
Y ⊆ X together with the function sheaf OY determined by the finite open
covering (Yi,OYi) by affine definable spaces with Yi = Xi ∩ Y .

Proposition 3.3.8 (cf. [D, p. 158]). Each definable subspace (Y,OY )
of a definable space (X,OX) may be identified with an initial subobject of
(X,OX) in DS(M, σ).

Proof. First notice that the inclusion iY X : Y → X is a definable contin-
uous mapping, thus a monomorphism in DS(M, σ). Assume (Z,OZ) is any
object of DS(M, σ) and h : Z → Y is a mapping such that iY X ◦h : Z → X
is a morphism in DS(M, σ). We will prove that h is a morphism. The graph
of h is a definable subset of Z×X, so also of Z×Y . But h is also σ-continuous,
since Y forms an initial subobject of X in Top.

Remark 3.3.9. The above does not mean that a subspace of a defin-
able space in our sense is an initial subobject or an extremal subobject in
GTS(M).

Remark 3.3.10. Each constructible set in a definable space is definable.
By cell decomposition into locally closed cells (see [D, Chapter 3]), in defin-
able spaces over o-minimal structures all definable sets are constructible.

Proposition 3.3.11. Every weakly open (weakly closed, respectively)
subspace of an object of DS(M, σ) is an open (closed, respectively) subspace.

Proof. This is clear for ADS(M, σ) from Definition 3.2.7 and follows for
DS(M, σ) by applying finite unions.

Proposition 3.3.12. Finite products exist in the categories ADS(M, σ)
and DS(M, σ).



Generalized topological spaces II 205

Proof. For definable sets D ⊆ Mn and E ⊆ Mm, the product is the
definable set D×E ⊆Mn+m (with its natural space structure). Indeed, the
projections D × E → D, D × E → E are σ-continuous definable mappings,
and for σ-continuous definable f : Z → D, g : Z → E, with Z definable in
someMk, the induced mapping (f, g) : Z → D×E is σ-continuous definable,
since σD×E is the product topology. For a σ-continuous definable function
h ∈ OD×E(U), the function h ◦ (f, g) : (f, g)−1(U) → M is σ-continuous
definable. This gives the proof for the affine definable case. The general
definable case is similar.

Fact 3.3.13. The canonical projections from a finite product in
ADS(M, σ) as well as in DS(M, σ) to its factors are open morphisms,
but not in general closed morphisms.

Theorem 3.3.14. The categories ADS(M, σ) and DS(M, σ) are fini-
tely complete.

Proof. Follows from Propositions 3.3.12 and 3.3.8.

Remark 3.3.15. Unfortunately, even finite products of affine definable
spaces in GTS(M) usually are not affine definable spaces.

Fact 3.3.16. Finite coproducts exist in DS(M, σ).

Remark 3.3.17. Often also finite coproducts exist in ADS(M, σ), but
not always (as in the case of M a singleton).

Example 3.3.18. Consider the field of real numbers R (with its natural
topology) as a structure M and two continuous semialgebraic functions of
one real variable f1(x) = x, f2(x) = x + 1. The quotient set R/Z together
with the quotient map q : R→ R/Z is a coequalizer of this pair in Set. But
q is not semialgebraic. A coequalizer in ADS(R) or DS(R) exists, but is a
one-point space. We get an example when a coequalizer in ADS(M) and
DS(M) is not concrete.

Fact 3.3.19. IfM is a first order topological structure, then the (weak)
closure of any definable set in a definable space is definable (see [Pil]), thus
is the closure of this set (the smallest closed subspace containing the set).
Hence each definable space overM has the closure property (CPG).

Proposition 3.3.20. Assume (M, σ) satisfies (DCD). Then each object
of DS(M, σ) has a finite number of clopen definably connected components,
and is a finite direct sum of them.

Proof. Follows from [P2, Remark 2.2.90] and Proposition 3.3.11.

