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Hermitian (a, b)-modules and Saito’s “higher residue pairings”

by Piotr P. Karwasz (Gdańsk)

Abstract. Following the work of Daniel Barlet [Pitman Res. Notes Math. Ser. 366
(1997), 19–59] and Ridha Belgrade [J. Algebra 245 (2001), 193–224], the aim of this article
is to study the existence of (a, b)-hermitian forms on regular (a, b)-modules. We show that
every regular (a, b)-module E with a non-degenerate bilinear form can be written in a
unique way as a direct sum of (a, b)-modules Ei that admit either an (a, b)-hermitian or
an (a, b)-anti-hermitian form or both; all three cases are possible, and we give explicit
examples.

As an application we extend the result of Ridha Belgrade on the existence, for all
(a, b)-modules E associated with the Brieskorn module of a holomorphic function with an
isolated singularity, of an (a, b)-bilinear non-degenerate form on E. We show that with
a small transformation Belgrade’s form can be considered (a, b)-hermitian and that the
result satisfies the axioms of Kyoji Saito’s “higher residue pairings”.

1. Introduction. In this article we will study the self-duality properties
of (a, b)-modules and more precisely the conditions under which they admit
a non-degenerate hermitian form.

The (a, b)-modules were introduced by D. Barlet [Bar93] as a formal
completion of the Brieskorn module ([Bri70])

D :=
Ωn+1

0

df ∧ dΩn−1
0

associated to a holomorphic function f : Cn+1 → C with an isolated singu-
larity at the origin, where we denote by Ωp

0 the germs of holomorphic p-forms
at 0.

We briefly recall the basic results about (a, b)-modules and refer the
reader to the articles [Bar93] and [Bar97] for further details.

Definition 1.1. Let C[[b]] be the ring of formal series in the variable b.
An (a, b)-module is a free C[[b]]-module E of finite rank equipped with a
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C-linear map a : E → E that satisfies the commutation relation

(1.1) ab− ba = b2,

where b : E → E is multiplication by b ∈ C[[b]].

For a complex number λ ∈ C and an (a, b)-module E, we define a mono-
mial of type (λ, 0) to be an element x ∈ E that satisfies the relation ax = λbx.
The simplest (a, b)-modules are those generated over C[[b]] by a monomial
eλ of type (λ, 0). These modules are called elementary and denoted Eλ.

Given an (a, b)-module E, a C[[b]]-submodule F of E closed under mul-
tiplication by a is called an (a, b)-submodule. Since the quotient of an (a, b)-
module E by an (a, b)-submodule F is not necessarily b-torsion free, an
(a, b)-submodule F of E will be called normal if E/F is free and hence has
an induced (a, b)-module structure.

The (a, b)-modules associated to a Brieskorn module are all regular, i.e.
they are (a, b)-submodules of an (a, b)-module E satisfying aE ⊂ bE (a
simple-pole (a, b)-module). The composition series of a regular (a, b)-module
have the following property:

Proposition 1.2. Let E be a regular (a, b)-module. Then all its compo-
sition series are of the form

0 = E0 ( · · · ( En−1 ( En = E,

with Ei/Ei−1 elementary (a, b)-modules Eλ.

As proven in [Bar93], the quotients of two composition series of an
(a, b)-module E are not unique, even if we ignore the permutations of the
quotients.

2. (a, b)-modules and their duality. The dual and bi-dual structures
on (a, b)-modules were first introduced in [Bar97] and [Bel01] and then ex-
panded in our thesis (cf. [Kar09]). We will therefore begin by giving a formal
definition of the duality structures we work with.

In the spirit of category theory we will define an (a, b)-morphism as a map
φ : E → F between two (a, b)-modules E and F , which is a morphism of
the underlying C[[b]]-modules and respects the a-structure: φ(ax) = aφ(x)
for any x ∈ E. We will call φ an isomorphism (resp. endomorphism) of
(a, b)-modules if it is bijective (resp. E = F ).

2.1. (a, b)-linear maps and dual (a, b)-modules. Let E and F be (a, b)-
modules. As defined by D. Barlet [Bar97], the C[[b]]-module HomC[[b]](E,F )
of C[[b]]-linear maps from E to F has a natural structure of (a, b)-module
provided by an operator Λ that satisfies

(2.1) (Λφ)(x) = aF (φ(x))− φ(aEx),
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where φ ∈ HomC[[b]](E,F ), x ∈ E, and aE and aF are the a-structures of E
and F respectively. For this (a, b)-module we use the notation Hom(a,b)(E,F ).

For simplicity we will denote aE , aF and Λ all by the letter a; to avoid
confusion we write

a · φ(x)

for (Λφ)(x), and
aφ(x)

for aE(φ(x)). Thus, we will write equation (2.1) as a ·φ(x) = aφ(x)−φ(ax).
By choosing E0 as the codomain of the morphisms, we can give the

following definition:

Definition 2.1 (Barlet). Let E be an (a, b)-module and E0 the elemen-
tary (a, b)-module of parameter 0. Then we call the module

Hom(a,b)(E,E0)

the dual (a, b)-module of E and denote it by E∗.

Remark 2.2. When considering only the b-structure of E, E∗ as a C[[b]]-
module is exactly the dual of a C[[b]]-module, since E0 = C[[b]]e0.

The duality functor ∗ is exact (cf. [Bar97]).

2.2. Conjugate (a, b)-module. In [Bel01] R. Belgrade uses another
definition of dual (a, b)-module which is not equivalent to the one of D. Bar-
let. In order to be able to express one concept in terms of the other, we
will introduce an operation that exchanges the signs of both a and b, whose
behaviour is similar to that of conjugation of the complex field.

As in the case of the complex field C, the ring of formal series C[[b]] also
admits a natural involution

ˇ: C[[b]]→ C[[b]], S(b) 7→ Š(b) = S(−b),
where S(b) ∈ C[[b]]. This allows us to define the conjugate of an (a, b)-module
in the same way as one defines the conjugate of a complex vector space.

