Unique decomposition for a polynomial of low rank

by EDOARDO BALLICO (Trento) and ALESSANDRA BERNARDI (Torino)

Abstract. Let F be a homogeneous polynomial of degree d in m+1 variables defined over an algebraically closed field of characteristic 0 and suppose that F belongs to the sth secant variety of the d-uple Veronese embedding of \mathbb{P}^m into $\mathbb{P}^{\binom{m+d}{d}-1}$ but that its minimal decomposition as a sum of dth powers of linear forms requires more than s summands. We show that if $s \leq d$ then F can be uniquely written as $F = M_1^d + \cdots + M_t^d + Q$, where M_1, \ldots, M_t are linear forms with $t \leq (d-1)/2$, and Q is a binary form such that $Q = \sum_{i=1}^q l_i^{d-d_i} m_i$ with l_i 's linear forms and m_i 's forms of degree d_i such that $\sum (d_i + 1) = s - t$.

Introduction. In this paper we will always work over an algebraically closed field K of characteristic 0. Let $X_{m,d} \subset \mathbb{P}^N$, with $m \ge 1, d \ge 2$ and $N := \binom{m+d}{m} - 1$, be the classical Veronese variety obtained as the image of the d-uple Veronese embedding $\nu_d : \mathbb{P}^m \to \mathbb{P}^N$. The sth secant variety $\sigma_s(X_{m,d})$ of the Veronese variety $X_{m,d}$ is the Zariski closure in \mathbb{P}^N of the union of all linear spans $\langle P_1, \ldots, P_s \rangle$ with $P_1, \ldots, P_s \in X_{m,d}$. For any point $P \in \mathbb{P}^N$, we indicate with $\operatorname{sbr}(P)$ the minimum integer s such that $P \in \sigma_s(X_{m,d})$. This integer is called the symmetric border rank of P.

Since $\mathbb{P}^m \simeq \mathbb{P}(K[x_0, \ldots, x_m]_1) \simeq \mathbb{P}(V^*)$ with V an (m+1)-dimensional vector space over K, the generic element belonging to $\sigma_s(X_{m,d})$ is the projective class of a form (symmetric tensor) of type

(1)
$$F = L_1^d + \dots + L_r^d \quad (T = v_1^{\otimes d} + \dots + v_r^{\otimes d}).$$

The minimum $r \in \mathbb{N}$ such that F can be written as in (1) is the symmetric rank of F and we denote it sr(F) (sr(T), if we replace F with T).

The decomposition of a homogeneous polynomial with a minimum number of terms and a minimum number of variables is a problem that is receiving a great deal of attention not only in classical algebraic geometry

²⁰¹⁰ Mathematics Subject Classification: 15A21, 15A69, 14N15.

Key words and phrases: Waring problem, polynomial decomposition, symmetric rank, symmetric tensors, Veronese varieties, secant varieties.

([2], [9], [7], [8], [10]), but also from the point of view of applications like computational complexity ([11]) and signal processing ([12]).

At the workshop on Tensor Decompositions and Applications (September 13–17, 2010, Monopoli, Bari, Italy), A. Bernardi presented a work in collaboration with E. Ballico where a possible structure of small rank homogeneous polynomials with border rank smaller than rank was characterized (see [3]). It is well known that, if a homogeneous polynomial F is such that sbr(F) < sr(F), then there are infinitely many decompositions of F as in (1). Our purpose in [3] was to find, among all the possible decompositions of F, a "best" one in terms of the number of variables. Namely: Does there exist a canonical choice of two variables such that most of the terms involved in the decomposition (1) of F depend only on those two variables? The precise statement of that result is the following:

• ([3, Corollary 1]) Let $F \in K[x_0, \ldots, x_m]_d$ be such that $\operatorname{sbr}(F) + \operatorname{sr}(F) \leq 2d + 1$ and $\operatorname{sbr}(F) < \operatorname{sr}(F)$. Then there are an integer $t \geq 0$, linear forms $L_1, L_2, M_1, \ldots, M_t \in K[x_0, \ldots, x_m]_1$, and a form $Q \in K[L_1, L_2]_d$ such that $F = Q + M_1^d + \cdots + M_t^d$, $t \leq \operatorname{sbr}(F) + \operatorname{sr}(F) - d - 2$, and $\operatorname{sr}(F) = \operatorname{sr}(Q) + t$. Moreover t, M_1, \ldots, M_t and the linear span of L_1, L_2 are uniquely determined by F.

