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Multiplicity results for a class of fractional
boundary value problems

by Nemat Nyamoradi (Kermanshah)

Abstract. We prove the existence of at least three solutions to the following frac-
tional boundary value problem:{
− d
dt

(
1
2 0D

−σ
t (u′(t)) + 1

2 t
D−σT (u′(t))

)
− λβ(t)f(u(t))− µγ(t)g(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
−σ
t and tD

−σ
T are the left and right Riemann–Liouville fractional integrals of

order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points
theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem,
Nonlinear Anal. 74 (2011), 7446–7454].

1. Introduction. The aim of this paper is to establish the existence of
at least three solutions to the fractional boundary value problem

(1.1)


− d

dt

(
1

2
0D
−σ
t (u′(t)) +

1

2
tD
−σ
T (u′(t))

)
− λβ(t)f(u(t))

− µγ(t)g(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
−σ
t and tD

−σ
T are the left and right Riemann–Liouville fractional

integrals of order 0 ≤ σ < 1 respectively, λ, µ > 0 are parameters, β, γ ∈
C([0, T ];R), β(t), γ(t) > 0 for all t ∈ [0, T ] and f, g ∈ C([0, T ];R) \ {0}.

Fractional differential equations have been receiving great interest re-
cently. This is due to both the intensive development of the theory of frac-
tional calculus itself and the applications of such constructions in various
scientific fields such as physics, mechanics, chemistry, engineering, etc. For
details, see [E, KT1, KT2] and the references therein.

Solving differential equations of fractional order is rather involved. Some
analytical methods have been presented, such as the popular Laplace trans-
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form method [P1, P2], Fourier transform method [MR], iteration method
[SKM] and Green function method [SW, MLP]. Numerical schemes for solv-
ing fractional differential equations have been introduced, for example, in
[DFF1, DFF2, OM1]. Recently, a great deal of effort has been expended to
find robust and stable numerical as well as analytical methods for solving
fractional differential equations of physical interest. The Adomian decom-
position method [OM2], homotopy perturbation method [OM3], homotopy
analysis method [CTXL], differential transform method [MO] and varia-
tional method [JZ] are relatively new approaches to provide an analytical
approximate solution to linear and nonlinear fractional differential equa-
tions.

The existence of solutions of initial value problems for fractional order
differential equations has been studied in [SKM, P1, LV] (see also references
therein).

In [JZ], by using the Mountain Pass Theorem, Jiao and Zhou investigate
the existence of solutions for the fractional boundary value problem

d

dt

(
1

2
0D
−β
t (u′(t)) +

1

2
tD
−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0 ≤ β < 1 is a real number and 0D
−β
t is the standard Riemann–

Liouville derivative. Recently, many papers deal with the existence of mul-
tiple solutions of fractional boundary value problems: see [CT1, CT2] and
the references therein.

In this paper, we investigate the existence of solutions for problem (1.1).
We use variational methods.

The paper is organized as follows. In Section 2, we give preliminary
facts and provide some basic properties which are needed later. Section 3 is
devoted to our result on existence of three solutions.

2. Preliminaries and reminder about fractional calculus. In this
section, we present some preliminaries and lemmas to be used in the proofs
of the main results. For the convenience of the reader, we also present the
necessary definitions. We refer the reader to [KST, P1, JZ] for basic frac-
tional calculus.

Definition 2.1 ([KST, P1]). Let f be a function defined on [a, b] and
let γ > 0. The left and right Riemann–Liouville fractional integrals of order
γ for f are defined by

aD
−γ
t f(t) =

1

Γ (γ)

t�

a

(t− s)γ−1f(s) ds, t ∈ [a, b],
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tD
−γ
b f(t) =

1

Γ (γ)

b�

t

(s− t)γ−1f(s) ds, t ∈ [a, b],

provided the right-hand sides are pointwise defined on [a, b]; here Γ > 0 is
the Gamma function.

Remark. It is easy to see that for integer γ = n the equations in Defi-
nition 2.1 take the form

aD
−n
t f(t) =

1

(n− 1)!

t�

a

(t− s)n−1f(s) ds, t ∈ [a, b],

tD
−n
b f(t) =

1

(n− 1)!

b�

t

(s− t)n−1f(s) ds, t ∈ [a, b].

Definition 2.2 ([KST, P1]). Let f be a function defined on [a, b] and
let γ > 0. The left and right Riemann–Liouville fractional derivatives of
order γ for f are defined by

aD
γ
t f(t) =

dn

dtn
aD

γ−n
t f(t) =

1

Γ (n− γ)

dn

dtn

(t�
a

(t− s)n−γ−1f(s) ds
)
,

tD
γ
b f(t) = (−1)n

dn

dtn
tD

γ−n
b f(t) =

(−1)n

Γ (n− γ)

dn

dtn

(b�
t

(s− t)n−γ−1f(s) ds
)
,

where t ∈ [a, b], n− 1 ≤ γ < n and n ∈ N. In particular, if 0 ≤ γ < 1, then

aD
γ
t f(t) =

d

dt
aD

γ−1
t f(t)(2.1)

=
1

Γ (1− γ)

d

dt

(t�
a

(t− s)−γf(s) ds
)
, t ∈ [a, b],

tD
γ
b f(t) = − d

dt
tD

γ−1
b f(t)(2.2)

= − 1

Γ (1− γ)

d

dt

( b�
t

(s− t)−γf(s) ds
)
, t ∈ [a, b].