Definition 2.3. Let E be an (a, b)-module. We define the (a, b)-conju-
gate of E, denoted by Ě, to be the set E endowed with the a- and b-structure
given by

a ·Ě v = −a ·E v, b ·Ě v = −b ·E v,
where ·Ě and ·E denote the (a, b)-structures of Ě and E respectively.

Since we change the signs of both a and b, the formula ab − ba = b2 is
still satisfied.

Remark 2.4. An (a, b)-module is not necessarily isomorphic to its con-
jugate. Take, for example, the (a, b)-module of rank 2 generated by two
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elements x and y that satisfy

ax = λbx, ay = λby + (1 + αb)x,

where λ and α ∈ C and α 6= 0. Its conjugate satisfies

ax = λbx, ay = λby + (1− αb)x,

and the classification of rank 2 regular (a, b)-modules, given in [Bar93], im-
plies that the two modules are not isomorphic.

One can see immediately that for every (a, b)-module E the double con-
jugate (Ě)̌ is the (a, b)-module E itself.

On the other hand, let E and F be (a, b)-modules and φ a morphism
between E and F . Since φ(−ax) = −aφ(x) and φ(−bx) = −bφ(x), for all
x ∈ E, the map φ is also a morphism between the conjugates Ě and F̌ . The
conjugation functor associates to every (a, b)-module its conjugate and to
every morphism, the morphism itself. This functor is exact.

For an (a, b)-module E we will be especially interested in a particular kind
of conjugate, the conjugate of the dual, which we call the adjoint (a, b)-mod-
ule and denote by Ě∗.

2.3. Bilinear forms and tensor products. To define Hom(a,b)(E,F )
we used an equivalent object for the underlying b-structure. We can proceed
in a similar way to obtain the concept of (a, b)-bilinear maps:

Definition 2.5. Let E, F and G be (a, b)-modules. A C[[b]]-linear map
Φ : E × F → G is (a, b)-bilinear if

aΦ(x, y) = Φ(ax, y) + Φ(x, ay).

Remark 2.6. If Φ : E × F → G is (a, b)-bilinear and v ∈ E, then

Φv := Φ(v, ·) : w 7→ Φ(v, w), w ∈ F,

is not necessarily an (a, b)-morphism. However the map π : v 7→ Φv is an
(a, b)-morphism between E and Hom(a,b)(F,G):

π(av)(x) = Φav(x) = aΦv(x)− Φv(ax) = a · Φv(x) = aπ(v).

Inherently linked to the concept of (a, b)-bilinear maps is that of tensor
products, which allows a more practical manipulation of these objects.

Definition 2.7. Let E and F be (a, b)-modules. The (a, b)-tensor prod-
uct of E and F , denoted by E ⊗(a,b) F , is the C[[b]]-module

E ⊗C[[b]] F

endowed with the a-structure defined by

a(v ⊗ w) = (av)⊗ w + v ⊗ (aw) for v ∈ E and w ∈ F .
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This a-structure is well defined:

a(bv ⊗ w) = a(bv)⊗ w + bv ⊗ a(w) = ba(v)⊗ w + b2v ⊗ w + v ⊗ ba(w)

= a(v)⊗ bw + v ⊗ a(bw) = a(v ⊗ bw),

for each v ∈ E, w ∈ F and it satisfies ab− ba = b2:

a(bv ⊗ w)− ba(v ⊗ w)

= ba(v)⊗ w + b2v ⊗ w + bv ⊗ a(w)− ba(v)⊗ w − bv ⊗ a(w)

= b2(v ⊗ w).

We can easily verify that the above tensor product has the usual universal
property: there exists a bilinear map

Φ : E × F → E ⊗(a,b) F

such that for every bilinear map Ψ on E×F with values in an (a, b)-module
G, there exists a unique (a, b)-morphism Ψ̃ from E⊗(a,b)F into G that makes
the following diagram commutative:

E × F

Φ
��

Ψ // G

E ⊗(a,b) F

Ψ̃

::

Indeed, we can take

Φ : E × F → E ⊗(a,b) F , (v, w) 7→ v ⊗(a,b) w,

Ψ̃ : E ⊗(a,b) F → G, v ⊗(a,b) w 7→ Ψ(v, w).

The unicity of Ψ̃ follows directly from the universal property of the tensor
product of C[[b]]-modules. We need only verify that the map is a-linear. We
check it on the generators v ⊗(a,b) w for v ∈ E and w ∈ F :

Ψ̃(a(v ⊗(a,b) w)) = Ψ̃((av)⊗(a,b) w + v ⊗(a,b) (aw))

= Ψ(av, w) + Ψ(v, aw) = aΨ(v, w) = aΨ̃(v ⊗(a,b) w).

Exploiting the properties of the tensor product of C[[b]]-modules, we can
derive in a similar manner the properties of the tensor product in the theory
of (a, b)-modules.

Lemma 2.8. Let E, F and G be (a, b)-modules. Then the tensor product
has the following properties:

(i) E ⊗(a,b) F ' F ⊗(a,b) E,
(ii) (E ⊗(a,b) F )⊗(a,b) G ' E ⊗(a,b) (F ⊗(a,b) G),
(iii) (E ⊗(a,b) F )∗ ' E∗ ⊗(a,b) F

∗,

(iv) (E ⊗(a,b) F )̌ ' Ě ⊗(a,b) F̌ ,
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(v) The (a, b)-morphism

Φ : E → E ⊗(a,b) E0, v 7→ v ⊗(a,b) e0,

where e0 is a generator of the elementary (a, b)-module E0, is an
isomorphism.

(vi) We have the following isomorphism of (a, b)-modules:

E∗ ⊗(a,b) F → Hom(a,b)(E,F ⊗(a,b) E0),

φ⊗(a,b) y 7→ (Φ : x 7→ y ⊗(a,b) φ(x)),

where φ ∈ E∗, x ∈ E and y ∈ F .
Remark 2.9. In [Bel01], R. Belgrade defines the concept of δ-dual of an

(a, b)-module E:

Definition 2.10 (Belgrade). Let E be an (a, b)-module and δ ∈ C. Then
the δ-dual of E is the set HomC[[b]](E,Eδ) with the (a, b)-structure defined
by

[a · φ](x) = φ(ax)− aφ(x), [b · φ](x) = −bφ(x) = φ(−bx).

