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Hermitian (a,b)-modules and Saito’s “higher residue pairings”

by P1oTR P. KArRwASz (Gdanisk)

Abstract. Following the work of Daniel Barlet [Pitman Res. Notes Math. Ser. 366
(1997), 19-59] and Ridha Belgrade [J. Algebra 245 (2001), 193-224], the aim of this article
is to study the existence of (a, b)-hermitian forms on regular (a, b)-modules. We show that
every regular (a,b)-module E with a non-degenerate bilinear form can be written in a
unique way as a direct sum of (a,b)-modules E; that admit either an (a,b)-hermitian or
an (a,b)-anti-hermitian form or both; all three cases are possible, and we give explicit
examples.

As an application we extend the result of Ridha Belgrade on the existence, for all
(a,b)-modules E associated with the Brieskorn module of a holomorphic function with an
isolated singularity, of an (a,b)-bilinear non-degenerate form on E. We show that with
a small transformation Belgrade’s form can be considered (a,b)-hermitian and that the
result satisfies the axioms of Kyoji Saito’s “higher residue pairings”.

1. Introduction. In this article we will study the self-duality properties
of (a,b)-modules and more precisely the conditions under which they admit
a non-degenerate hermitian form.

The (a,b)-modules were introduced by D. Barlet [Bar93| as a formal
completion of the Brieskorn module ([Bri70])

9(7]1+1
Codf AdpT!
associated to a holomorphic function f : C**! — C with an isolated singu-
larity at the origin, where we denote by 25 the germs of holomorphic p-forms
at 0.

We briefly recall the basic results about (a,b)-modules and refer the
reader to the articles [Bar93] and [Bar97| for further details.

DEFINITION 1.1. Let CJ[[b]] be the ring of formal series in the variable b.

An (a,b)-module is a free C[[b]]-module E of finite rank equipped with a
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C-linear map a : E — E that satisfies the commutation relation
(1.1) ab — ba = b,
where b : E — E is multiplication by b € C[[b]].

For a complex number A € C and an (a, b)-module F, we define a mono-
mial of type (X, 0) to be an element 2 € E that satisfies the relation ax = \bx.
The simplest (a,b)-modules are those generated over C[[b]] by a monomial
ey of type (A, 0). These modules are called elementary and denoted FE).

Given an (a,b)-module E, a C[[b]]-submodule F' of E closed under mul-
tiplication by a is called an (a, b)-submodule. Since the quotient of an (a,b)-
module E by an (a,b)-submodule F' is not necessarily b-torsion free, an
(a,b)-submodule F' of E will be called normal if E/F is free and hence has
an induced (a, b)-module structure.

The (a,b)-modules associated to a Brieskorn module are all regular, i.e.
they are (a,b)-submodules of an (a,b)-module FE satisfying aE C bE (a
simple-pole (a,b)-module). The composition series of a regular (a, b)-module
have the following property:

PROPOSITION 1.2. Let E be a regular (a,b)-module. Then all its compo-
sition series are of the form

0=EyC-CEyyCE,=E,
with E;/E;_y elementary (a,b)-modules E).

As proven in [Bar93|, the quotients of two composition series of an
(a,b)-module E are not unique, even if we ignore the permutations of the
quotients.

2. (a,b)-modules and their duality. The dual and bi-dual structures
on (a,b)-modules were first introduced in [Bar97| and [Bel01] and then ex-
panded in our thesis (cf. [Kar09]). We will therefore begin by giving a formal
definition of the duality structures we work with.

In the spirit of category theory we will define an (a, b)-morphism as a map
¢ : E — F between two (a,b)-modules E and F', which is a morphism of
the underlying C[[b]]-modules and respects the a-structure: ¢(azx) = ag(x)
for any z € E. We will call ¢ an isomorphism (resp. endomorphism) of
(a,b)-modules if it is bijective (resp. E = F).

2.1. (a,b)-linear maps and dual (a, b)-modules. Let E and F be (a, b)-
modules. As defined by D. Barlet [Bar97|, the C[[b]]-module Homg ) (E, F)
of C[[b]]-linear maps from E to F' has a natural structure of (a,b)-module
provided by an operator A that satisfies

(2.1) (49)(z) = ar(¢(z)) — ¢p(apz),
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where ¢ € Homep (E, F), € E, and ag and ap are the a-structures of E
and F respectively. For this (a, b)-module we use the notation Hom, ) (£, F').

For simplicity we will denote ag, ap and A all by the letter a; to avoid
confusion we write

a- ¢(x)
for (A¢)(x), and
ag(x)
for ap(¢(zx)). Thus, we will write equation (2.1) as a- ¢(x) = ad(x) — ¢(ax).
By choosing Fy as the codomain of the morphisms, we can give the
following definition:

DEFINITION 2.1 (Barlet). Let F be an (a, b)-module and Ej the elemen-
tary (a,b)-module of parameter 0. Then we call the module

Hom,, 3 (E, Ey)
the dual (a,b)-module of E and denote it by E*.

REMARK 2.2. When considering only the b-structure of E, E* as a C[[b]]-
module is exactly the dual of a C[[b]]-module, since Ey = C[[b]]eo.

The duality functor * is exact (cf. [Bar97]).