In terms of tensors this can be translated as follows:

• ([3, Corollary 2]) Let $T \in S^d V^*$ be such that $\operatorname{sbr}(T) + \operatorname{sr}(T) \leq 2d + 1$ and $\operatorname{sbr}(T) < \operatorname{sr}(T)$. Then there are an integer $t \geq 0$, vectors $v_1, v_2, w_1, \ldots, w_t \in S^1 V^*$, and a symmetric tensor $v \in S^d(\langle v_1, v_2 \rangle)$ such that $T = v + w_1^{\otimes d} + \cdots + w_t^{\otimes d}$, $t \leq \operatorname{sbr}(T) + \operatorname{sr}(T) - d - 2$, and $\operatorname{sr}(T) = \operatorname{sr}(v) + t$. Moreover t, w_1, \ldots, w_t and $\langle v_1, v_2 \rangle$ are uniquely determined by T.

The natural questions raised by applied people at the Monopoli workshop mentioned above were about the possible uniqueness of the binary form Qin [3, Corollary 1] (i.e. the vector v in [3, Corollary 2]) and a bound on the number t of linear forms (i.e. rank 1 symmetric tensors). We are finally able to give an answer as complete as possible to these questions. The main result of the present paper is the following:

THEOREM 1. Let $P \in \mathbb{P}^N$ with $N = \binom{m+d}{d} - 1$. Suppose that $\operatorname{sbr}(P) < \operatorname{sr}(P)$ and $\operatorname{sbr}(P) + \operatorname{sr}(P) \le 2d + 1$.

Let $S \subset X_{m,d}$ be a 0-dimensional reduced subscheme that realizes the symmetric rank of P, and let $Z \subset X_{m,d}$ be a 0-dimensional non-reduced subscheme such that $P \in \langle Z \rangle$ and $\deg Z \leq \operatorname{sbr}(P)$. There is a unique rational normal curve $C_d \subset X_{m,d}$ such that $\deg(C_d \cap (S \cup Z)) \geq d + 2$. Then for all

points $P \in \mathbb{P}^N$ as above we have

 $\mathcal{S} = \mathcal{S}_1 \sqcup \mathcal{S}_2, \qquad \mathcal{Z} = \mathcal{Z}_1 \sqcup \mathcal{S}_2,$

where $S_1 = S \cap C_d$, $Z_1 = Z \cap C_d$ and $S_2 = (S \cap Z) \setminus S_1$. Moreover C_d , S_2 and Z are unique, $\deg(Z) = \operatorname{sbr}(P)$, $\deg(Z_1) + \deg(S_1) = d + 2$, $Z_1 \cap S_1 = \emptyset$ and Z is the unique zero-dimensional subscheme N of $X_{m,d}$ such that $\deg(N) \leq \operatorname{sbr}(P)$ and $P \in \langle N \rangle$.

In the language of polynomials, Theorem 1 can be rephrased as follows.

COROLLARY 1. Let $F \in K[x_0, \ldots, x_m]_d$ be such that $\operatorname{sbr}(F) + \operatorname{sr}(F) \leq 2d+1$ and $\operatorname{sbr}(F) < \operatorname{sr}(F)$. Then there are an integer $0 \leq t \leq (d-1)/2$, linear forms $L_1, L_2, M_1, \ldots, M_t \in K[x_0, \ldots, x_m]_1$, and a form $Q \in K[L_1, L_2]_d$ such that $F = Q + M_1^d + \cdots + M_t^d$, $t \leq \operatorname{sbr}(F) + \operatorname{sr}(F) - d - 2$, and $\operatorname{sr}(F) = \operatorname{sr}(Q) + t$. Moreover the line $\langle L_1, L_2 \rangle$, the forms M_1, \ldots, M_t and Q such that $Q = \sum_{i=1}^q l_i^{d-d_i} m_i$ with l_i 's linear forms and m_i 's forms of degree d_i such that $\sum (d_i + 1) = s - t$, are uniquely determined by F.

An analogous corollary can be stated for symmetric tensors.

COROLLARY 2. Let $T \in S^d V^*$ be such that $\operatorname{sbr}(T) + \operatorname{sr}(T) \leq 2d + 1$ and $\operatorname{sbr}(T) < \operatorname{sr}(T)$. Then there are an integer $0 \leq t \leq (d-1)/2$, vectors $v_1, v_2, w_1, \ldots, w_t \in S^1 V^*$, and a symmetric tensor $v \in S^d(\langle v_1, v_2 \rangle)$ such that $T = v + w_1^{\otimes d} + \cdots + w_t^{\otimes d}$, $t \leq \operatorname{sbr}(T) + \operatorname{sr}(T) - d - 2$, and $\operatorname{sr}(T) = \operatorname{sr}(v) + t$. Moreover the line $\langle v_1, v_2 \rangle$, the vectors v_1, \ldots, v_t and the tensor v such that $v = \sum_{i=1}^q u_i^{\otimes (d-d_i)} \otimes z_i$ with $u_i \in \langle v_1, v_2 \rangle$ and $z_i \in S^{d_i}(\langle v_1, v_2 \rangle)$ such that $\sum (d_i + 1) = s - t$, are uniquely determined by T.

