Unique decomposition for a polynomial of low rank

by Edoardo Ballico (Trento) and
Alessandra Bernardi (Torino)

Abstract

Let F be a homogeneous polynomial of degree d in $m+1$ variables defined over an algebraically closed field of characteristic 0 and suppose that F belongs to the s th secant variety of the d-uple Veronese embedding of \mathbb{P}^{m} into $\mathbb{P}_{\binom{m+d}{d}-1}$ but that its minimal decomposition as a sum of d th powers of linear forms requires more than s summands. We show that if $s \leq d$ then F can be uniquely written as $F=M_{1}^{d}+\cdots+M_{t}^{d}+Q$, where M_{1}, \ldots, M_{t} are linear forms with $t \leq(d-1) / 2$, and Q is a binary form such that $Q=\sum_{i=1}^{q} l_{i}^{d-d_{i}} m_{i}$ with l_{i} 's linear forms and m_{i} 's forms of degree d_{i} such that $\sum\left(d_{i}+1\right)=s-t$.

Introduction. In this paper we will always work over an algebraically closed field K of characteristic 0 . Let $X_{m, d} \subset \mathbb{P}^{N}$, with $m \geq 1, d \geq 2$ and $N:=\binom{m+d}{m}-1$, be the classical Veronese variety obtained as the image of the d-uple Veronese embedding $\nu_{d}: \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}$. The sth secant variety $\sigma_{s}\left(X_{m, d}\right)$ of the Veronese variety $X_{m, d}$ is the Zariski closure in \mathbb{P}^{N} of the union of all linear spans $\left\langle P_{1}, \ldots, P_{s}\right\rangle$ with $P_{1}, \ldots, P_{s} \in X_{m, d}$. For any point $P \in \mathbb{P}^{N}$, we indicate with $\operatorname{sbr}(P)$ the minimum integer s such that $P \in \sigma_{s}\left(X_{m, d}\right)$. This integer is called the symmetric border rank of P.

Since $\mathbb{P}^{m} \simeq \mathbb{P}\left(K\left[x_{0}, \ldots, x_{m}\right]_{1}\right) \simeq \mathbb{P}\left(V^{*}\right)$ with V an $(m+1)$-dimensional vector space over K, the generic element belonging to $\sigma_{s}\left(X_{m, d}\right)$ is the projective class of a form (symmetric tensor) of type

$$
\begin{equation*}
F=L_{1}^{d}+\cdots+L_{r}^{d} \quad\left(T=v_{1}^{\otimes d}+\cdots+v_{r}^{\otimes d}\right) \tag{1}
\end{equation*}
$$

The minimum $r \in \mathbb{N}$ such that F can be written as in (1) is the symmetric rank of F and we denote it $\operatorname{sr}(F)(\operatorname{sr}(T)$, if we replace F with $T)$.

The decomposition of a homogeneous polynomial with a minimum number of terms and a minimum number of variables is a problem that is receiving a great deal of attention not only in classical algebraic geometry

[^0]([2], [9], [7], [8], [10]), but also from the point of view of applications like computational complexity ([11]) and signal processing ([12]).

At the workshop on Tensor Decompositions and Applications (September 13-17, 2010, Monopoli, Bari, Italy), A. Bernardi presented a work in collaboration with E. Ballico where a possible structure of small rank homogeneous polynomials with border rank smaller than rank was characterized (see [3]). It is well known that, if a homogeneous polynomial F is such that $\operatorname{sbr}(F)<\operatorname{sr}(F)$, then there are infinitely many decompositions of F as in (1). Our purpose in [3] was to find, among all the possible decompositions of F, a "best" one in terms of the number of variables. Namely: Does there exist a canonical choice of two variables such that most of the terms involved in the decomposition (1) of F depend only on those two variables? The precise statement of that result is the following:

- ([3, Corollary 1]) Let $F \in K\left[x_{0}, \ldots, x_{m}\right]_{d}$ be such that $\operatorname{sbr}(F)+$ $\operatorname{sr}(F) \leq 2 d+1$ and $\operatorname{sbr}(F)<\operatorname{sr}(F)$. Then there are an integer $t \geq 0$, linear forms $L_{1}, L_{2}, M_{1}, \ldots, M_{t} \in K\left[x_{0}, \ldots, x_{m}\right]_{1}$, and a form $Q \in$ $K\left[L_{1}, L_{2}\right]_{d}$ such that $F=Q+M_{1}^{d}+\cdots+M_{t}^{d}, t \leq \operatorname{sbr}(F)+\operatorname{sr}(F)-d-2$, and $\operatorname{sr}(F)=\operatorname{sr}(Q)+t$. Moreover t, M_{1}, \ldots, M_{t} and the linear span of L_{1}, L_{2} are uniquely determined by F.