From properties (v) and (vi) of the previous lemma we obtain the iso-
morphism E∗ ⊗(a,b) F ' Hom(a,b)(E,F ), which in turn yields an alternative
description of the δ-dual. In fact from Definition 2.10 it is easy to show that
the δ-dual of an (a, b)-module is the module

Hom(a,b)(Ě, Eδ),

which in turn can be rewritten as Ě∗ ⊗(a,b) Eδ.

We will call an (a, b)-bilinear map E × F → E0 an (a, b)-bilinear form.
In the rest of this section we will deal with the existence of non-degenerate
hermitian forms on (a, b)-modules. We need the following definitions.

Definition 2.11. Let E and F be (a, b)-modules and Φ a bilinear form
on E×F . We say that Φ is non-degenerate if the (a, b)-morphism v 7→ Φ(v, ·)
is an isomorphism of E onto F ∗.

Definition 2.12. Let E be an (a, b)-module. A sesquilinear form on E
is a bilinear form on E × Ě.

Remark 2.13. Since a non-degenerate sequilinear form on an (a, b)-mod-
ule E induces an isomorphism of E and its adjoint Ě∗, it follows that not
every (a, b)-module admits such a form (e.g. Eλ with λ 6= 0 does not).

Consider now a sesquilinear form Φ on E. By applying to it the conjugate
functor we obtain a bilinear map Φ̌ on Ě ×E with values in Ě0. If we fix an
isomorphism of Ě0 with E0, we can consider Φ̌ as a sequilinear form on Ě.
Under this assumption, we define (a, b)-hermitian and anti-(a, b)-hermitian
forms:
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Definition 2.14. Let E be an (a, b)-module. An (a, b)-sesquilinear form
H on E is called (a, b)-hermitian, respectively anti-(a, b)-hermitian, if it sat-
isfies

H(v, w) = Ȟ(w, v),

respectively
H(v, w) = −Ȟ(w, v),

where v ∈ E, w ∈ Ě and Ȟ is the sesquilinear form on Ě defined above.

We have already shown that in order to admit a non-degenerate sesquilin-
ear form, an (a, b)-module must be self-adjoint. We now refine the concept
of self-adjoint:

Definition 2.15. Let E be a self-adjoint (a, b)-module. We say that E
is hermitian (resp. anti-hermitian) if it admits a non-degenerate hermitian
(resp. anti-hermitian) form.

Let E be an (a, b)-module endowed with a hermitian form and let Φ :
E → Ě∗ be the linear form associated to the hermitian form via Remark 2.6.

We can translate the hermitian property into the identity between Φ and
its adjoint Φ̌∗ : E → Ě∗. In fact while Φ(v) for v ∈ E is the linear map

φ : w 7→ Φ(v, w), w ∈ Ě,
the adjoint map Φ̌∗ sends an element v ∈ E = E∗∗ to the map

φ : w 7→ v(Φ̌(w, ·)) = Φ̌(w, v).

We will use this formulation extensively in the next section.
Note moreover that having an isomorphism from an (a, b)-module E onto

its δ-dual Ě∗ ⊗(a,b) Eδ is equivalent to specifying an isomorphism between
E ⊗(a,b) E−δ/2 and

Ě∗ ⊗(a,b) Eδ ⊗(a,b) E−δ/2 ' Ě∗ ⊗(a,b) Eδ/2.

Since (
­E ⊗(a,b) E−δ/2

)∗ ' Ě∗ ⊗(a,b) Ě
∗
−δ/2 ' Ě

∗ ⊗(a,b) Eδ/2,

we can identify an isomorphism of E with its δ-dual with a hermitian form
on E ⊗(a,b) E−δ/2.

3. Existence of hermitian forms. In this section we will analyze the
existence of non-degenerate hermitian forms on regular (a, b)-modules. We
will proceed in two steps: in the first two subsections we will restrict ourselves
to a subclass of (a, b)-modules called indecomposable and show that every
regular (a, b)-module can be uniquely decomposed into the direct sum of
indecomposable ones (Theorem 3.7).

In the last subsection we will show that a self-adjoint (a, b)-module which
is indecomposable admits a hermitian or an anti-hermitian form. The result
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is optimal since there are examples that admit only a hermitian or only an
anti-hermitian form (Theorem 3.13).

3.1. Indecomposable (a, b)-modules

Definition 3.1. Let E be an (a, b)-module. We say that E is indecom-
posable if it cannot be written as a direct sum F ⊕G of non-zero (a, b)-mod-
ules.

Whenever we decompose an (a, b)-module E into a (non-trivial) direct
sum of (a, b)-modules, the rank of each component is strictly less than the
rank of E, hence by induction for every (a, b)-module E we can find a de-
composition

E =
r⊕
i=1

Fi,

where r ∈ N and each Fi is an indecomposable (a, b)-submodule.
We are interested in whether the isomorphism classes of the Fi are unique

and do not depend upon the decomposition. To clarify this, we will need the
following result:

Proposition 3.2. Let E be a regular and indecomposable (a, b)-module.
Then every endomorphism of E is either bijective or nilpotent.

The proof will need several steps beginning with a definition:

Definition 3.3. Let E be a regular (a, b)-module and λ ∈ C. We define

Vλ =
∑

Fi⊂E,Fi'Eλ

Fi,

the sum of all (a, b)-submodules of E isomorphic to Eλ.