In the particular case of o-minimal expansions of fields, definable spaces
were extensively studied in [D, Chapter 10].
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3.4. Locally definable spaces over structures

Definition 3.4.1 (cf. [P1]). A locally definable space over (M, σ) is an
object of GTS(M) that has an admissible covering by affine definable open
(hence strict) subspaces. (Sections of the structure sheaf of a locally definable
space are admissible unions of sections of the structure sheaves of these affine
open subspaces. This property uniquely determines an object of GTS(M)
by Fact 3.1.10.)

Definition 3.4.2. Morphisms of locally definable spaces over (M, σ) are
their morphisms in GTS(M). We thus get a full subcategory LDS(M, σ)
of GTS(M).

Fact 3.4.3 (cf. [DK, I.1.3]). A mapping f : X → Y between objects of
LDS(M, σ) is a morphism iff the image of each open definable subspace of
the domain is contained in an open definable subspace of the range and when
restricted to open definable subspaces in the domain and in the range it is a
mapping of definable spaces, hence is σ-continuous definable.

Locally definable spaces in particular cases were extensively studied in
[DK] and [P1].

Definition 3.4.4 (cf. [P1]). Locally definable subsets (i.e. subsets hav-
ing definable traces on each definable open subspace from Definition 3.4.1)
of locally definable spaces are called subspaces in LDS(M, σ).

Remark 3.4.5. Locally definable subsets with their induced admissible
coverings by open affine definable subspaces may be identified with certain
initial subobjects of an object in LDS(M, σ). This does not mean they are
initial subobjects in GTS(M).

Fact 3.4.6. Every small subspace of a locally definable space is a defin-
able space.

Fact 3.4.7. Every weakly open (weakly closed, respectively) subspace of
an object of LDS(M, σ) is an open (closed, respectively) subspace.

Fact 3.4.8. The preimage of a subspace by a morphism of LDS(M, σ)
is always a subspace of the domain.

Remark 3.4.9. The image of a morphism is usually not a subspace, since
any subset of the target space is the image of a discrete object of LDS(M, σ).

Fact 3.4.10. In LDS(M, σ) direct sums exist.

Theorem 3.4.11 (cf. [DK, I.2.5]). The category LDS(M, σ) is finitely
complete.

Proof. Equalizers are easy. We need to check only the existence of bi-

nary products. For locally definable spaces (X,OX) =
a⋃
α∈A(Xα,OXα),



Generalized topological spaces II 207

(Y,OY ) =
a⋃
β∈B(Yβ,OYβ ), where (Xα,OXα), (Yβ,OYβ ) are affine definable

(strict) subspaces over (M, σ), consider the space
a⋃

(α,β)∈A×B

(Xα,OXα)× (Yβ,OYβ ) =

a⋃
(α,β)∈A×B

(Xα × Yβ,OXα×Yβ ).

This space is the product of the given locally definable spaces, since the pro-
jections are clearly morphisms in LDS(M, σ), and for given morphisms f :

Z → X, g : Z → Y in LDS(M, σ) from the space (Z,OZ)=
a⋃
γ∈Γ (Zγ ,OZγ ),

the induced mapping (f, g) : Z → X × Y is a morphism in LDS(M, σ).
Indeed, we may assume that {Zγ}γ∈Γ is an admissible covering by affine
definable spaces that is a refinement of the preimage of the covering
{Xα × Yβ}(α,β)∈A×B and thus each Zγ is mapped into some Xα0 × Yβ0 by
some σ-continuous definable mapping, and the whole (f, g) is an admissible
union of such partial mappings.

Fact 3.4.12. Finite limits in LDS(M, σ) are concrete.

Definition 3.4.13. A locally definable space is paracompact or Lindelöf
if so is its underlying locally small space.

Paracompactness and Lindelöfness were extensively studied in [DK] in
the special case of locally semialgebraic spaces.

Definition 3.4.14 (cf. [P1]). We can also generalize the following con-
cept from [P1]: a subset Y of a locally definable space X over (M, σ) may
be called local if for each y ∈ Y there is an open small neighbourhood U of
y such that Y ∩ U is definable in U . On such a Y , we could define a locally
definable space by the formula

Y =

a⋃
{Y ∩ U | U small, open, Y ∩ U definable in U}.