2.2. Conjugate (a,b)-module. In [Bel0I] R. Belgrade uses another
definition of dual (a, b)-module which is not equivalent to the one of D. Bar-
let. In order to be able to express one concept in terms of the other, we
will introduce an operation that exchanges the signs of both a and b, whose
behaviour is similar to that of conjugation of the complex field.

As in the case of the complex field C, the ring of formal series C[[b]] also
admits a natural involution

T ClB]] = C[p)),  S(b) = S(b) = S(-b),

where S(b) € C[[b]]. This allows us to define the conjugate of an (a, b)-module
in the same way as one defines the conjugate of a complex vector space.

DEFINITION 2.3. Let E be an (a,b)-module. We define the (a, b)-conju-
gate of E, denoted by F, to be the set ¥ endowed with the a- and b-structure
given by

a-pv=—a-gv, b-pv=-b-pguv,
where -, and -g denote the (a, b)-structures of E and E respectively.

Since we change the signs of both a and b, the formula ab — ba = b? is
still satisfied.

REMARK 2.4. An (a,b)-module is not necessarily isomorphic to its con-
jugate. Take, for example, the (a,b)-module of rank 2 generated by two
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elements = and y that satisfy
ax = Xbx, ay= Nby+ (1+ ab)z,
where A and a € C and a # 0. Its conjugate satisfies
ax = Xbx, ay= N\by+ (1 — ab)z,

and the classification of rank 2 regular (a,b)-modules, given in [Bar93], im-
plies that the two modules are not isomorphic.

One can see immediately that for every (a,b)-module E the double con-
jugate (E)"is the (a,b)-module E itself.

On the other hand, let £ and F be (a,b)-modules and ¢ a morphism
between E and F. Since ¢(—ax) = —ap(z) and ¢(—bx) = —bp(x), for all
z € E, the map ¢ is also a morphism between the conjugates F and F. The
conjugation functor associates to every (a,b)-module its conjugate and to
every morphism, the morphism itself. This functor is exact.

For an (a, b)-module E we will be especially interested in a particular kind
of conjugate, the conjugate of the dual, which we call the adjoint (a,b)-mod-
ule and denote by E*.

2.3. Bilinear forms and tensor products. To define Homq ) (E, F')
we used an equivalent object for the underlying b-structure. We can proceed
in a similar way to obtain the concept of (a, b)-bilinear maps:

DEFINITION 2.5. Let E, F and G be (a, b)-modules. A C[[b]]-linear map
¢: ExF — Gis (a,b)-bilinear if

a®(z,y) = P(az,y) + P(z, ay).
REMARK 2.6. If #: E x F — G is (a,b)-bilinear and v € E, then
&, :=P(v,-) tw— P(v,w), weEF,

is not necessarily an (a,b)-morphism. However the map 7 : v + @, is an
(a, b)-morphism between E and Hom, ) (F, G):

m(av)(x) = Poy () = aDy(x) — Py(az) = a - Py(x) = arw(v).

Inherently linked to the concept of (a,b)-bilinear maps is that of tensor
products, which allows a more practical manipulation of these objects.

DEFINITION 2.7. Let E and F be (a,b)-modules. The (a, b)-tensor prod-
uct of E' and F, denoted by E ®(qy) F, is the C[[b]]-module

E ®cipp &
endowed with the a-structure defined by
av@w) = (av) Qw+v® (aw) forve EFand w e F.
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This a-structure is well defined:
a(bv @ w) = a(bv) @ w + b ® a(w) = ba(v) ® w + b*v @ w + v @ ba(w)
=a(v) @ bw 4+ v ® a(bw) = a(v ® bw),
for each v € E, w € F and it satisfies ab — ba = b*:
a(bv ® w) — ba(v ® w)
=ba(v) @ w+ b*v @ w + bv @ a(w) — ba(v) @ w — bv ® a(w)
=0 (v ®@w).
We can easily verify that the above tensor product has the usual universal
property: there exists a bilinear map
P EXF > EQqpF

such that for every bilinear map ¥ on E x F' with values in an (a, b)-module
G, there exists a unique (a, b)-morphism ¥ from E®(, ) F' into G that makes
the following diagram commutative:

Ex F

7
7

E ®(a,b) F

G

7

Indeed, we can take
P:EXF =5 EQquyF, (v,w)—=vQ4yw,
V:FE Rap) F—= G, v Qg w = ¥(v,w).
The unicity of ¥ follows directly from the universal property of the tensor

product of C[[b]]-modules. We need only verify that the map is a-linear. We
check it on the generators v ®(qp) w for v € E and w € F":

U (a(v @ (qp) w) = P((a0) @) w + 0 D) (aw))
= U(av,w) + ¥ (v, aw) = a¥ (v, w) = a¥(v D(q,p) W)-
Exploiting the properties of the tensor product of C[[b]]-modules, we can

derive in a similar manner the properties of the tensor product in the theory
of (a,b)-modules.

LEMMA 2.8. Let E, F' and G be (a,b)-modules. Then the tensor product
has the following properties:

(i) £ Qap) = F Qap E,

(i) (E @(ap) F) Qap) G = E @ (ap) (F Qap) G),
(i) (E ®@p) F)* = E* @) 7,

(iv) (E ®@ap) F) ~ E @) F,
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(v) The (a,b)-morphism
D:E = EQup) Eo, v vQup) eo,

where eq is a generator of the elementary (a,b)-module Ey, is an
1somorphism.
(vi) We have the following isomorphism of (a,b)-modules:

E* ®(a,b) F— HOm(a’b) (E, F ®(a,b) Eo),
PR Y (P =y By d(2)),
where p € B*, x € K and y € F.