Remark. If f ∈ C([a, b],RN ), it is obvious that the Riemann–Liouville
fractional integral of order γ > 0 exists on [a, b]. On the other hand, from
[KST, Lemma 2.2, p. 73], we know that the Riemann–Liouville fractional
derivative of order γ ∈ [n − 1, n) exists a.e. on [a, b] if f ∈ ACn([a, b],RN ),
where Ck([a, b],RN ) (k = 0, 1, . . .) denotes the set of k times continuously
differentiable mappings on [a, b], AC([a, b],RN ) is the space of absolutely
continuous functions on [a, b], and ACk([a, b],RN ) (k = 0, 1, . . .) is the space
of functions f such that f ∈ Ck−1([a, b],RN ) and fk−1 ∈ AC([a, b],RN ).
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In particular, AC([a, b],RN ) = AC1([a, b],RN ). The left and right Caputo
fractional derivatives are defined via the above Riemann–Liouville fractional
derivatives (see [KST, p. 91]). In particular, they are defined for absolutely
continuous functions.

Definition 2.3 ([KST]). Let γ ≥ 0 and n ∈ N.

(i) If γ ∈ (n−1, n) and f ∈ ACn([a, b],RN ), then the left and right Caputo
fractional derivatives of order γ for f , denoted by c

aD
γ
t f(t) and c

tD
γ
b f(t),

respectively, exist almost everywhere on [a, b] and are given by

c
aD

γ
t f(t) = aD

γ−n
t f (n)(t) =

1

Γ (n− γ)

t�

a

(t− s)n−γ−1f (n)(s) ds,

c
tD

γ
b f(t) = (−1)ntD

γ−n
b f (n)(t) =

(−1)n

Γ (n− γ)

b�

t

(s− t)n−γ−1f (n)(s) ds,

where t ∈ [a, b]. In particular, if 0 < γ < 1, then

c
aD

γ
t f(t) = aD

γ−1
t f ′(t)(2.3)

=
1

Γ (1− γ)

t�

a

(t− s)−γf ′(s) ds, t ∈ [a, b],

c
tD

γ
b f(t) = −tDγ−1

b f ′(t)(2.4)

= − 1

Γ (1− γ)

b�

t

(s− t)−γf ′(s) ds, t ∈ [a, b].

(ii) If γ = n−1 and f ∈ ACn([a, b],RN ), then c
aD

n−1
t f(t) and c

tD
n−1
b f(t)

are given by

c
aD

n−1
t f(t) = f (n−1)(t), t ∈ [a, b],

c
tD

n−1
b f(t) = (−1)(n−1)f (n−1)(t), t ∈ [a, b].

In particular, caD
0
t f(t) = c

tD
0
bf(t) = f(t), t ∈ [a, b].

The first result yields the semigroup property of Riemann–Liouville frac-
tional integral operators.

Lemma 2.4 (see [KST]). The left and right Riemann–Liouville fractional
integral operators have the semigroup property:

aD
−γ1
t (aD

−γ2
t f(t)) = aD

−γ1−γ2
t f(t),

tD
−γ1
b (tD

−γ2
b f(t)) = tD

−γ1−γ2
b f(t), ∀γ1, γ2 > 0, ∀t ∈ [a, b],

for every continuous function f ; the equalities hold for almost every point
in [a, b] if f ∈ L1([a, b],RN ).
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Let us recall that for any fixed t ∈ [0, T ] and 1 ≤ r <∞,

‖u‖Lr([0,t]) =
(t�
0

|u(ξ)|r dξ
)1/r

, ‖u‖Lr =
(T�
0

|u(ξ)|r dξ
)1/r

,

‖u‖∞ = max
t∈[0,T ]

|u(t)|.

Lemma 2.5 (see [JZ]). Let 0 < α ≤ 1 and 1 ≤ r < ∞. For any f ∈
Lr([a, b],RN ), we have

‖0D−αξ f‖Lr([0,t]) ≤
tα

Γ (α+ 1)
‖f‖Lr([0,t]) for ξ ∈ [0, t], t ∈ [0, T ].

Now, by Lemma 2.5, for any h ∈ C∞0 ([0, T ],RN ) and 1 < r < ∞, we
have h ∈ Lr([0, T ],RN ) and c

0D
α
t h ∈ Lr([0, T ],RN ). Thus, one can construct

a subset Eα,p0 , which depends on Lr-integrability of the Caputo fractional
derivative of a function.

Definition 2.6. Let 0 < α ≤ 1 and 1 < p < ∞. The fractional deriva-
tive space Eα,p0 is defined to be the closure of C∞0 ([0, T ],RN ) with respect
to the norm

(2.5) ‖u‖α,p =
(T�
0

|u(t)|p dt+

T�

0

|c0Dα
t u(t)|p dt

)1/p
.