Moreover, by introducing the notion of linearly general position of a scheme (Definition 1), we can give a finer geometric description of the condition for the uniqueness of the scheme \mathcal{Z} of Theorem 1. This is the main purpose of Theorem 2 and Corollary 4 below. In terms of homogeneous polynomials and symmetric tensors, they can be phrased as follows:

COROLLARY 3. Fix integers $m \ge 2$ and $d \ge 4$. Fix a degree d homogeneous polynomial F in m+1 variables (resp. $T \in S^d V$) such that $\operatorname{sbr}(F) \le d$ (resp. $\operatorname{sbr}(T) \le d$). Let $Z \subset \mathbb{P}^m$ be any smoothable zero-dimensional scheme such that $\nu_d(Z)$ evinces $\operatorname{sbr}(F)$ (resp. $\operatorname{sbr}(T)$). Assume that Z is in linearly general position. Then Z is the unique scheme which evinces $\operatorname{sbr}(F)$ (resp. $\operatorname{sbr}(T)$).

1. **Proofs.** The existence of a scheme \mathcal{Z} as in Theorem 1 is known from [4] and [5] (see Remark 1 of [3]).

LEMMA 1. Fix integers $m \geq 2$ and $d \geq 2$, a line $\ell \subset \mathbb{P}^m$ and any finite set $E \subset \mathbb{P}^m \setminus \ell$ such that $\sharp(E) \leq d$. Then $\dim(\langle \nu_d(E) \rangle) = \sharp(E) - 1$ and $\langle \nu_d(\ell) \rangle \cap \langle \nu_d(E) \rangle = \emptyset$. *Proof.* Since $h^0(\ell \cup E, \mathcal{O}_{\ell \cup E}(d)) = d + 1 + \sharp(E)$, to get both statements it is sufficient to prove $h^1(\mathcal{I}_{\ell \cup E}(d)) = 0$. Let $H \subset \mathbb{P}^m$ be a general hyperplane containing ℓ . Since E is finite and H is general, we have $H \cap E = \emptyset$. Hence the residual exact sequence of the scheme $\ell \cup E$ with respect to the hyperplane H is the following exact sequence on \mathbb{P}^m :

(2)
$$0 \to \mathcal{I}_E(d-1) \to \mathcal{I}_{\ell \cup E}(d) \to \mathcal{I}_{\ell,H}(d) \to 0.$$

Since $h^1(\mathcal{I}_E(d-1)) = h^1(H, \mathcal{I}_{\ell,H}(d)) = 0$, we get the lemma.

Proof of Theorem 1. All the statements are contained in [3, Theorem 1], except the uniqueness of \mathcal{Z} , the fact that $\deg(\mathcal{Z}_1) + \deg(\mathcal{S}_1) = d + 2$ and $\mathcal{Z}_1 \cap \mathcal{S}_1 = \emptyset$. Let $\ell \subset \mathbb{P}^m$ be the line such that $\nu_d(\ell) = C_d$. Take $Z, S, Z_1, S_1, S_2 \subset \mathbb{P}^m$ such that $\nu_d(Z) = \mathcal{Z}, \nu_d(S) = \mathcal{S}, \nu_d(Z_1) = \mathcal{Z}_1$, and $\nu_d(S_i) = \mathcal{S}_i$ for i = 1, 2. Assume the existence of another subscheme $\mathcal{Z}' \subset X_{m,d}$ such that $P \in \langle \mathcal{Z}' \rangle$ and $\deg(\mathcal{Z}') \leq \operatorname{sbr}(P)$. Set $\mathcal{Z}'_1 := \mathcal{Z}' \cap C_d$. The fact that $\mathcal{Z}' = \mathcal{Z}'_1 \sqcup S_2$ is actually given by the proof of [3, Theorem 1(b)–(d)]. At the end of step (a) (last five lines) of that proof, there is a description of the next steps (b)–(d) needed to prove that $\mathcal{Z} = (\mathcal{Z} \cap C_d) \sqcup \mathcal{S}_2$ for a certain scheme \mathcal{Z} . The role played by \mathcal{Z} in [3, Theorem 1] is the same that \mathcal{Z}' plays here, hence the same steps (b)–(d) give $\mathcal{Z}' = \mathcal{Z}'_1 \sqcup \mathcal{S}_2$ as we want here (one just needs to write \mathcal{Z}' instead of \mathcal{Z}).