REMARK 2.9. In [Bel0I], R. Belgrade defines the concept of d-dual of an
(a,b)-module E:

DEFINITION 2.10 (Belgrade). Let E be an (a, b)-module and § € C. Then
the d-dual of E is the set Homgyy (E, Es) with the (a,b)-structure defined
by

[a-¢)(x) = d(ax) —ad(z), [b-g](x) = —bp(z) = $(—bx).

From properties (v) and (vi) of the previous lemma we obtain the iso-
morphism E* ®(, ) F' ~ Hom, ) (E, F), which in turn yields an alternative
description of the d-dual. In fact from Definition [2.10]it is easy to show that
the d-dual of an (a, b)-module is the module

Hom(ab)(Ev', Ey),
which in turn can be rewritten as E* ®(a,p) Es-

We will call an (a, b)-bilinear map E x F — Ey an (a,b)-bilinear form.
In the rest of this section we will deal with the existence of non-degenerate
hermitian forms on (a, b)-modules. We need the following definitions.

DEFINITION 2.11. Let E and F' be (a,b)-modules and @ a bilinear form
on E x F. We say that @ is non-degenerate if the (a, b)-morphism v — ®(v, -)
is an isomorphism of E onto F™*.

DEFINITION 2.12. Let E be an (a,b)-module. A sesquilinear form on E
is a bilinear form on £ x F.

REMARK 2.13. Since a non-degenerate sequilinear form on an (a,b)-mod-
ule E induces an isomorphism of F and its adjoint E*, it follows that not
every (a,b)-module admits such a form (e.g. £ with A # 0 does not).

Consider now a sesquilinear form @ on E. By applying to it the conjugate
functor we obtain a bilinear map @ on E x E with values in Ey. If we fix an
isomorphism of Ey with Ey, we can consider @ as a sequilinear form on E.
Under this assumption, we define (a, b)-hermitian and anti-(a, b)-hermitian
forms:
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DEFINITION 2.14. Let E be an (a, b)-module. An (a, b)-sesquilinear form
H on E is called (a, b)-hermitian, respectively anti-(a,b)-hermitian, if it sat-
isfies
H(v,w) = H(w,v),

respectively
H(Ua ’LU) = _H(wv U),

where v € E, w € E and H is the sesquilinear form on E defined above.

We have already shown that in order to admit a non-degenerate sesquilin-
ear form, an (a,b)-module must be self-adjoint. We now refine the concept
of self-adjoint:

DEFINITION 2.15. Let E be a self-adjoint (a,b)-module. We say that E
is hermitian (resp. anti-hermitian) if it admits a non-degenerate hermitian
(resp. anti-hermitian) form.

Let E be an (a,b)-module endowed with a hermitian form and let @ :
E — E* be the linear form associated to the hermitian form via Remark [2.6]

We can translate the hermitian property into the identity between & and
its adjoint &* : E — E*. In fact while &(v) for v € E is the linear map

¢:w bv,w), weE,

the adjoint map ®* sends an element v € E = E** to the map

¢:w s v(d(w,-)) = d(w,v).
We will use this formulation extensively in the next section.
Note moreover that having an isomorphism from an (a,b)-module E onto
its 9-dual E* ®(4p) Es is equivalent to specifying an isomorphism between
E @ (a,b) E_§/2 and

E* @(a) Es @ap) E—s2 = E* ®(a) Es)a-
Since o
(B ®@ap) E-sj2)” = E* Qap) B 55 = E* Qo) Bsja,
we can identify an isomorphism of E with its §-dual with a hermitian form
on E®qp) E_5/2-

3. Existence of hermitian forms. In this section we will analyze the
existence of non-degenerate hermitian forms on regular (a,b)-modules. We
will proceed in two steps: in the first two subsections we will restrict ourselves
to a subclass of (a,b)-modules called indecomposable and show that every
regular (a,b)-module can be uniquely decomposed into the direct sum of
indecomposable ones (Theorem [3.7)).

In the last subsection we will show that a self-adjoint (a, b)-module which
is indecomposable admits a hermitian or an anti-hermitian form. The result
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is optimal since there are examples that admit only a hermitian or only an
anti-hermitian form (Theorem [3.13]).

3.1. Indecomposable (a,b)-modules

DEFINITION 3.1. Let F be an (a,b)-module. We say that F is indecom-
posable if it cannot be written as a direct sum F' & G of non-zero (a, b)-mod-
ules.

Whenever we decompose an (a,b)-module E into a (non-trivial) direct
sum of (a,b)-modules, the rank of each component is strictly less than the
rank of F, hence by induction for every (a,b)-module E we can find a de-

composition
.
E=DF
i=1

where r € N and each Fj is an indecomposable (a, b)-submodule.

We are interested in whether the isomorphism classes of the F; are unique
and do not depend upon the decomposition. To clarify this, we will need the
following result:

PROPOSITION 3.2. Let E be a regular and indecomposable (a,b)-module.
Then every endomorphism of E is either bijective or nilpotent.