In terms of tensors this can be translated as follows:

- ([3, Corollary 2]) Let $T \in S^{d} V^{*}$ be such that $\operatorname{sbr}(T)+\operatorname{sr}(T) \leq$ $2 d+1$ and $\operatorname{sbr}(T)<\operatorname{sr}(T)$. Then there are an integer $t \geq 0$, vectors $v_{1}, v_{2}, w_{1}, \ldots, w_{t} \in S^{1} V^{*}$, and a symmetric tensor $v \in S^{d}\left(\left\langle v_{1}, v_{2}\right\rangle\right)$ such that $T=v+w_{1}^{\otimes d}+\cdots+w_{t}^{\otimes d}, t \leq \operatorname{sbr}(T)+\operatorname{sr}(T)-d-2$, and $\operatorname{sr}(T)=\operatorname{sr}(v)+t$. Moreover t, w_{1}, \ldots, w_{t} and $\left\langle v_{1}, v_{2}\right\rangle$ are uniquely determined by T.

The natural questions raised by applied people at the Monopoli workshop mentioned above were about the possible uniqueness of the binary form Q in [3, Corollary 1] (i.e. the vector v in [3, Corollary 2]) and a bound on the number t of linear forms (i.e. rank 1 symmetric tensors). We are finally able to give an answer as complete as possible to these questions. The main result of the present paper is the following:

Theorem 1. Let $P \in \mathbb{P}^{N}$ with $N=\binom{m+d}{d}-1$. Suppose that

$$
\operatorname{sbr}(P)<\operatorname{sr}(P) \quad \text { and } \quad \operatorname{sbr}(P)+\operatorname{sr}(P) \leq 2 d+1
$$

Let $\mathcal{S} \subset X_{m, d}$ be a 0-dimensional reduced subscheme that realizes the symmetric rank of P, and let $\mathcal{Z} \subset X_{m, d}$ be a 0-dimensional non-reduced subscheme such that $P \in\langle\mathcal{Z}\rangle$ and $\operatorname{deg} \mathcal{Z} \leq \operatorname{sbr}(P)$. There is a unique rational normal curve $C_{d} \subset X_{m, d}$ such that $\operatorname{deg}\left(C_{d} \cap(\mathcal{S} \cup \mathcal{Z})\right) \geq d+2$. Then for all
points $P \in \mathbb{P}^{N}$ as above we have

$$
\mathcal{S}=\mathcal{S}_{1} \sqcup \mathcal{S}_{2}, \quad \mathcal{Z}=\mathcal{Z}_{1} \sqcup \mathcal{S}_{2}
$$

where $\mathcal{S}_{1}=\mathcal{S} \cap C_{d}, \mathcal{Z}_{1}=\mathcal{Z} \cap C_{d}$ and $\mathcal{S}_{2}=(\mathcal{S} \cap \mathcal{Z}) \backslash \mathcal{S}_{1}$. Moreover C_{d}, \mathcal{S}_{2} and \mathcal{Z} are unique, $\operatorname{deg}(\mathcal{Z})=\operatorname{sbr}(P), \operatorname{deg}\left(\mathcal{Z}_{1}\right)+\operatorname{deg}\left(\mathcal{S}_{1}\right)=d+2, \mathcal{Z}_{1} \cap \mathcal{S}_{1}=\emptyset$ and \mathcal{Z} is the unique zero-dimensional subscheme N of $X_{m, d}$ such that $\operatorname{deg}(N) \leq$ $\operatorname{sbr}(P)$ and $P \in\langle N\rangle$.