Clearly Vλ is an (a, b)-submodule. We will use Vλ as an induction step in
the proof of Proposition 3.2, by choosing a λ such that Vλ is normal:

Proposition 3.4. Let E be a regular (a, b)-module, let λ ∈ C and let

λmin = inf
j
{λ+ j | ∃x ∈ E, ax = (λ+ j)bx}

be the minimal λ + j such that E contains a monomial of type (λ + j, 0).
Then Vλmin

is a normal (a, b)-submodule of E isomorphic as an (a, b)-module
to the direct sum of a finite number of copies of Eλmin

.

Proof. We will use two facts.
First, for every (a, b)-submodule W '

⊕
Eλmin

of E, W is normal in E.
Indeed, let {ei}pi=1 be a basis of W with p the rank of W . Assume for con-
tradiction that there exists x ∈W which is in bE, but not in bW .

By possibly translating x by an element of bW , we can assume x =∑p
i=1 αiei, αi ∈ C. We can easily verify that ax = λminbx but now if x = by
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we must have ay = (λmin − 1)by, and since y ∈ E this contradicts the
minimality of λmin.

On the other hand, Vλmin
is a direct sum of copies of Eλmin

. In fact let W
be the largest (inclusionwise) direct sum of copies of Eλmin

included in Vλmin
.

We remark that since W is normal, for any (a, b)-submodule F isomorphic
to Eλmin

only one of two cases is possible: either

W ∩ F = {0} or F ⊂W.
If W ∩ F 6= {0}, let e be the generator of F and S(b)bne ∈ W with

S(0) 6= 0; then S(b)e ∈ W by normality and e = S−1(b)S(b)e ∈ W so
F ⊂W .

IfW contains every (a, b)-submodule isomorphic to Eλmin
, then it is equal

to Vλmin
: otherwise there is an F such that W ∩ F = {0}, hence W ⊕ F is

still in Vλmin
, which contradicts the maximality of W .

We will now use the (a, b)-submodule Vλmin
to prove

Proposition 3.5. Let E be a regular (a, b)-module and φ : E → E an
(a, b)-morphism. Then φ is bijective if and only if φ is injective.

Proof. To show that bijectivity follows from injectivity, we will proceed
by induction on the rank of the module.

If E is of rank 1 the statement is satisfied: in fact E must be isomorphic
to one of the Eλ and the only b-linear morphisms from Eλ to itself that are
also a-linear are those that send the generator e to αe, α ∈ C. They are all
bijective for α 6= 0.

Let now E be of rank n > 1. We can find a λmin (cf. [Bar93]) that has the
minimality property of the previous proposition. Hence the module Vλmin

is
normal and isomorphic to a direct sum of copies of Eλmin

.
Let {ei} be a basis of Vλmin

composed of monomials of type (λmin, 0) and
let x be any monomial of type (λmin, 0). We want to show that x is a linear
combination of elements of the basis, with coefficients in C ⊂ C[[b]].

From the definition of Vλmin
it follows that x ∈ Vλmin

. Suppose now that
x =

∑
i Si(b)ei and apply a to both sides. We obtain

ax =
∑
i

(λminSi(b)bei + S′i(b)b
2ei) = λminbx+

∑
i

S′i(b)b
2ei.

Since x is a monomial of type (λmin, 0), we must have S′i(b) = 0 for all i, and
therefore

x =
∑
i

Si(0)ei,

as desired.
Let φ : E → E be an injective endomorphism and {ei} a basis of Vλmin

.
Every φ(ei) is a monomial of type (λmin, 0) and therefore an element of Vλmin

.
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Hence
φ|Vλmin

: Vλmin
→ Vλmin

.

Moreover since the coefficients of the φ(ei) in our basis are complex con-
stants, φ|Vλmin

behaves as a linear map between finite-dimensional spaces; in
particular, if it is injective, it is also surjective.

In order to apply our induction hypothesis consider the commutative
diagram

0 // Vλmin

� � //

φ

��

E // //

φ

��

E/Vλmin
//

φ̃
��

0

0 // Vλmin

� � // E // // E/Vλmin
// 0

where φ̃ is the (a, b)-linear morphism induced on the quotient. As we showed
above, the first vertical arrow is bijective.

The third arrow φ̃ is injective: indeed, suppose that two classes with
representatives x, y ∈ E map to the same class modulo Vλmin

. Then φ(x−y)
is in Vλmin

. From the bijectivity of φ|Vλmin
we can find v ∈ Vλmin

such that
φ(x− y) = φ(v), so x− y = v by the injectivity of φ, that is, x and y are in
the same class modulo Vλmin

.
Since the rank of E/Vλmin

is strictly inferior to the rank of E, we can
apply the induction hypothesis to show that φ̃ is also bijective.

By homological algebra, the second arrow is also bijective.

We can now consider endomorphisms that are not necessarily injective.
Once again the structure of (a, b)-modules does not differ essentially from
that of finite-dimensional vector spaces over C:

Lemma 3.6. Let E be a regular (a, b)-module and φ an endomorphism
of E. Then E splits into the direct sum of two φ-stable (a, b)-submodules F
and N , with φ bijective on F and nilpotent on N .

Proof. Consider the sequence of normal (a, b)-submodules

Kn = Kerφn, n ∈ N.

Since two normal (a, b)-submodules F ⊂ G are equal if and only if they
have the same rank, the sequence Kn stabilizes: Km = Km+1 = · · · for
some m.

On the other hand, consider the sequence In = Imφn. The restriction

φ|Im : Im → Im+1 ⊂ Im
is injective: if y = φm(x) ∈ Kerφ, then x ∈ Km+1 = Km, hence y = 0. From
the previous proposition we deduce that this restriction is in fact bijective,
which means that Im+1 = φ(Im) = Im.
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We can now take F = Im and N = Km. They are clearly stable under φ.
We will show that E = F ⊕N .

We have Kerφ ∩ F = {0}, since φ|Im is injective. A fortiori, since K ⊂
Kerφ we have F ∩N = {0}.

Pick x ∈ E. Since Im = I2m we can find y ∈ E such that φm(x) = φ2m(y).
Set k = x− φm(y). Thus

x = φm(y) + k

with φm(y) ∈ Im and k ∈ Km, which implies that E = N ⊕ F .
The restriction of φ to N is nilpotent, since φ|mN = 0, while we already

showed that the restriction to Im = F is bijective.