This definition is canonical in the sense that it does not depend on the
choice of open neighbourhoods. However, often when we consider local sub-
sets, this locally definable space structure is not important (see Examples 11
and 12 in [P1]).

Example 3.4.15. Any weakly open and any weakly discrete set in a
locally definable space is local.

Proposition 3.4.16. If M is a first order topological structure, then
each locally definable space over M satisfies (CPL), and any subspace has
closure (i.e. the smallest ambient closed subspace).

Proof. Follows from Fact 3.3.19.

Fact 3.4.17. Assume (M, σ) satisfies (DCD). Then each object of
LDS(M, σ) is a locally finite direct sum of its connected components.
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Question 3.4.18. Which objects of LSS can be realized as underlying
gts’s of objects of categories LDS(M, σ)?

3.5. Weakly definable spaces over structures

Definition 3.5.1. A weakly definable space over (M, σ) is an object
(X,OX) of GTS(M) that has an exhaustion (Xα)α∈A of X composed of
definable (so small) subspaces such that a function h : V → M (V ∈ OpX)
belongs to OX iff each restriction h|V ∩Xα belongs to OXα .

Definition 3.5.2. Morphisms of weakly definable spaces over (M, σ)
are their morphisms in GTS(M). We thus get a full subcategory
WDS(M, σ) of GTS(M).

Remark 3.5.3. The image of a morphism may be any subset of the
target space, since discrete objects exist in WDS(M, σ).

Definition 3.5.4 (cf. [P1]). Piecewise definable subsets (i.e. subsets hav-
ing definable traces on any piece) of weakly definable spaces with their in-
duced structure of weakly small spaces (given by the induced exhaustions)
are called subspaces in WDS(M, σ).

Remark 3.5.5. Piecewise definable subsets may be identified with ini-
tial subobjects in WDS(M, σ). This does not mean that they are initial
subobjects in GTS(M).

Proposition 3.5.6. Every weakly open (weakly closed, respectively) sub-
space of an object of WDS(M, σ) is an open (closed, respectively) subspace.

Proof. Follows from Fact 3.3.11.

Weakly definable spaces in particular cases were extensively studied in
[K] and [P1].

Corollary 3.5.7. Each object of WDS(M, σ) is a direct limit of the
diagram in GTS(M) of:

(a) all its pieces,
(b) all of its closed definable subspaces,
(c) all its definable subspaces with inclusions as morphisms.

Proposition 3.5.8. IfM is a first order topological structure, then each
weakly definable space has the closure property (CPW), and any subspace of
a piece has closure (i.e. the smallest ambient closed subspace).

Proof. Follows from Fact 3.3.19.

Fact 3.5.9. Assume (M, σ) satisfies (DCD). Then each object of
WDS(M, σ) is a piecewise finite union of its clopen connected components,
so also a direct sum of its connected components.
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Let us denote by WDS1(M, σ) the full subcategory of strongly (but see
Proposition 3.6.1) T1 objects of WDS(M, σ). From Theorem 2.2.30, we get

Fact 3.5.10. In an object of WDS1(M, σ) each small subspace is con-
tained in a piece, hence it is a definable (sub)space.

Fact 3.5.11 (cf. [K, IV.2.3]). A mapping f : X → Y between objects of
WDS1(M, σ) is a morphism iff the image of a piece is contained in a piece
and when restricted to pieces in the domain and in the range, the mapping is
σ-continuous definable. (Here a piece may be understood both as a member
of some chosen exhaustion and as any closed definable subspace.)

Fact 3.5.12. The category WDS1(M, σ) has equalizers for pairs of par-
allel morphisms and direct sums.

Theorem 3.5.13 (cf. [K, IV.3, p. 32]). The category WDS1(M, σ) is
finitely complete.