In the language of polynomials, Theorem 1 can be rephrased as follows.
Corollary 1. Let $F \in K\left[x_{0}, \ldots, x_{m}\right]_{d}$ be such that $\operatorname{sbr}(F)+\operatorname{sr}(F) \leq$ $2 d+1$ and $\operatorname{sbr}(F)<\operatorname{sr}(F)$. Then there are an integer $0 \leq t \leq(d-1) / 2$, linear forms $L_{1}, L_{2}, M_{1}, \ldots, M_{t} \in K\left[x_{0}, \ldots, x_{m}\right]_{1}$, and a form $Q \in K\left[L_{1}, L_{2}\right]_{d}$ such that $F=Q+M_{1}^{d}+\cdots+M_{t}^{d}, t \leq \operatorname{sbr}(F)+\operatorname{sr}(F)-d-2$, and $\operatorname{sr}(F)=$ $\operatorname{sr}(Q)+t$. Moreover the line $\left\langle L_{1}, L_{2}\right\rangle$, the forms M_{1}, \ldots, M_{t} and Q such that $Q=\sum_{i=1}^{q} l_{i}^{d-d_{i}} m_{i}$ with l_{i} 's linear forms and m_{i} 's forms of degree d_{i} such that $\sum\left(d_{i}+1\right)=s-t$, are uniquely determined by F.

An analogous corollary can be stated for symmetric tensors.
Corollary 2. Let $T \in S^{d} V^{*}$ be such that $\operatorname{sbr}(T)+\operatorname{sr}(T) \leq 2 d+1$ and $\operatorname{sbr}(T)<\operatorname{sr}(T)$. Then there are an integer $0 \leq t \leq(d-1) / 2$, vectors $v_{1}, v_{2}, w_{1}, \ldots, w_{t} \in S^{1} V^{*}$, and a symmetric tensor $v \in S^{d}\left(\left\langle v_{1}, v_{2}\right\rangle\right)$ such that $T=v+w_{1}^{\otimes d}+\cdots+w_{t}^{\otimes d}, t \leq \operatorname{sbr}(T)+\operatorname{sr}(T)-d-2$, and $\operatorname{sr}(T)=\operatorname{sr}(v)+t$. Moreover the line $\left\langle v_{1}, v_{2}\right\rangle$, the vectors v_{1}, \ldots, v_{t} and the tensor v such that $v=\sum_{i=1}^{q} u_{i}^{\otimes\left(d-d_{i}\right)} \otimes z_{i}$ with $u_{i} \in\left\langle v_{1}, v_{2}\right\rangle$ and $z_{i} \in S^{d_{i}}\left(\left\langle v_{1}, v_{2}\right\rangle\right)$ such that $\sum\left(d_{i}+1\right)=s-t$, are uniquely determined by T.

Moreover, by introducing the notion of linearly general position of a scheme (Definition 1), we can give a finer geometric description of the condition for the uniqueness of the scheme \mathcal{Z} of Theorem 1. This is the main purpose of Theorem 2 and Corollary 4 below. In terms of homogeneous polynomials and symmetric tensors, they can be phrased as follows:

Corollary 3. Fix integers $m \geq 2$ and $d \geq 4$. Fix a degree d homogeneous polynomial F in $m+1$ variables (resp. $T \in S^{d} V$) such that $\operatorname{sbr}(F) \leq d$ (resp. $\operatorname{sbr}(T) \leq d)$. Let $Z \subset \mathbb{P}^{m}$ be any smoothable zero-dimensional scheme such that $\nu_{d}(Z)$ evinces $\operatorname{sbr}(F)($ resp. $\operatorname{sbr}(T))$. Assume that Z is in linearly general position. Then Z is the unique scheme which evinces $\operatorname{sbr}(F)$ (resp. $\operatorname{sbr}(T))$.

1. Proofs. The existence of a scheme \mathcal{Z} as in Theorem 1 is known from [4] and [5] (see Remark 1 of [3]).

LEMMA 1. Fix integers $m \geq 2$ and $d \geq 2$, a line $\ell \subset \mathbb{P}^{m}$ and any finite set $E \subset \mathbb{P}^{m} \backslash \ell$ such that $\sharp(E) \leq d$. Then $\operatorname{dim}\left(\left\langle\nu_{d}(E)\right\rangle\right)=\sharp(E)-1$ and $\left\langle\nu_{d}(\ell)\right\rangle \cap\left\langle\nu_{d}(E)\right\rangle=\emptyset$.