Proof of Proposition 3.2. Let φ be an endomorphism of E. Then by
Lemma 3.6, E splits into a sum N⊕F of two (a, b)-modules, with φ nilpotent
on N and bijective on F . But E is indecomposable, so either N = 0 and φ
is bijective, or F = 0 and φ is nilpotent.

3.2. Krull–Schmidt theorem. This subsection will be devoted to the
proof of a version of the Krull–Schmidt theorem for (a, b)-modules. The
principal tool in the proof will be Proposition 3.2.

Theorem 3.7 (Krull–Schmidt for (a, b)-modules). Suppose that we have
two decompositions of a regular (a, b)-module E:

E =
m⊕
i=1

Ei, E =
n⊕
i=1

Fi,

where m,n ∈ N and all Ei and Fi are indecomposable (a, b)-modules. Then
m = n and up to reindexing, Ei is isomorphic to Fi for all 1 ≤ i ≤ n.

For the proof we need a couple of lemmas:

Lemma 3.8. Let E be a regular indecomposable (a, b)-module and φ an
automorphism of E. Suppose moreover that φ = φ1 + φ2. Then at least one
of φ1, φ2 is an isomorphism.

Proof. By applying φ−1 to both terms, we can assume without loss of
generality that φ = Id is the identity.

The endomorphisms φ1 and φ2 commute:

φ1φ2 − φ2φ1 = φ1(φ1 + φ2)− (φ2 + φ1)φ1 = φ1 − φ1 = 0.

By Lemma 3.2 each φi is either nilpotent or an isomorphism. If they were
both nilpotent, their sum would be nilpotent, which is absurd. Hence the
result.

Remark 3.9. By iterating the previous lemma, we can extend the result
to sums of more than two endomorphisms.
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Lemma 3.10. Let E and F be indecomposable regular (a, b)-modules and
let α : E → F and β : F → E be (a, b)-linear morphisms. Suppose that β ◦α
is an isomorphism. Then α and β are also isomorphisms.

Proof. Let us prove that F = Imα ⊕ Kerβ. If α(x) ∈ Kerβ, we have
β ◦ α(x) = 0, hence x = 0, and therefore

Imα ∩Kerβ = {0}.

Choose now any x ∈ F and let

y = α ◦ (β ◦ α)−1 ◦ β(x).

We have

β(x−y) = β(x)−β(y) = β(x)− (β ◦α)◦ (β ◦α)−1 ◦β(x) = β(x)−β(x) = 0.

Hence x = y + (x − y) with y ∈ Imα and x − y ∈ Kerβ. This implies
F = Imα⊕Kerβ.

Now since β ◦ α is injective, so must be α, and Imα cannot be 0. As F
is indecomposable, we must have Imα = F and Kerβ = 0. It follows that α
is bijective and hence so is β = (β ◦ α) ◦ α−1.

Proof of the Krull–Schmidt theorem for (a, b)-modules. We use induction
on m.

If m = 1, then E is indecomposable, we must have n = 1 and E1 ' F1.
In the general case consider the morphisms qi = πi ◦ p1, where πi is the

projection on Fi and pj is the projection on Ej . The sum∑
i

p1 ◦ qi = p1 ◦
∑
i

πi ◦ p1 = p1 ◦ p1 = p1

is the identity on E1. By Lemma 3.2, there is an i such that p1 ◦ qi|E1 :
E1 → E1 is an isomorphism. Suppose, without loss of generality, it is p1 ◦ q1;
then by Lemma 3.10, q1|E1 = π1 : E1 → F1 is an isomorphism.

To apply the induction hypothesis, set G =
∑m

i=2 Fi. We want to show
that E1 ⊕G is equal to E = F1 ⊕G. Since π1 is an isomorphism of E1 onto
F1 and its kernel is G, we need to show

E1 ∩G = {0}.
Indeed, if x ∈ E1 ∩G, then π1(x) = 0, but π1 restricted to E1 is injective, so
x = 0. On the other hand, every element of E can be written as v +w with
v ∈ F1 and w ∈ G. If y ∈ E1 is such that π1(y) = v, then

v + w = y + π1(y)− y + w,

and π1(y)− y ∈W by definition of π1. Hence E = E1 ⊕G = E1 +
∑m

i=2Ei.
We have immediately E/E1 ' G '

∑m
i=2Ei and we can apply the in-

duction hypothesis to G.
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We now focus on finding hermitian isomorphisms of an (a, b)-module E
with its adjoint Ě∗. The Krull–Schmidt theorem will be useful to show the
following decomposition:

Proposition 3.11. Let E be a regular self-adjoint (a, b)-module. Then

E '
r⊕
i=1

(F⊕αii )⊕
s⊕
i=1

(Gi ⊕ Ǧ∗i )⊕βi

where r, s, αi and βi are positive integers. The Fi are self-adjoint (a, b)-mod-
ules and the Gi are non-self-adjoint (a, b)-modules. The isomorphism classes
of the Fi, Gi and Ǧ∗i are all distinct.

Proof. Consider a decomposition E =
∑

iEi into indecomposable (a, b)-
modules. Since E is self-adjoint we have another decomposition

E ' Ě∗ =
∑
i

Ě∗i .

The Krull–Schmidt theorem ensures that the summands are unique up to a
permutation. So we can divide the Ei into two groups.

In the first group we put the self-adjoint components Fi with their mul-
tiplicities.

In the second one we put the non-self-adjoint components Gi with the
respective multiplicities. Since the two decompositions

∑
iEi and

∑
i Ě
∗
i

contain the same modules up to a permutation, the multiplicities of the Gi
and of the Ǧ∗i must be equal.