Proof. We need to check only the existence of binary products. Notice
that by Theorem 3.4.11, finite products exist in the category DS(M, σ),
and the product of T1 spaces is T1. We will drop the structure sheaves in
notation. If (Xα)α∈A, (Yβ)β∈B are exhaustions of objects X, Y , then define

X×Y =
e⋃
(α,β)∈A×B(Xα×Yβ)(α,β)∈A×B. This is an exhaustion determining

the structure sheaf. The resulting space is clearly T1, and the canonical
projectionsX×Y → X,X×Y → Y are clearly morphisms ofWDS1(M, σ).

If Z =
e⋃
γ∈Γ Zγ is any object of WDS1(M, σ) and f : Z → X, g : Z →

Y are morphisms, then the mapping (f, g) : Z → X × Y is a morphism.
Indeed, we may assume that for each Zγ0 there are Xα0 and Yβ0 such that
f(Zγ0) ⊆ Xα0 and g(Zγ0) ⊆ Yβ0 , the generalized topology of the product
of definable spaces contains the generalized topology of their generalized
topological product, and the definable σ-continuous mappings are stable
under composition and diagonal product. Thus X × Y is the product of
X and Y in WDS1(M, σ).

Fact 3.5.14. Finite limits in WDS1(M, σ) are concrete.

Fact 3.5.15. The preimage of a subspace under a morphism of
WDS1(M, σ) is always a subspace of the domain.

Question 3.5.16. Is Fact 3.5.11 extendable to WDS(M, σ)?

3.6. Separation axioms

Proposition 3.6.1.

(a) Each weakly T1 object of LDS(M, σ) or WDS(M, σ) is strongly T1.
(b) If (M,σ) is T1, then all objects of LDS(M, σ) and WDS(M, σ) are

strongly T1.
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Proof. (a) Any singleton is always a subspace. For a weakly T1 space,
the generated topology is T1 by [P2, Proposition 2.2.82]. Hence each point
is closed.

(b) Each point in M is closed in σ, hence each point in Mn is closed
in σn. Each point is a closed subspace in an object of ADS(M, σ). The
statement for locally definable and weakly definable spaces follows.

Thus we speak just about T1 objects of LDS(M, σ) or of WDS(M, σ).

Proposition 3.6.2. For an object Z of LDS(M, σ) or of WDS1(M, σ),
the following conditions are equivalent:

(a) Z is weakly Hausdorff;
(b) Z is strongly Hausdorff;
(c) Z has its diagonal ∆Z closed.

Proof. If a space X is weakly Hausdorff, then its generated topology is
Hausdorff, thus the diagonal ∆X is closed in the generated topology. But
∆X is always a subspace, hence, by Fact 3.4.7 or Proposition 3.5.6, a closed
subspace.

If the diagonal ∆X is a closed subspace, then the generated topology of
X is Hausdorff, so X is weakly Hausdorff. But it is also strongly T1, since
for any x0 ∈ X, the set {(x0, x0)} is closed in {x0} ×X and the projection
{x0} ×X → X is closed. Thus X is strongly Hausdorff.

Because of Proposition 3.6.2, we speak about T2 objects of LDS(M, σ)
or of WDS(M, σ). The following example shows that even if σ is Hausdorff,
an object of ADS(M, σ) may not be Hausdorff.

Example 3.6.3. Consider asM the pure set R of real numbers, and as
σ the natural topology on R. Then only finite or cofinite sets are definable.
The sets in OpM are the empty set and the cofinite sets, so M as an affine
definable space is not weakly Hausdorff.

That is why we should consider the topologies τ(OpMn) in addition to σ.
Remember that τ(OpM )n ⊆ τ(OpMn) ⊆ σn. For a first order topological
structure (considered with its natural topology) also σn ⊆ τ(OpM )n.

Fact 3.6.4. If (M, τ(OpM )) is Hausdorff (T2), then all Mn as well as
all objects of ADS(M, σ) are (strongly) Hausdorff.