The proof will need several steps beginning with a definition:

DEFINITION 3.3. Let E be a regular (a,b)-module and A € C. We define
W= > K
FiCE,FiZE)\
the sum of all (a,b)-submodules of E isomorphic to E}.

Clearly V) is an (a, b)-submodule. We will use V), as an induction step in
the proof of Proposition [3.2] by choosing a A such that V) is normal:

PROPOSITION 3.4. Let E be a regular (a,b)-module, let A € C and let
Amin = If{A+j | 3z € E, ax = (A + j)bx}
J

be the minimal A + j such that E contains a monomial of type (A + j,0).
Then V.. is a normal (a,b)-submodule of E isomorphic as an (a,b)-module
to the direct sum of a finite number of copies of Ey_,, -

Proof. We will use two facts.

First, for every (a,b)-submodule W ~ @ E)_. of E, W is normal in E.
Indeed, let {e;}?_; be a basis of W with p the rank of W. Assume for con-
tradiction that there exists x € W which is in bF, but not in bW.

By possibly translating x by an element of bW, we can assume x =
Zle aze;, a; € C. We can easily verify that ax = A\pbr but now if z = by
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we must have ay = (Amin — 1)by, and since y € E this contradicts the
minimality of Amin.

On the other hand, V), is a direct sum of copies of Ey In fact let W
be the largest (inclusionwise) direct sum of copies of E . included in V) _, .
We remark that since W is normal, for any (a,b)-submodule F' isomorphic
to E),,, only one of two cases is possible: either

WNF={0} or FCW.

If WnF # {0}, let e be the generator of F' and S(b)b"e € W with
S(0) # 0; then S(b)e € W by normality and e = S~1(b)S(b)e € W so
Fcw.

If W contains every (a, b)-submodule isomorphic to Ej_, , then it is equal
to V), : otherwise there is an F' such that W N F = {0}, hence W & F is
still in V), which contradicts the maximality of W. u

min *

We will now use the (a, b)-submodule Vy_. to prove

PROPOSITION 3.5. Let E be a reqular (a,b)-module and ¢ : E — E an
(a,b)-morphism. Then ¢ is bijective if and only if ¢ is injective.

Proof. To show that bijectivity follows from injectivity, we will proceed
by induction on the rank of the module.

If F is of rank 1 the statement is satisfied: in fact £ must be isomorphic
to one of the F) and the only b-linear morphisms from F) to itself that are
also a-linear are those that send the generator e to ae, @ € C. They are all
bijective for o # 0.

Let now E be of rank n > 1. We can find a Ap;, (cf. [Bar93|) that has the
minimality property of the previous proposition. Hence the module Vy_ . is
normal and isomorphic to a direct sum of copies of Ej_, .

Let {e;} be a basis of V) . composed of monomials of type (Amin,0) and
let z be any monomial of type (Amin, 0). We want to show that z is a linear
combination of elements of the basis, with coefficients in C C C[[b]].

From the definition of V), it follows that z € V) , . Suppose now that
x =Y .Si(b)e; and apply a to both sides. We obtain

ar = AminSi(D)be; + SI(b)b%e;) = Az + Y SH(b)b2e;.
Z( (b) (b)b%e;) i

7

min *

Since x is a monomial of type (Amin, 0), we must have S(b) = 0 for all ¢, and
therefore
T = Z Sz (0)67;,

as desired.
Let ¢ : E — E be an injective endomorphism and {e;} a basis of V), .
Every ¢(e;) is a monomial of type (Amin, 0) and therefore an element of V) . .
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Hence
gb’V/\ : V)\min - V)\min'

min
Moreover since the coefficients of the ¢(e;) in our basis are complex con-
stants, ¢|y, =~ behaves as a linear map between finite-dimensional spaces; in
particular, iﬁt is injective, it is also surjective.
In order to apply our induction hypothesis consider the commutative
diagram

E——

0 - ‘/v)\minCH E - E/VAmin

Pk

0 - V/\min(H E - E/VAmln - O

where ¢ is the (a, b)-linear morphism induced on the quotient. As we showed
above, the first vertical arrow is bijective.

The third arrow QNS is injective: indeed, suppose that two classes with
representatives z, y € E map to the same class modulo V) . . Then ¢(z —y)
is in V), . From the bijectivity of d)’V/\min we can find v € V), such that
d(x —y) = ¢(v), so x —y = v by the injectivity of ¢, that is, x and y are in
the same class modulo V) . .

Since the rank of E/V)_. 1is strictly inferior to the rank of E, we can
apply the induction hypothesis to show that gg is also bijective.

By homological algebra, the second arrow is also bijective. m

We can now consider endomorphisms that are not necessarily injective.
Once again the structure of (a,b)-modules does not differ essentially from
that of finite-dimensional vector spaces over C:

LEMMA 3.6. Let E be a regular (a,b)-module and ¢ an endomorphism
of E. Then E splits into the direct sum of two ¢-stable (a,b)-submodules F
and N, with ¢ bijective on F' and nilpotent on N.

Proof. Consider the sequence of normal (a, b)-submodules
K, =Ker¢"”, mneN.