Remark 3.12. From the definition above we can immediately see that
the non-self-adjoint part of the decomposition always admits a hermitian
non-degenerate form. In fact if we consider the module Gi⊕ Ǧ∗i , a hermitian
form can be given by

Φ : Gi ⊕ Ǧ∗i → ( ­Gi ⊕ Ǧ∗i )
∗ = Ǧ∗i ⊕Gi, (x, y) 7→ (y, x).

If the multiplicity of a self-adjoint term Fi is even, we fall into the same
situation.

The case of odd multiplicity of a self-adjoint component is far more in-
teresting and we will study it in the next subsection.

3.3. Hermitian forms on indecomposable (a, b)-modules. As al-
ready noted in the previous subsection, the existence of hermitian forms on
an indecomposable self-adjoint (a, b)-module is not always guaranteed. We
have in fact the following theorem:

Theorem 3.13. Let E 6= {0} be a regular indecomposable self-adjoint
(a, b)-module. Then it admits a hermitian non-degenerate form or an anti-
hermitian one.
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Proof. Let Φ : E → Ě∗ be any isomorphism and set M = Φ−1Φ̌∗. Con-
sider now the two endomorphisms of E given by

Id +M and Id−M.

They commute and can be either isomorphisms or nilpotent, since E is in-
decomposable. But if they were both nilpotent, their sum 2 Id would be
nilpotent too, which is absurd.

If Id +M is an isomorphism, so is S = Φ + Φ̌∗, which is associated to a
non-degenerate hermitian form. The bijectivity of Id−M on the other hand
gives us an isomorphism A = Φ − Φ̌∗, which comes from an anti-hermitian
form.

Note that both cases of the previous theorem can occur.

Example 3.14. The simplest example of a regular self-adjoint and in-
decomposable (a, b)-module which admits only a hermitian form is the ele-
mentary (a, b)-module E0 with the isomorphism that sends the generator e
to its adjoint ě∗.

Example 3.15. To obtain only an anti-hermitian form, we can consider,
for given λ, µ ∈ C such that ±λ±µ 6∈ Z for all choices of signs, the (a, b)-mod-
ule E of rank 4 generated by {e1, e2, e3, e4} which satisfies

(3.1)

ae1 = λbe1,

ae2 = µbe2 + e1,

ae3 = −µbe3 + e1,

ae4 = −λbe4 + e2 − e3,

whose adjoint basis satisfies

a · ě∗4 = λbě∗4,

a · ě∗3 = µbě∗3 − ě∗4,
a · ě∗2 = −µbě∗2 + ě∗4,

a · ě∗1 = −λbě∗1 + ě∗3 + ě∗2.

It is easy to show by calculation that the only isomorphism between E and
Ě∗ is, up to mutliplication by a complex number, the one that sends e1, e2,
e3 and e4 to ě4, −ě3, ě2 and −ě1 respectively.

This isomorphism is anti-hermitian and since there are no other isomor-
phisms, E is also indecomposable.

Example 3.16. The regular (a, b)-module E0 ⊕ E0 admits both a her-
mitian and an anti-hermitian form.

4. Duality of geometric (a, b)-modules. In the study of the Brieskorn
lattice K. Saito introduced the concept of “higher residue pairings” (cf.
[Sai83]), which can be defined using a set of axiomatic properties.



Hermitian (a, b)-modules 255

Using the theory of (a, b)-modules R. Belgrade showed the existence of
a duality isomorphism between an (a, b)-module associated to a germ of a
holomorphic function in Cn+1 with an isolated singularity at the origin and
its (n+1)-dual. We will prove (as already noticed by R. Belgrade in [Bel01])
that the concepts of “higher residue pairings” and self-adjoint (a, b)-module
are linked.

D will always denote the Brieskorn module associated to a holomorphic
function in Cn+1 with an isolated singularity, and E its b-adic completion
considered as an (a, b)-module.

The following theorem of R. Belgrade gives a relationship between E and
its (n+ 1)-dual.

Theorem 4.1 (Belgrade). Let E be the (a, b)-module associated to a
germ of holomorphic function f : Cn+1 → C. Then there is a natural iso-
morphism between E and its (n+ 1)-dual:

∆ : E ' Ě∗ ⊗(a,b) En+1.

We can obtain from this isomorphism a series ∆k : E×E → C of bilinear
forms defined as follows:

[∆(y)](x) = (n+ 1)!
∞∑
k=0

∆k(x, y)bken+1

for x, y ∈ E.

5. “Higher residue pairings” of K. Saito. K. Saito introduced in
[Sai83] a series of pairings on the Brieskorn lattice D which are called “higher
residue pairings”:

K(k) : D ×D → C, k ∈ N,

characterized by the following properties:

(i) K(k)(ω1, ω2) = K(k+1)(bω1, ω2) = −K(k+1)(ω1, bω2).
(ii) K(k)(aω1, ω2)−K(k)(ω1, aω2) = (n+ k)K(k−1)(ω1, ω2).
(iii) K(0)(D, bD) = K(0)(bD,D) = 0 and K(0) induces Grothendieck’s

residue on the quotient D/bD.
(iv) K(k) is (−1)k-symmetric.

Remark 5.1. We notice that from properties (i) and (iii) above we can
deduce that K(k)(D, bk+1D) = K(k)(bk+1D,D) = 0, so we can consider the
pairings K(k) as being defined on D/bk+1D.

In the following section we will show the following result:

Proposition 5.2. The ∆k have properties (i)–(iii) of “higher residue
pairings” of K. Saito.



256 P. P. Karwasz

6. Proof of Proposition 5.2

6.1. Proof of (i). We use the b-linearity of ∆(y) to obtain∑
k

(n+ 1)!∆k(bx, y)bken+1 = [∆(y)](bx) = b[∆(y)](x)

=
∑
k

(n+ 1)!∆k(x, y)bk+1en+1,

which gives ∆k(x, y) = ∆k+1(bx, y). Similarly, by using the b-linearity of ∆
and the adjoint morphism, we obtain

∆(by)(x) = ∆̌∗(x)(by) = −b∆̌∗(x)(y) = −b∆(y)(x),

and therefore

(n+ 1)!
∑
k

∆k(x, by)bken+1 = ∆(by)(x) = −b∆(y)(x)

= (n+ 1)!
∑
k

−∆k(x, y)bk+1en+1,

which implies ∆k(bx, y) = −∆k+1(x, by).