Proof. Since $h^{0}\left(\ell \cup E, \mathcal{O}_{\ell \cup E}(d)\right)=d+1+\sharp(E)$, to get both statements it is sufficient to prove $h^{1}\left(\mathcal{I}_{\ell \cup E}(d)\right)=0$. Let $H \subset \mathbb{P}^{m}$ be a general hyperplane containing ℓ. Since E is finite and H is general, we have $H \cap E=\emptyset$. Hence the residual exact sequence of the scheme $\ell \cup E$ with respect to the hyperplane H is the following exact sequence on \mathbb{P}^{m} :

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{E}(d-1) \rightarrow \mathcal{I}_{\ell \cup E}(d) \rightarrow \mathcal{I}_{\ell, H}(d) \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $h^{1}\left(\mathcal{I}_{E}(d-1)\right)=h^{1}\left(H, \mathcal{I}_{\ell, H}(d)\right)=0$, we get the lemma.
Proof of Theorem 1. All the statements are contained in [3, Theorem 1], except the uniqueness of \mathcal{Z}, the fact that $\operatorname{deg}\left(\mathcal{Z}_{1}\right)+\operatorname{deg}\left(\mathcal{S}_{1}\right)=d+2$ and $\mathcal{Z}_{1} \cap \mathcal{S}_{1}=\emptyset$. Let $\ell \subset \mathbb{P}^{m}$ be the line such that $\nu_{d}(\ell)=C_{d}$. Take $Z, S, Z_{1}, S_{1}, S_{2}$ $\subset \mathbb{P}^{m}$ such that $\nu_{d}(Z)=\mathcal{Z}, \nu_{d}(S)=\mathcal{S}, \nu_{d}\left(Z_{1}\right)=\mathcal{Z}_{1}$, and $\nu_{d}\left(S_{i}\right)=\mathcal{S}_{i}$ for $i=1,2$. Assume the existence of another subscheme $\mathcal{Z}^{\prime} \subset X_{m, d}$ such that $P \in\left\langle\mathcal{Z}^{\prime}\right\rangle$ and $\operatorname{deg}\left(\mathcal{Z}^{\prime}\right) \leq \operatorname{sbr}(P)$. Set $\mathcal{Z}_{1}^{\prime}:=\mathcal{Z}^{\prime} \cap C_{d}$. The fact that $\mathcal{Z}^{\prime}=\mathcal{Z}_{1}^{\prime} \sqcup S_{2}$ is actually given by the proof of [3, Theorem $1(\mathrm{~b})-(\mathrm{d})$]. At the end of step (a) (last five lines) of that proof, there is a description of the next steps (b)-(d) needed to prove that $\mathcal{Z}=\left(\mathcal{Z} \cap C_{d}\right) \sqcup \mathcal{S}_{2}$ for a certain scheme \mathcal{Z}. The role played by \mathcal{Z} in [3, Theorem 1] is the same that \mathcal{Z}^{\prime} plays here, hence the same steps (b)-(d) give $\mathcal{Z}^{\prime}=\mathcal{Z}_{1}^{\prime} \sqcup \mathcal{S}_{2}$ as we want here (one just needs to write \mathcal{Z}^{\prime} instead of $\left.\mathcal{Z}\right)$.