Since two normal (a,b)-submodules F' C G are equal if and only if they
have the same rank, the sequence K, stabilizes: K,, = K41 = --- for
some m.

On the other hand, consider the sequence I,, = Im ¢™. The restriction

¢|Im : Im — Im+1 C Im

is injective: if y = ¢ (x) € Ker ¢, then x € K, 11 = K, hence y = 0. From
the previous proposition we deduce that this restriction is in fact bijective,
which means that I, 11 = ¢(I,) = Ip,.
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We can now take F' = I,,, and N = K,,,. They are clearly stable under ¢.
We will show that £ = F & N.
We have Ker ¢ N F' = {0}, since ¢|r,, is injective. A fortiori, since K C
Ker ¢ we have FFN N = {0}.
Pick z € E. Since I,;, = I, we can find y € E such that ¢™(z) = ¢*™(y).
Set k =x — ¢"™(y). Thus
z=¢"(y)+k

with ¢™(y) € I, and k € K,,, which implies that E = N & F.
The restriction of ¢ to N is nilpotent, since ¢|}} = 0, while we already
showed that the restriction to I,,, = F is bijective. m

Proof of Proposition [3.9 Let ¢ be an endomorphism of E. Then by
Lemma E splits into a sum N@ F of two (a, b)-modules, with ¢ nilpotent
on N and bijective on F. But E is indecomposable, so either N = 0 and ¢
is bijective, or F' = 0 and ¢ is nilpotent. =

3.2. Krull-Schmidt theorem. This subsection will be devoted to the
proof of a version of the Krull-Schmidt theorem for (a,b)-modules. The
principal tool in the proof will be Proposition [3.2

THEOREM 3.7 (Krull-Schmidt for (a,b)-modules). Suppose that we have
two decompositions of a regular (a,b)-module E:

m n
E=E, E=EF,
i=1 i=1

where m,n € N and all E; and F; are indecomposable (a,b)-modules. Then
m =mn and up to reindexing, E; is isomorphic to F; for all1 < i <mn.

For the proof we need a couple of lemmas:

LEMMA 3.8. Let E be a regular indecomposable (a,b)-module and ¢ an
automorphism of E. Suppose moreover that ¢ = ¢1 + ¢po. Then at least one
of ¢1, ¢o is an isomorphism.

Proof. By applying ¢! to both terms, we can assume without loss of
generality that ¢ = Id is the identity.
The endomorphisms ¢ and ¢ commute:

P1P2 — P21 = P1(P1 + P2) — (P2 + d1)P1 = 1 — p1 = 0.

By Lemma each ¢; is either nilpotent or an isomorphism. If they were
both nilpotent, their sum would be nilpotent, which is absurd. Hence the
result. m

REMARK 3.9. By iterating the previous lemma, we can extend the result
to sums of more than two endomorphisms.
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LEMMA 3.10. Let E and F be indecomposable reqular (a,b)-modules and
leta: E— F and 5 : F — E be (a,b)-linear morphisms. Suppose that o«
18 an isomorphism. Then o and B are also isomorphisms.

Proof. Let us prove that F' = Ima & Ker 8. If a(z) € Ker 3, we have
poa(zx) =0, hence x = 0, and therefore

Ima NKer s = {0}.
Choose now any « € F and let

y=ao(Boa) " op(x).
We have

Bz —y) = B(x) = B(y) = B(z) = (Boa)o(Boa) o f(x) = f(x) — B(x) = 0.
Hence x = y + (z — y) with y € Ima and x — y € Ker 8. This implies
F=Ima® Kerpg.

Now since B o « is injective, so must be «, and Im « cannot be 0. As F
is indecomposable, we must have Im o = F' and Ker 8 = 0. It follows that «

is bijective and hence so is 8 = (Boa)oa™!. =

Proof of the Krull-Schmidt theorem for (a,b)-modules. We use induction
on m.

If m =1, then FE is indecomposable, we must have n = 1 and F; ~ F}.

In the general case consider the morphisms ¢; = m; o p1, where 7; is the
projection on F;j and p; is the projection on F;. The sum

Zploqz‘zplozmom =riopr=n
i i

is the identity on E;. By Lemma there is an ¢ such that p; o ¢i|g, :
FEy — Ej is an isomorphism. Suppose, without loss of generality, it is p; o qy;
then by Lemma q1|p, = 71 : E1 — F is an isomorphism.

To apply the induction hypothesis, set G = >, F;. We want to show
that F1 & G is equal to £ = F; & (. Since 71 is an isomorphism of Fq onto
Fy and its kernel is G, we need to show

E,NnG ={0}.

Indeed, if z € E1 NG, then 71 (x) = 0, but 7 restricted to Fj is injective, so
2 = 0. On the other hand, every element of E can be written as v + w with
v € Fy and w € G. If y € E is such that 71 (y) = v, then

vtw=y+my) —y+w,

and 71 (y) —y € W by definition of 7. Hence E = E1 & G = E; + ZZZQ E;.
We have immediately E/E; ~ G ~ >, E; and we can apply the in-
duction hypothesis to G. =
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We now focus on finding hermitian isomorphisms of an (a, b)-module E
with its adjoint £*. The Krull-Schmidt theorem will be useful to show the
following decomposition:

PROPOSITION 3.11. Let E be a regular self-adjoint (a,b)-module. Then
T S
E = D) & PG & G
i=1 i=1
where r, s, a; and B; are positive integers. The F; are self-adjoint (a,b)-mod-
ules and the G; are non-self-adjoint (a,b)-modules. The isomorphism classes
of the F;, G; and G’f are all distinct.