6.2. Proof of (ii). Since ∆ is an isomorphism we have ∆(ay) = a·Ě∗⊗Eδ
[∆(y)] and

(n+ 1)!
∑
k

∆k(x, ay)bken+1 = ∆(ay)(x) = a · [∆(y)](x)

= ∆(y)(ax)−a[∆(y)(x)] = (n+1)!
∑
k

(
∆k(ax, y)bken+1−∆k(x, y)abken+1

)
.

The definitions of (a, b)-module and of En+1 (aen+1 = (n+ 1)ben+1) give

abken+1 = bkaen+1 + kbk+1en+1 = (n+ k + 1)bk+1en+1

hence
∆k(ax, y)−∆k(x, ay) = (n+ k)∆k−1(x, y).

6.3. Grothendieck’s residue. We now have to show that the pairing
∆0 induces Grothendieck’s residue on D/bD ' Ωn+1/df ∧Ωn.

Proof of (iv). From the definition of ∆0 and the b-linearity of ∆ it is
easy to see that ∆0(D, bD) = ∆0(bD,D) = 0. We can hence consider ∆0 as
a pairing on D/bD.

Grothendieck’s residue is defined as follows:

Res(g, h) := lim
εj→0, ∀j

�

|∂f/∂zj |=εj

gh dz

∂f/∂z1 · · · ∂f/∂zn+1

where g, h ∈ O and dz = dz1 ∧ · · · ∧ dzn+1.
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The morphism ∆ is defined as the composition of six (a, b)-module mor-
phisms ([Bel01]) shown in the following graph:

E
α // F1

β // F2

F3

γ

``

δ��
Ěn+1 F5

ζ
oo F4η

oo

These morphisms pass to the quotient by the action of b, giving a decompo-
sition of the morphism ∆0:

E/bE
α̃ // F1/bF1

β̃ // F2/bF2

F3/bF3

γ̃

ee

δ̃zz
Ě∗⊗En+1

b(Ě∗⊗En+1)
F5/bF5

ζ̃

oo F4/bF4η̃
oo

We have to verify that the image of [g dz] under ∆0 is Res(g, ·), where gdz
is an element of Ωn+1. We will accomplish this in several steps using the
decomposition above.

Step 1: E, F1 and F2. We have the isomorphisms

F1

bF1
' Ωn+1

df ∧Ωn
,

F2

bF2
' Dbn+1

(∂̄ − df∧)Dbn
,

the morphism α̃ coincides with the identity onΩn+1/df∧Ωn, and β̃ is induced
by the inclusion i : Ωn+1 → Dbn+1. We deduce that β̃ ◦ α̃([g dz]) = [i(g dz)].
Let us write T ∈ Dbn+1,0 for the current i(g dz).

Step 2: path between F2 and F3. By using the description of Lemma
3.4.2 of [Bel01] we see that

F3

bF3
=

Ker(Db0,n+1 df∧−−→ Db1,n+1)

∂̄Ker(Db0,n df∧−−→ Db1,n)

and the isomorphism γ̃ is induced by the inclusion Db0,n+1 ⊂ Dbn+1. In
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order to find S := γ̃−1(T ) we have to solve the following system:

T = df ∧ αn,0,
∂̄αn,0 = df ∧ αn−1,1,

· · ·
∂̄α1,n−1 = df ∧ α0,n,

∂̄α0,n = S,

where αp,q∈Dbp,q. This system has a solution, since the complex (Db•,q; df∧)
is acyclic in degree 6= 0 for all q ∈ {0, . . . , n + 1}, and the solution satisfies
[S] = [T ] where [·] is the equivalence class in F2/bF2. We have

(∂̄ − df∧)

n∑
k=0

αk,n−k = ∂̄α0,n − df ∧ αn,0 = S − T.

We can compute this solution explicitly. Let (p, q) ∈ N2 and φp,q a C∞ test
form with compact support and of type (p, q). The action of T over φ0,n+1

is given by
〈T, φ0,n+1〉 =

�
φ0,n+1 ∧ g dz.

Then the current αn,0 defined by

〈αn,0, φ1,n+1〉 = lim
ε1→0

�

|∂1f |≥ε1

φ1,n+1 ∧ g dz2 ∧ · · · ∧ dzn+1

∂1f

satisfies T = df ∧ αn,0: in fact,

〈df ∧ αn,0, φ0,n+1〉 = lim
ε1→0

�

|∂1f |≥ε1

φ0,n+1 ∧ df ∧ g dz2 ∧ · · · ∧ dzn+1

∂1f

=
�
φ0,n+1 ∧ g dz,

and thanks to the Stokes theorem,

〈∂̄αn,0, φ1,n〉 = −〈αn,0, ∂̄φ1,n〉 = lim
ε1→0

−
�

|∂1f |≥ε1

∂̄φ1,n ∧ g dz2 ∧ · · · ∧ dzn+1

∂1f

= lim
ε1→0

�

|∂1f |=ε1

φ1,n ∧ g dz2 ∧ · · · ∧ dzn+1

∂1f
.