Since C_d is a smooth curve, $\mathcal{Z}_1 \cup \mathcal{Z}'_1 \subset C_d$, $\mathcal{S}_2 \cap C_d = \emptyset$, and $\mathcal{Z} \cup \mathcal{Z}'$ $= (\mathcal{Z}_1 \cup \mathcal{Z}'_1) \sqcup \mathcal{S}_2$, the schemes \mathcal{Z} and \mathcal{Z}' are curvilinear. Hence all subschemes of \mathcal{Z} and \mathcal{Z}' are smoothable. Hence any subscheme of either \mathcal{Z} or \mathcal{Z}' may be used to compute the border rank of some point of \mathbb{P}^N . Since deg $(\ell \cap (Z \cup S))$ $\geq d+2, \nu_d((Z\cup S)\cap \ell)$ spans $\langle C_d \rangle$. Lemma 1 implies $\langle C_d \rangle \cap \langle S_2 \rangle = \emptyset$. Since $P \in \langle \mathcal{S}_1 \cup \mathcal{S}_2 \rangle$ and $\sharp(S) = \operatorname{sr}(P)$, we have $P \notin \langle \mathcal{A} \rangle$ for any $\mathcal{A} \subsetneq \mathcal{S}$. Therefore $\langle \{P\} \cup S_2 \rangle \cap \langle S_1 \rangle$ is a unique point. Call it P_1 . Similarly, $\langle Z_1 \rangle \cap \langle S_2 \rangle$ is a unique point, say P_2 . Similarly, $\langle \mathcal{Z}'_1 \rangle \cap \langle \mathcal{S}_2 \rangle$ is a unique point, P_3 . Since $\langle C_d \rangle \cap \langle S_2 \rangle = \emptyset$, the set $\langle C_d \rangle \cap \langle \{P\} \cup S_2 \rangle$ is at most one point. Since $P_i \in \langle C_d \rangle \cap \langle \{P\} \cup S_2 \rangle$, i = 1, 2, 3, we have $P_1 = P_2 = P_3$ and $\{P_1\} = \langle C_d \rangle \cap \langle \{P\} \cup S_2 \rangle$. Since $P_1 = P_3$, we have $P_1 \in \langle Z'_1 \rangle \cap \langle S_1 \rangle$. Take any $E \subseteq \mathcal{Z}_1$ such that $P_1 \in \langle E \rangle$. Since $P \in \langle \{P_1\} \cup \mathcal{S}_2 \rangle \subseteq \langle E \cup \mathcal{S}_2 \rangle$ and $P \notin \langle \mathcal{U} \rangle$ for any $\mathcal{U} \subsetneq \mathcal{Z}$, we get $E \cup \mathcal{S}_2 = \mathcal{Z}$. Hence $E = \mathcal{Z}_1$. Therefore \mathcal{Z}_1 computes $\operatorname{sbr}(P_1)$ with respect to C_d . Similarly, \mathcal{Z}'_1 computes $\operatorname{sbr}(P_2)$ with respect to the same rational normal curve C_d . For any $Q \in \langle C_d \rangle$ with $\operatorname{sbr}(Q) < (d+2)/2$ (equivalently $\operatorname{sbr}(Q) \neq (d+2)/2$), there is a unique zero-dimensional subscheme of $\langle C_d \rangle$ which evinces $\operatorname{sbr}(Q)$ ([9, Proposition 1.36]; in [9, Definition 1.37], this scheme is called the canonical form of the polynomial associated to P). Since $P_1 = P_2$, we have $\mathcal{Z}'_1 = \mathcal{Z}_1$.

DEFINITION 1. A scheme $Z \subset \mathbb{P}^m$ is said to be in *linearly general position* if for every linear subspace $R \subsetneq \mathbb{P}^m$ we have $\deg(R \cap Z) \leq \dim(R) + 1$. Notice that the conclussion of the next theorem is false if either d = 2or m = 1. Moreover if d = 3 and m > 1, then it essentially says that a point in the tangential variety of a Veronese variety belongs to a unique tangent line. This is a consequence of the well known Sylvester theorem on decompositions of binary forms ([4], [10]).