Proof. Consider a decomposition £ =), E; into indecomposable (a, b)-
modules. Since F is self-adjoint we have another decomposition

E:E*:ZE‘Z-*.
i

The Krull-Schmidt theorem ensures that the summands are unique up to a
permutation. So we can divide the Fj; into two groups.

In the first group we put the self-adjoint components F; with their mul-
tiplicities.

In the second one we put the non-self-adjoint components G; with the
respective multiplicities. Since the two decompositions ), F; and ), EZ*
contain the same modules up to a permutation, the multiplicities of the G;
and of the G’;‘ must be equal. »

REMARK 3.12. From the definition above we can immediately see that
the non-self-adjoint part of the decomposition always admits a hermitian
non-degenerate form. In fact if we consider the module G; ® G;‘, a hermitian
form can be given by

P:GioGr— (Gi\@j@?)* =G e G, (z,y)— (y,2)

If the multiplicity of a self-adjoint term Fj; is even, we fall into the same
situation.

The case of odd multiplicity of a self-adjoint component is far more in-
teresting and we will study it in the next subsection.

3.3. Hermitian forms on indecomposable (a,b)-modules. As al-
ready noted in the previous subsection, the existence of hermitian forms on
an indecomposable self-adjoint (a,b)-module is not always guaranteed. We
have in fact the following theorem:

THEOREM 3.13. Let E # {0} be a regular indecomposable self-adjoint
(a,b)-module. Then it admits a hermitian non-degenerate form or an anti-
hermitian one.
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Proof. Let & : E — E* be any isomorphism and set M = &~1¢*. Con-
sider now the two endomorphisms of E given by

Id+M and Id— M.

They commute and can be either isomorphisms or nilpotent, since F is in-
decomposable. But if they were both nilpotent, their sum 2Id would be
nilpotent too, which is absurd.

If Id + M is an isomorphism, so is S = @ + &*, which is associated to a
non-degenerate hermitian form. The bijectivity of Id — M on the other hand
gives us an isomorphism A = & — &*, which comes from an anti-hermitian
form. m

Note that both cases of the previous theorem can occur.

ExaMPLE 3.14. The simplest example of a regular self-adjoint and in-
decomposable (a,b)-module which admits only a hermitian form is the ele-
mentary (a,b)-module Ey with the isomorphism that sends the generator e
to its adjoint é*.

ExAaMPLE 3.15. To obtain only an anti-hermitian form, we can consider,
for given A\, u € C such that £A+pu ¢ Z for all choices of signs, the (a, b)-mod-
ule F of rank 4 generated by {e1, e2, 3, e4} which satisfies

ae1 = Abeq,
(3.1) aey = pbes + e,
aez = —pbes + €1,
aeq = —Abey + eg — e3,

whose adjoint basis satisfies

~ % ~ ok
a- € = A\béy,
a-é; = ubéy — éy,
Lk o Lk
a- € = —ubés + €&,
a- €] = —\bé] + é5 + é3.

It is easy to show by calculation that the only isomorphism between E and
E* is, up to mutliplication by a complex number, the one that sends ey, es,
es and eyq to é4, —€3, €2 and —é; respectively.

This isomorphism is anti-hermitian and since there are no other isomor-
phisms, F is also indecomposable.

EXAMPLE 3.16. The regular (a,b)-module Ey @ Ey admits both a her-
mitian and an anti-hermitian form.

4. Duality of geometric (a,b)-modules. In the study of the Brieskorn
lattice K. Saito introduced the concept of “higher residue pairings” (cf.
[Sai83]), which can be defined using a set of axiomatic properties.
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Using the theory of (a,b)-modules R. Belgrade showed the existence of
a duality isomorphism between an (a,b)-module associated to a germ of a
holomorphic function in C**! with an isolated singularity at the origin and
its (n+ 1)-dual. We will prove (as already noticed by R. Belgrade in [Bel01])
that the concepts of “higher residue pairings” and self-adjoint (a, b)-module
are linked.

D will always denote the Brieskorn module associated to a holomorphic
function in C"*! with an isolated singularity, and E its b-adic completion
considered as an (a, b)-module.

The following theorem of R. Belgrade gives a relationship between E and
its (n + 1)-dual.

THEOREM 4.1 (Belgrade). Let E be the (a,b)-module associated to a
germ of holomorphic function f : C"t1 — C. Then there is a natural iso-
morphism between E and its (n 4 1)-dual:

A: E~FE* @ (a,b) Eny.

We can obtain from this isomorphism a series 4A; : £ x EE — C of bilinear
forms defined as follows:

AW)@) = (n+ DS A, y)bens
k=0

for z,y € E.

5. “Higher residue pairings” of K. Saito. K. Saito introduced in
[Sai83] a series of pairings on the Brieskorn lattice D which are called “higher
residue pairings”

K® . DxD—>C, keN,
characterized by the following properties:

(i) K(k) (wl, WQ) = K(k+1)(bw1, a.)z) = —K(k+1)(w1, bLUQ).
(i) K® (awy,ws) — K¥) (wy, awy) = (n 4+ k) KF D (wy, wy).
(iii) KO(D,bD) = KObD, D) = 0 and K induces Grothendieck’s
residue on the quotient D/bD.
(iv) K®) is (—1)*-symmetric.