We will remark that the currents αn,0k defined for 1 ≤ k ≤ n+ 1 by

〈αn,0k , φ1,n+1〉 = lim
εk→0

�

|∂kf |≥εk

(−1)k+1φ1,n+1 ∧ g dz1 ∧ · · · d̂zk · · · ∧ dzn+1

∂kf

also satisfy df ∧ αn,0k = T . Moreover, [∂̄αn,0] = [∂̄αn,0k ] in F2/bF2: in fact,
(∂̄ − df∧)(αn,0 − αn,0k ) = ∂̄αn,0 − ∂̄αn,0k .
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For all k ∈ 0, . . . , n and 1 ≤ i1 < · · · < ik+1 ≤ n+ 1 define

αn−k,ki1,...,ik+1
=

1

(k + 1)!
lim
εiq→0

∀1≤q≤k+1

�

|∂i1f |≥εi1
|∂iqf |=εiq

(−1)
∑
q iq+1g

∧
l 6=i1,...,ik+1

dzl

∂i1f . . . ∂ik+1
f

and let αn−k,k := αn−k,k1,2,...,k+1. A simple computation gives

〈df ∧ αn−k,ki1,...,ik+1
, φk,n−k+1〉 =

〈
1

k + 1

k+1∑
q=1

∂̄αn−k+1,k−1

i1,...,îq ,...,ik+1
, φk,n−k+1

〉
.

Using this formula, we can prove by induction on k that the class of the
current αn−k,ki1,...,ik+1

does not depend on the iqs. This gives

[df ∧ αn−k,k] = [∂̄αn−k+1,k−1].

In particular ∂̄α0,n acts on the test function φn+1,0 in the following way:

〈∂̄α0,n, φn+1,0〉 =
1

(n+ 1)!
lim
εk→0
∀k

�

|∂kf |=εk
∀k

φn+1,0g

∂1f . . . ∂n+1f
.

Step 3: from F3/bF3 to (D/bD)∗. Notice that S is a current of type
(0, n+ 1) with support at the origin.

We have the isomorphism
F4

bF4
' Ker

(
Hn+1

0 (X,O)
df∧−−→ Hn+1

0 (X,Ω1)
)
,

the isomorphism between F3/bF3 and F4/bF4 is the natural one, and
F5

bF5
'
(

Ωn+1

df ∧Ωn

)∗
.

From Steps 1–3 we deduce that ∆0 induces Grothendieck’s residue.

6.4. Property (iv). We will show that the isomorphism given by R. Bel-
grade can be easily transformed into one that satisfies (iv).

Let∆ : E → Ě∗⊗(a,b)En+1 be Belgrade’s isomorphism. By tensoring with
E(n+1)/2 we can show that the isomorphisms between E and Ě∗ ⊗(a,b) En+1

are in bijection with the isomorphisms between E ⊗(a,b) E−(n+1)/2 and its
adjoint, through the map that sends an isomorphism Φ to Φ⊗(a,b) IdE−(n+1)/2

.
By an easy calculation we can prove the following lemma:

Lemma 6.1. Let ∆ : E → Ě∗ ⊗ En+1 be an isomorphism and

∆(y)(x) = (n+ 1)!
∑
k

∆k(x, y)bken+1

for x, y ∈ E. Then the ∆k satisfy Saito’s condition (iv) if and only if the
isomorphism ∆⊗(a,b) IdE−(n+1)/2

is hermitian.
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Proof. ∆⊗(a,b) IdE−(n+1)/2
is self-adjoint iff

∆⊗(a,b) IdE−(n+1)/2
(y ⊗ e−(n+1)/2)(x⊗ e−(n+1)/2) =

∑
k

Skb
ke0

⇔ ∆⊗(a,b) IdE−(n+1)/2
(x⊗ e−(n+1)/2)(y ⊗ e−(n+1)/2) =

∑
k

Sk(−b)ke0

for all x, y ∈ E. On the other hand,

∆⊗(a,b) IdE−(n+1)/2
(y ⊗ e−(n+1)/2)(x⊗ e−(n+1)/2) =

∑
k

Skb
ke0

⇔ ∆(y)(x) =
∑
k

Skb
ken+1.

By combining the previous equivalence with the results on the existence
of hermitian forms, we can extend Belgrade’s result:

Theorem 6.2. Let E be a regular (a, b)-module associated to a holomor-
phic function from Cn+1 to C with an isolated singularity. Then there exists
an isomorphism Φ : E → Ě∗ ⊗(a,b) En+1 with

Φ(y)(x) = (n+ 1)!
∑
k

Φk(x, y)bken+1

for all x and y such that the C-bilinear forms Φk have all four properties of
Saito’s “higher residue pairings”.

Proof. Let ∆ be Belgrade’s isomorphism and define ∆k as at the begin-
ning of this section. Consider the isomorphism

∆̌∗ ⊗(a,b) IdEn+1 : E → Ě∗ ⊗(a,b) En+1

and let Φ = (∆+ ∆̌∗ ⊗(a,b) IdEn+1)/2.
It is easy to see that the Φk satisfy (i) and (ii). Moreover since ∆0 is sym-

metric (Grothendieck’s residue) and ∆̌∗ ⊗(a,b) IdEn+1 induces the transpose
of ∆0 on E/bE, we have

Φ0 = (∆0 + t∆0)/2 = ∆0.

We have also

Φ⊗(a,b) IdE−(n+1)/2
= ( ­Φ⊗(a,b) IdE−(n+1)

)∗ = Φ̌∗ ⊗(a,b) IdE(n+1)/2

= Φ⊗(a,b) IdE−(n+1)/2
,

therefore the Φk satisfy (iv).
We just have to show that Φ ⊗(a,b) IdE−(n+1)/2

is an isomorphism. Since
there exists an isomorphism betweenE⊗(a,b)E−(n+1)/2 and its adjoint∆⊗(a,b)

IdE−(n+1)/2
, we can apply Proposition 3.5 and restrict ourselves to proving the

injectivity of Φ⊗(a,b) IdE−(n+1)/2
. But if Φ⊗(a,b) IdE−(n+1)/2

were not injective,
Φ would induce a degenerate form on E/bE, which is absurd.
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The existence of a hermitian form on E ⊗(a,b) E−(n+1)/2 gives us an
interesting restriction on the kind of (a, b)-module associated with Brieskorn
lattices:

Corollary 6.3. Let E be a regular (a, b)-module associated to a holo-
morphic function from Cn+1 to C with an isolated singularity. Then E⊗(a,b)

E−(n+1)/2 is a hermitian (a, b)-module.
Acknowledgements. I would like to thank Daniel Barlet for his guid-
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