Example 3.6.5. An object of DS(M) may not be (weakly) Hausdorff
even if (M, τ(OpM )) is Hausdorff: look at the real unit interval [0, 1] and
consider the connected definable space formed by “doubling” (by a pair of
“charts”) only a finite number of points of the interval. No pair of points
formed by “doubling” can be separated by open sets.
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Corollary 3.6.6. Each weakly regular (weakly normal, respectively)
locally definable or weakly definable space over (M, σ) is strongly regular
(strongly normal, respectively).

That is why we speak about T3 objects and T4 objects of LDS(M, σ) and
WDS(M, σ). As Example 3.6.5 shows, a definable space overMmay not in-
herit regularity or normality from (M, τ(OpM )). For a first order topological
structure, at least affine definable spaces inherit regularity.

Proposition 3.6.7. If M is a first order topological structure with its
natural topology regular (Hausdorff), then all objects of ADS(M) are regular.

Proof. The equality σ = τ(OpM ) holds for M. If the topological space
(M,σ) is regular (Hausdorff), then so are all (Mn, σn) and all affine defin-
able spaces. By Proposition 3.3.19, the property (CPG) is satisfied for each
definable subset ofMn, and each affine definable space. By Fact 2.1.10, each
affine definable space is weakly regular. By Corollary 3.6.6, this space is
strongly regular.

Question 3.6.8. Assume (M, τ(OpM )) is Hausdorff, and X is an object
of WDS(M, σ) having an exhaustion composed of affine definable spaces.
For which (M, σ) must X be Hausdorff?

Question 3.6.9. Assume M is a first order topological structure with
its natural topology regular (Hausdorff), and X is an object of WDS(M)
having an exhaustion composed of affine definable subspaces of Mn. For
whichM must X be regular?

Example 3.6.10. Take the full structure on M = R (i.e. all n-ary rela-
tions on R are in the language ofM) with the lower limit topology. ThenM
is a normal (Hausdorff) first order topological structure, but the Sorgenfrey
plane R2 is not normal as a topological space or a definable set.

4. Completeness

4.1. Locally small and weakly small cases

Definition 4.1.1 (cf. [DK, I.5, Definition 2] and [K, IV.5, Definition 2]).
Let C be one of the (considered earlier) categories of spaces having binary
products. We will say that an object Z of C is C-complete if the mapping
Z → {∗} is universally closed in C, which means that for each object Y
of C the canonical projection Z × Y → Y (which is the base extension of
Z → {∗}) is a closed mapping.

Remark 4.1.2. The quasi-compact spaces are exactly the Top-complete
spaces (see [B]). All objects of SS are SS-complete (by [P2, Fact 2.3.15]),
LSS-complete (by Proposition 2.1.40), and (if strongly T1) WSS1-complete
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(by Proposition 2.2.39). On the other hand, even the one-dimensional semi-
algebraic affine space R is not ADS(R)-complete.

Question 4.1.3. Which objects are GTS-complete?

Question 4.1.4. Which objects are GTS(M)-complete?

Proposition 4.1.5. Any closed subspace of a C-complete space is C-
complete.

Proof. Let C be a closed subspace of a C-complete space Z. For any Y
in C, the space C ×Y is a closed subset of Z ×Y . Thus the image under the
projection along C of any closed subset of C × Y is closed in Y .

Proposition 4.1.6. The image g(C) of a C-complete subspace C of Y
under a morphism g : Y → Z in C is a C-complete subspace.

Proof. Consider an object W of C. For a closed subset A of g(C) ×W ,
we have πg(C)(A) = πC((g|C × idW )−1(A)) is a closed set.

Proposition 4.1.7. If Y is an object of C having its diagonal ∆Y ⊆
Y × Y closed, then:

(a) each of its C-complete subspaces is closed;
(b) the graph of each morphism f : X → Y in C is closed.

Proof. (a) If C is a C-complete subspace of Y , then ∆Y ∩ (C × Y ) is
relatively closed in C × Y , and its projection on Y , equal to C, is closed.