REMARK 5.1. We notice that from properties (i) and (iii) above we can
deduce that K® (D, b*+1D) = K (b1 D, D) = 0, so we can consider the
pairings K*) as being defined on D/bF*1D.

In the following section we will show the following result:

PROPOSITION 5.2. The Ay have properties (1)—(iii) of “higher residue
pairings” of K. Saito.
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6. Proof of Proposition [5.2
6.1. Proof of (i). We use the b-linearity of A(y) to obtain

Y (0 + 1)1z, )b enst = [A(y))(br) = b[A(y)](2)
k

- Z(n + 1)!Ak(x7y)bk+1€n+la
k
which gives Ag(x,y) = Agy1(bz,y). Similarly, by using the b-linearity of A
and the adjoint morphism, we obtain
A(by)(a) = A*(z)(by) = —bA*(x)(y) = —bA(y)(=),
and therefore

(n+ 1)1 Aglw, by)brents = Aby)(x) = —bA(y)(x)
k

= (n+ 1Y —Ap(z, )b e,
k
which implies Ay (bx,y) = —Agy1(x, by).

6.2. Proof of (ii). Since A is an isomorphism we have A(ay) = a- .o g,
[A(y)] and

(n+ DY Ay, ay)brensr = Alay)(z) = a- [A(y))()
k

= A(y)(az)—a[A(y) ()] = (n+1)! Y (Ax(az, y)b en1—Ax(w, y)abren ).
k
The definitions of (a,b)-module and of E,+1 (aep+1 = (n+ 1)be,41) give

ab¥e, 1 = brae, 1 + kb e, 1 = (n+ k4 1) e,

hence

Ag(az,y) — Ag(z,ay) = (n+ k) Ap—1(z, y).

6.3. Grothendieck’s residue. We now have to show that the pairing
Ay induces Grothendieck’s residue on D/bD ~ Q"+ /df A Q.

Proof of (iv). From the definition of Ay and the b-linearity of A it is
easy to see that Ay(D,bD) = Ayg(bD, D) = 0. We can hence consider Ay as
a pairing on D/bD.

Grothendieck’s residue is defined as follows:

. ghdz
Res(g, h) : 5jLHOI,1Vj af/a§j|aj Of/0z1 - Of 0zns1
where g,h € O and dz =dz; A --- Adzpy1-
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The morphism A is defined as the composition of six (a, b)-module mor-
phisms ([Bel01]) shown in the following graph:

FE—>.p-". R

F3

N
5

These morphisms pass to the quotient by the action of b, giving a decompo-
sition of the morphism Agy:

En+1 <T F; ~ Fy

E/WE —% + R bF, — = Fy /o F,

E*®E,
WE @) R Fy[bFs <— Fu/bFy

We have to verify that the image of [gdz| under Ag is Res(g, -), where gdz
is an element of 2", We will accomplish this in several steps using the
decomposition above.

STEP 1: E, Fi and F». We have the isomorphisms
)2 B Qn—i-l 2 N ben-i-l

bFy,  df A" bFy (9 — dfA\)Db

the morphism & coincides with the identity on £27+1/df AQ2", and 3 is induced
by the inclusion i : 27+ — Dy We deduce that 8o a([gdz]) = [i(gdz)].
Let us write 7' € Db 10 for the current i(gdz).

STEP 2: path between Fs and F3. By using the description of Lemma
3.4.2 of [BelO1] we see that

Fy Ker(Dyort! I pple)
bFs  §Ker(Dbon L2 ppin)

and the isomorphism 7 is induced by the inclusion Dp*"+1 c Dy*+1. In
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order to find S := 57 }(T) we have to solve the following system:
T =df A o™,
da™V = df A a1,

éal,n—l — df A aO,nj
2" = 8,
where a4 € DbP1. This system has a solution, since the complex (Db*4; df A)

is acyclic in degree # 0 for all ¢ € {0,...,n + 1}, and the solution satisfies
[S] = [T'] where [-] is the equivalence class in F5/bF;. We have

n
@—dfn)> "k =9 —df Na™0 =S - T.
k=0
We can compute this solution explicitly. Let (p,q) € N? and ¢P4 a C*° test
form with compact support and of type (p,q). The action of T over ¢%"+1
is given by
<T, ¢0,n+1> — S¢0,n+1 /\gdz.

Then the current a™° defined by
SV TEA gdzg A - A dznan
e1—0 alf

satisfies T = df A a™9: in fact,

S O NAf A gdza A A dzng

df A n,O’ O,n+1y _ li
(df a0, 6™ H) = lim o

|01 f|>€1
=" Agdz,
and thanks to the Stokes theorem,

Hplm ..
<5an,07 ¢1,n> — _<an,0’ 5¢1,n> = lim — S a¢ A gdZZ A A d'zn+1

10 |01 f|>€1 81f
~ lim S gbl’"/\gdzz/\---/\dan
e1—0 01 fl=c1 alf

We will remark that the currents aZ’O defined for 1 <k <n-+1 by
S (—D)FFLpbnt A gdzy A - cdzg - Adzpin
0
Ok f1>ex kf

also satisfy df A o}’ = T. Moreover, [0a™°] = [9a}"°] in Fy/bFy: in fact,
(0 — dfn)(a™0 — aZ’O) = 0a™0 — 5&2’0.