THEOREM 2. Fix integers $m \ge 2$ and $d \ge 4$. Fix $P \in \mathbb{P}^N$. Let $Z \subset \mathbb{P}^m$ be any smoothable zero-dimensional scheme such that $P \in \langle \nu_d(Z) \rangle$ and $P \notin \langle \nu_d(\overline{Z}) \rangle$ for any $\overline{Z} \subsetneq Z$. Assume that $\deg(Z) \le d$ and Z is in linearly general position. Then Z is the unique scheme $Z' \subset \mathbb{P}^m$ such that $\deg(Z') \le d$ and $P \in \langle \nu_d(Z') \rangle$. Moreover $\nu_d(Z)$ evinces $\operatorname{sbr}(P)$.

Proof. Since deg(Z) ≤ d and Z is smoothable, [4, Proposition 11 (last sentence)] gives sbr(P) ≤ d. Hence there is a scheme which evinces sbr(P) ([3, Remark 3]). The existence of such a scheme follows from [3, Remark 1], and the inequality sbr(P) ≤ d. Fix any scheme $Z' \subset \mathbb{P}^m$ such that $Z' \neq Z$, deg(Z') ≤ d, P ∈ $\langle \nu_d(Z') \rangle$, and P ∉ $\langle \nu_d(Z'') \rangle$ for any $Z'' \subsetneq Z'$. Since deg($Z \cup Z'$) ≤ 2d + 1 and $h^1(\mathbb{P}^m, \mathcal{I}_{Z \cup Z'}(d)) > 0$ ([3, Lemma 1]), there is a line $D \subset \mathbb{P}^m$ such that deg($D \cap (Z \cup Z')$) ≥ d + 2 ([4, Lemma 34]). Since Z is in linearly general position and $m \ge 2$, we have deg($Z \cap D$) ≤ 2. Hence deg($Z' \cap D$) ≥ d, so deg(Z') = d. Since deg(Z') = d, we get $Z' \subset D$. Hence $P \in \langle \nu_d(D) \rangle$, so sbr(P) = d. The secant varieties of any non-degenerate curve have the expected dimension ([1, Remark 1.6]). Hence sbr(P) ≤ $\lfloor (d+2)/2 \rfloor$. Since deg(Z') = d, we assumed deg(Z') ≤ sbr(P), contradicting the assumption $d \ge 4$.

COROLLARY 4. Fix integers $m \ge 2$ and $d \ge 4$. Fix $P \in \mathbb{P}^N$ such that $\operatorname{sbr}(P) \le d$. Let $Z \subset \mathbb{P}^m$ be any smoothable zero-dimensional scheme such that $\nu_d(Z)$ evinces $\operatorname{sbr}(P)$. Assume that Z is in linearly general position. Then Z is the unique scheme which evinces $\operatorname{sbr}(P)$.

Acknowledgments. The authors were partially supported by CIRM of FBK Trento (Italy), Project Galaad of INRIA Sophia Antipolis Méditerranée (France), Marie Curie: Promoting science (FP7-PEOPLE-2009-IEF), MIUR and GNSAGA of INdAM (Italy).

References

- [1] B. Ådlandsvik, Joins and higher secant varieties, Math. Scand. 61 (1987), 213–222.
- J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), 201–222.
- [3] E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank, Math. Z. 271 (2012), 1141–1149.
- [4] A. Bernardi, A. Gimigliano and M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34–55.

- J. Buczyński, A. Ginensky and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture, arXiv:1007.0192 [math.AG].
- [6] J. Buczyński and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties, Linear Algebra Appl. 438 (2013), 668–689.
- [7] L. Chiantini and C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 454 (2002), 151–178.
- C. Ciliberto, M. Mella and F. Russo, Varieties with one apparent double point, J. Algebraic Geom. 13 (2004), 475–512.
- [9] A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Math. 1721, Springer, Berlin, 1999.
- [10] J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339–366.
- [11] L.-H. Lim and V. De Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. 30 (2008), 1084–1127.
- [12] R. C. Vaughan and T. D. Wooley, *Waring's problem: a survey*, in: Number Theory for the Millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 301–340.

Edoardo Ballico Department of Mathematics University of Trento 38123 Povo (TN), Italy E-mail: edoardo.ballico@unitn.it Alessandra Bernardi Dipartimento di Matematica "Giuseppe Peano" Università degli Studi di Torino Via Carlo Alberto 10 I-10123 Torino, Italy E-mail: alessandra.bernardi@unito.it

Received 9.5.2012 and in final form 7.8.2012

(2788)