(b) The graph of f is a subspace of X × Y , being the preimage of ∆Y

under a morphism f × idY .

Definition 4.1.8. A category C will be called nice if the following prop-
erty holds: if C has an infinite topological discrete object, then C has a
strongly T1 object with a countable non-closed set.

Lemma 4.1.9. If C is nice, and has a topological discrete infinite object,
then this object is not C-complete.

Proof. Let Z be an infinite topological discrete space. Take an injective
sequence {zn}n∈N of elements of Z. Let W be a strongly T1 object with a
non-closed countable set C = {cn}n∈N (determined by an injective sequence).
Then {(zn, cn) : n ∈ N} is closed in Z ×W , C = πZ({(zn, cn) : n ∈ N}), so
Z is not complete by Definition 4.1.1.

Example 4.1.10. Consider the discrete topology σ, and the full structure
on a non-empty setM . Then all objects of LDS(M) and WDS(M) are (not
necessarily topological) discrete. Neither LDS(M) nor WDS1(M) is nice.
All objects of LDS(M) and of WDS1(M) are complete in their respective
categories, while they may not be small.
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Theorem 4.1.11. Assume C is nice and C is a strongly T1, C-complete
space. If C is a generalized topological direct sum, then the number of sum-
mands is finite.

Proof. Take one point from each summand. The resulting subspace S
is topological discrete and closed, so C-complete by Proposition 4.1.5. By
Lemma 4.1.9, S is finite.

Corollary 4.1.12. If (M, σ) satisfies (DCD), then strongly T1 objects
complete in LDS(M, σ) or in WDS1(M, σ) have, if this category is nice,
only finitely many connected components.

Theorem 4.1.13 (cf. [DK, I.5.10]). Assume C is nice, and is one of:
LSS, LDS(M, σ), WSS1, or WDS1(M, σ). Let C be a strongly T1 and
Lindelöf (if C = LDS(M, σ) or LSS) C-complete space. Then C is small.

Proof. In the case of a locally definable (or locally small) space: if C =
a⋃
n∈NCn is an admissible covering by affine definable (small) spaces and

C is not small, then we may assume that for each n ∈ N we can choose
xn ∈ Cn \ (C0 ∪ · · · ∪Cn−1) 6= ∅. The set B = {xn | n ∈ N} is an infinite, not
small, locally finite subspace, so, as a T1 space, closed and topological discrete
(by Proposition 2.1.34). Thus B is C-complete (by Proposition 4.1.5).

In the case of a weakly definable (or weakly small) space: if C is not small,
then the index function η of an exhaustion (Cα)α∈A has infinite image, and
we can choose an element xα ∈ C0

α for each α ∈ η(C). The set B = {xα |
α ∈ η(C)} is an infinite (but piecewise finite) closed subspace all of whose
subsets are also closed. Thus B is a C-complete (by Proposition 4.1.5) and
a topological discrete space (by Proposition 2.2.38).

In both cases we get a contradiction with Lemma 4.1.9.

Definition 4.1.14. A relatively complete set in an object of C is a subset
of a complete subspace. The collection of all relatively complete sets of X
will be denoted by RcX .

Fact 4.1.15. For any object of C, the collection RcX is a bornology.

Remark 4.1.16. We get further faithful functors FC : C → UBor, with
FC(X) = (X, τ(OpX),RcX) and FC(f) = f .

The bornology RcX is in general different from the bornology SmX .

Example 4.1.17. Consider the situation from Example 4.1.10. Then
RcX is a trivial bornology on each object of LDS(M) or WDS1(M) (all
subsets are bounded), while SmX is usually non-trivial.

Example 4.1.18. In the semialgebraic space R (with the underlying
small space denoted by Rsalg) we have a trivial bornology SmR and a non-
trivial bornology RcR of bounded sets (in the traditional meaning). By the
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process of localization (see Example 2.1.15 or [P1]), we pass to the space Rloc,
where the two bornologies coincide (a small set is exactly a relatively com-
plete set).
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