(", o) = lim

er—0
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Forall k€ 0,...,nand 1 <141 <--- <igr1 < n+ 1 define

(—1)2atatly /\z;&u,...,ml dz

n—kk 1 . S
8Zlf Zk+1f

AR lim
it ~ (L 1)) e
V1<q<kt1 10 f12e

|1q ‘ Elq

—k.k n—k,k

and let o =Qyo A simple computation gives

k+1

k kn—lka1 1 5 n—k+1k—1 En—k41
<df/\a7;1, lk+1’¢’n +>:<Zaaﬁ S0 " Jr>-
1

kE+1 ST P S
q:

Using this formula, we can prove by induction on k that the class of the
n—k,k . . .
current ;; ;  does not depend on the igs. This gives

Hlk4+1
[df/\Oén kk} [aan k+1,k— 1]
In particular da®™ acts on the test function ¢+ in the following way:
n+1,0
.~ lim S M
(n+1)! €kv_k)0 5 of...0n1f

|0k f|=¢k
Vk

<5a0,n’ ¢n+1,0> _

STEP 3: from F3/bF5 to (D/bD)*. Notice that S is a current of type
(0,n + 1) with support at the origin.
We have the isomorphism
Ey
o Ker (H{ (X, 0) L8 yri(x, oY),
4

the isomorphism between F3/bF3 and Fy/bF} is the natural one, and

By (oY
bEs — \df A" )
From Steps 1-3 we deduce that Ag induces Grothendieck’s residue.

6.4. Property (iv). We will show that the isomorphism given by R. Bel-
grade can be easily transformed into one that satisfies (iv).

Let A: E — E*®(a,b) E+1 be Belgrade’s isomorphism. By tensoring with
E(;41)/2 we can show that the isomorphisms between E and E* ®(ab) En+1
are in bijection with the isomorphisms between E ®(q ) E_(541)/2 and its
adjoint, through the map that sends an isomorphism & to @@, p)Idg_, ., ,-

By an easy calculation we can prove the following lemma:

LEMMA 6.1. Let A: E = E*® FE,+1 be an isomorphism and
AW)(@) = (n+ DS A, ybents
k

for x,y € E. Then the Ay satisfy Saito’s condition (iv) if and only if the
isomorphism A &4 p) IdE_(, 1), 18 hermitian.
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Proof. A &4 p) Idg_,.,,, is self-adjoint iff

A @ty 1da_ ), U ® ey 2) (@ @ e_niny2) = > SpbFeo
k

S ARy ldE_ 0T @ e (ny1)2) (Y B e_(ni1)2) = Z Se(—b)*eq
k
for all z,y € E. On the other hand,

A ®(a,b) IdE—(n+1)/2 (y ® 6—(n+1)/2)($ ® 6—(n—l—l)/2) = Z Skbkeo
k

& A@)(x) =) SpbFenir.
k

By combining the previous equivalence with the results on the existence
of hermitian forms, we can extend Belgrade’s result:

THEOREM 6.2. Let E be a regular (a,b)-module associated to a holomor-
phic function from C**1 to C with an isolated singularity. Then there exists
an isomorphism ® : E — E* @, p) Ent1 with

B(y)(z) = (n+ DI Pp(w,y)beni
k

for all x and y such that the C-bilinear forms @y, have all four properties of
Saito’s “higher residue pairings”.
Proof. Let A be Belgrade’s isomorphism and define Ay as at the begin-
ning of this section. Consider the isomorphism
A ®(a,b) IdEn+1 E— B ®(a,b) Ent1

and let & = (A + A* ®(a,b) IdEn+1)/2-

It is easy to see that the @y, satisfy (i) and (ii). Moreover since A is sym-
metric (Grothendieck’s residue) and A* ®(ap) 1dE,,, induces the transpose
of Ag on E/bE, we have

by = (AO -+ tAQ)/Q = Ap.
We have also
D ®(a) WE_ (1410 = (P Bay [dE_10))" = D" Qo) M)
=P ®(a) IdE_ (14000
therefore the @y, satisfy (iv).
We just have to show that @ @, ) IdE_(n 1))z 1S an isomorphism. Since
there exists an isomorphism between E® 4 ) E_(54-1)/2 and its adjoint A®, )
Idg_ (ng1y/2 WE can apply Proposition and restrict ourselves to proving the

injectivity of ¢®(a,b) IdEi(nJrl)/2 .Butif ¢ ®(a,b) IdE7<n+l)/2 were not injective,
& would induce a degenerate form on F/bE, which is absurd. =
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The existence of a hermitian form on F ®qp) E_(n11)/2 gives us an
interesting restriction on the kind of (a, b)-module associated with Brieskorn
lattices:

COROLLARY 6.3. Let E be a regular (a,b)-module associated to a holo-
morphic function from C*t1 to C with an isolated singularity. Then E ®(a,p)
E_(n41)/2 15 a hermitian (a,b)-module.
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