Since C_{d} is a smooth curve, $\mathcal{Z}_{1} \cup \mathcal{Z}_{1}^{\prime} \subset C_{d}, \mathcal{S}_{2} \cap C_{d}=\emptyset$, and $\mathcal{Z} \cup \mathcal{Z}^{\prime}$ $=\left(\mathcal{Z}_{1} \cup \mathcal{Z}_{1}^{\prime}\right) \sqcup \mathcal{S}_{2}$, the schemes \mathcal{Z} and \mathcal{Z}^{\prime} are curvilinear. Hence all subschemes of \mathcal{Z} and \mathcal{Z}^{\prime} are smoothable. Hence any subscheme of either \mathcal{Z} or \mathcal{Z}^{\prime} may be used to compute the border rank of some point of \mathbb{P}^{N}. Since $\operatorname{deg}(\ell \cap(Z \cup S))$ $\geq d+2, \nu_{d}((Z \cup S) \cap \ell)$ spans $\left\langle C_{d}\right\rangle$. Lemma 1 implies $\left\langle C_{d}\right\rangle \cap\left\langle\mathcal{S}_{2}\right\rangle=\emptyset$. Since $P \in\left\langle\mathcal{S}_{1} \cup \mathcal{S}_{2}\right\rangle$ and $\sharp(S)=\operatorname{sr}(P)$, we have $P \notin\langle\mathcal{A}\rangle$ for any $\mathcal{A} \subsetneq \mathcal{S}$. Therefore $\left\langle\{P\} \cup \mathcal{S}_{2}\right\rangle \cap\left\langle\mathcal{S}_{1}\right\rangle$ is a unique point. Call it P_{1}. Similarly, $\left\langle\mathcal{Z}_{1}\right\rangle \cap\left\langle\mathcal{S}_{2}\right\rangle$ is a unique point, say P_{2}. Similarly, $\left\langle\mathcal{Z}_{1}^{\prime}\right\rangle \cap\left\langle\mathcal{S}_{2}\right\rangle$ is a unique point, P_{3}. Since $\left\langle C_{d}\right\rangle \cap\left\langle\mathcal{S}_{2}\right\rangle=\emptyset$, the set $\left\langle C_{d}\right\rangle \cap\left\langle\{P\} \cup \mathcal{S}_{2}\right\rangle$ is at most one point. Since $P_{i} \in\left\langle C_{d}\right\rangle \cap\left\langle\{P\} \cup \mathcal{S}_{2}\right\rangle, i=1,2,3$, we have $P_{1}=P_{2}=P_{3}$ and $\left\{P_{1}\right\}=\left\langle C_{d}\right\rangle \cap\left\langle\{P\} \cup \mathcal{S}_{2}\right\rangle$. Since $P_{1}=P_{3}$, we have $P_{1} \in\left\langle\mathcal{Z}_{1}^{\prime}\right\rangle \cap\left\langle\mathcal{S}_{1}\right\rangle$. Take any $E \subseteq \mathcal{Z}_{1}$ such that $P_{1} \in\langle E\rangle$. Since $P \in\left\langle\left\{P_{1}\right\} \cup \mathcal{S}_{2}\right\rangle \subseteq\left\langle E \cup \mathcal{S}_{2}\right\rangle$ and $P \notin\langle\mathcal{U}\rangle$ for any $\mathcal{U} \subsetneq \mathcal{Z}$, we get $E \cup \mathcal{S}_{2}=\mathcal{Z}$. Hence $E=\mathcal{Z}_{1}$. Therefore \mathcal{Z}_{1} computes $\operatorname{sbr}\left(P_{1}\right)$ with respect to C_{d}. Similarly, \mathcal{Z}_{1}^{\prime} computes $\operatorname{sbr}\left(P_{2}\right)$ with respect to the same rational normal curve C_{d}. For any $Q \in\left\langle C_{d}\right\rangle$ with $\operatorname{sbr}(Q)<(d+2) / 2$ (equivalently $\operatorname{sbr}(Q) \neq(d+2) / 2)$, there is a unique zero-dimensional subscheme of $\left\langle C_{d}\right\rangle$ which evinces $\operatorname{sbr}(Q)$ (9 , Proposition 1.36]; in [9, Definition 1.37], this scheme is called the canonical form of the polynomial associated to P). Since $P_{1}=P_{2}$, we have $\mathcal{Z}_{1}^{\prime}=\mathcal{Z}_{1}$.

Definition 1. A scheme $Z \subset \mathbb{P}^{m}$ is said to be in linearly general position if for every linear subspace $R \subsetneq \mathbb{P}^{m}$ we have $\operatorname{deg}(R \cap Z) \leq \operatorname{dim}(R)+1$.

Notice that the conclussion of the next theorem is false if either $d=2$ or $m=1$. Moreover if $d=3$ and $m>1$, then it essentially says that a point in the tangential variety of a Veronese variety belongs to a unique tangent line. This is a consequence of the well known Sylvester theorem on decompositions of binary forms ([4], [10]).

Theorem 2. Fix integers $m \geq 2$ and $d \geq 4$. Fix $P \in \mathbb{P}^{N}$. Let $Z \subset \mathbb{P}^{m}$ be any smoothable zero-dimensional scheme such that $P \in\left\langle\nu_{d}(Z)\right\rangle$ and $P \notin$ $\left\langle\nu_{d}(\bar{Z})\right\rangle$ for any $\bar{Z} \subsetneq Z$. Assume that $\operatorname{deg}(Z) \leq d$ and Z is in linearly general position. Then Z is the unique scheme $Z^{\prime} \subset \mathbb{P}^{m}$ such that $\operatorname{deg}\left(Z^{\prime}\right) \leq d$ and $P \in\left\langle\nu_{d}\left(Z^{\prime}\right)\right\rangle$. Moreover $\nu_{d}(Z)$ evinces $\operatorname{sbr}(P)$.

Proof. Since $\operatorname{deg}(Z) \leq d$ and Z is smoothable, [4, Proposition 11 (last sentence)] gives $\operatorname{sbr}(P) \leq d$. Hence there is a scheme which evinces $\operatorname{sbr}(P)$ ([3, Remark 3]). The existence of such a scheme follows from [3, Remark 1], and the inequality $\operatorname{sbr}(P) \leq d$. Fix any scheme $Z^{\prime} \subset \mathbb{P}^{m}$ such that $Z^{\prime} \neq Z$, $\operatorname{deg}\left(Z^{\prime}\right) \leq d, P \in\left\langle\nu_{d}\left(Z^{\prime}\right)\right\rangle$, and $P \notin\left\langle\nu_{d}\left(Z^{\prime \prime}\right)\right\rangle$ for any $Z^{\prime \prime} \subsetneq Z^{\prime}$. Since $\operatorname{deg}\left(Z \cup Z^{\prime}\right) \leq 2 d+1$ and $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z \cup Z^{\prime}}(d)\right)>0([3$, Lemma 1]), there is a line $D \subset \mathbb{P}^{m}$ such that $\operatorname{deg}\left(D \cap\left(Z \cup Z^{\prime}\right)\right) \geq d+2$ ([4, Lemma 34]). Since Z is in linearly general position and $m \geq 2$, we have $\operatorname{deg}(Z \cap D)$ ≤ 2. Hence $\operatorname{deg}\left(Z^{\prime} \cap D\right) \geq d$, so $\operatorname{deg}\left(Z^{\prime}\right)=d$. Since $\operatorname{deg}\left(Z^{\prime}\right)=d$, we get $Z^{\prime} \subset D$. Hence $P \in\left\langle\nu_{d}(D)\right\rangle$, so $\operatorname{sbr}(P)=d$. The secant varieties of any non-degenerate curve have the expected dimension ([1, Remark 1.6]). Hence $\operatorname{sbr}(P) \leq\lfloor(d+2) / 2\rfloor$. Since $\operatorname{deg}\left(Z^{\prime}\right)=d$, we assumed $\operatorname{deg}\left(Z^{\prime}\right) \leq \operatorname{sbr}(P)$, contradicting the assumption $d \geq 4$.

Corollary 4. Fix integers $m \geq 2$ and $d \geq 4$. Fix $P \in \mathbb{P}^{N}$ such that $\operatorname{sbr}(P) \leq d$. Let $Z \subset \mathbb{P}^{m}$ be any smoothable zero-dimensional scheme such that $\nu_{d}(Z)$ evinces $\operatorname{sbr}(P)$. Assume that Z is in linearly general position. Then Z is the unique scheme which evinces $\operatorname{sbr}(P)$.

Acknowledgments. The authors were partially supported by CIRM of FBK Trento (Italy), Project Galaad of INRIA Sophia Antipolis Méditerranée (France), Marie Curie: Promoting science (FP7-PEOPLE-2009-IEF), MIUR and GNSAGA of INdAM (Italy).

References

[1] B. Ådlandsvik, Joins and higher secant varieties, Math. Scand. 61 (1987), 213-222.
[2] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), 201-222.
[3] E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank, Math. Z. 271 (2012), 1141-1149.
[4] A. Bernardi, A. Gimigliano and M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.
[5] J. Buczyński, A. Ginensky and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, arXiv:1007.0192 [math.AG].
[6] J. Buczyński and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties, Linear Algebra Appl. 438 (2013), 668-689.
[7] L. Chiantini and C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 454 (2002), 151-178.
[8] C. Ciliberto, M. Mella and F. Russo, Varieties with one apparent double point, J. Algebraic Geom. 13 (2004), 475-512.
[9] A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Math. 1721, Springer, Berlin, 1999.
[10] J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.
[11] L.-H. Lim and V. De Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. 30 (2008), 1084-1127.
[12] R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, in: Number Theory for the Millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 301-340.

Edoardo Ballico
Department of Mathematics
University of Trento
38123 Povo (TN), Italy
E-mail: edoardo.ballico@unitn.it

Alessandra Bernardi
Dipartimento di Matematica "Giuseppe Peano" Università degli Studi di Torino Via Carlo Alberto 10 I-10123 Torino, Italy E-mail: alessandra.bernardi@unito.it

Received 9.5.2012
and in final form 7.8.2012

[^0]: 2010 Mathematics Subject Classification: 15A21, 15A69, 14N15.
 Key words and phrases: Waring problem, polynomial decomposition, symmetric rank, symmetric tensors, Veronese varieties, secant varieties.