Remark. (i) It is obvious that Eα,p0 is the space of functions u ∈
Lp([0, T ],RN ) with c

0D
α
t u ∈ Lp([0, T ],RN ) and u(0) = u(T ) = 0.

(ii) For any u ∈ Eα,p0 , noting that u(0) = 0, we have c
0D

α
t u = 0D

α
t u for

t ∈ [0, T ] according to (2.3).

Lemma 2.7 ([JZ]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional
derivative space Eα,p0 is a reflexive and separable Banach space.

Lemma 2.8 ([JZ]). Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈ Eα,p0 , we
have

‖u‖Lp ≤
Tα

Γ (α+ 1)
‖c0Dα

t u‖Lp .(2.6)

Moreover, if α > 1/p and 1/p+ 1/q = 1, then

(2.7) ‖u‖∞ ≤
Tα−1/p

Γ (α)((α− 1)q + 1)1/q
‖c0Dα

t u‖Lp .

According to (2.6), we can consider Eα,p0 with the norm

(2.8) ‖u‖α,p = ‖c0Dα
t u‖Lp =

(T�
0

|c0Dα
t u(t)|p dt

)1/p
, ∀u ∈ Eα,p0 .
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Lemma 2.9 ([JZ]). Let 0 < α ≤ 1 and 1 < p <∞. Assume that α > 1/p
and un ⇀ u weakly in Eα,p0 . Then un → u in C([0, T ],RN ), i.e., ‖un − u‖∞
→ 0 as n→∞.

Now, we prove that Eα,p0 is compactly embedded in C([0, T ],RN ).

Lemma 2.10. Assume that 1 < p < ∞ and α > 1/p. Then Eα,p0 is
compactly embedded in C([0, T ],RN ).

Proof. For 1 < p < ∞ and α > 1/p, from (2.7), we have Eα,p0 ⊆
C([0, T ],RN ), and the embedding is continuous.

Let {un} be a sequence bounded in Eα,p0 . Since Eα,p0 is a reflexive space,
going to a subsequence if necessary, we may assume that un ⇀ u weakly in
Eα,p0 . Then by Lemma 2.9, un → u in C([0, T ],RN ), i.e., ‖un − u‖∞ → 0 as
n→∞. Hence the embedding is compact.

Now, we will establish a variational structure which enables us to find
solutions of problem (1.1). To that end we find the critical points of the cor-

responding functional defined on Eα,20 with 1/2 < α ≤ 1. Then, by Lemma
2.4, for every u ∈ AC([0, T ],R), problem (1.1) transforms to

(2.9)


− d

dt

(
1

2
0D
−σ/2
t (0D

−σ/2
t u′(t)) +

1

2
tD
−σ/2
T (tD

−σ/2
T u′(t))

)
− λβ(t)f(u(t))− µγ(t)g(u(t)) = 0,

u(0) = u(T ) = 0,

for almost every t ∈ [0, T ], where σ ∈ [0, 1).
Furthermore, in view of Definition 2.3, it is obvious that u∈AC([0, T ],R)

is a solution of problem (2.9) if and only if u is a solution of

(2.10)


− d

dt

(
1

2
0D

α−1
t (c0D

α
t u(t))− 1

2
tD

α−1
T (ctD

α
Tu(t))

)
− λβ(t)f(u(t))− µγ(t)g(u(t)) = 0,

u(0) = u(T ) = 0,

for almost every t ∈ [0, T ], where α = 1− σ/2 ∈ (1/2, 1]. Therefore, we seek
a solution u of problem (2.10) which, of course, corresponds to the solution
u of problem (1.1) provided that u ∈ AC([0, T ],R).

Let us denote

(2.11) Dα(u(t)) =
1

2
0D

α−1
t (c0D

α
t u(t))− 1

2
tD

α−1
T (ctD

α
Tu(t)).

We are now in a position to give a definition of a solution of (2.10).

Definition 2.11. A function u ∈ AC([0, T ],R) is called a solution of
problem (2.10) if

(i) Dα(u(t)) is differentiable for almost every t ∈ [0, T ], and
(ii) u satisfies (2.10).



Multiplicity results for fractional BVPs 65

In what follows, we will treat problem (2.10) in the Hilbert space Eα =

Eα,20 with the corresponding norm ‖u‖α = ‖u‖α,2 which we defined in (2.5).
The following estimate is useful for our further discussion.

Lemma 2.12 ([JZ]). If 1/2 < α ≤ 1, then for every u ∈ Eα,

(2.12) |cos(πα)| ‖u‖2α ≤ −
T�

0

(c0D
α
t u(t), ctD

α
Tu(t)) dt ≤ 1

|cos(πα)|
‖u‖2α.

3. Main result. Let Jλ,µ : Eα → R be defined by

Jλ,µ(u) = −1

2

T�

0

(c0D
α
t u(t), ctD

α
Tu(t)) dt− λ

T�

0

β(t)F (u(t)) dt(3.1)

− µ
T�

0

γ(t)G(u(t)) dt for all u ∈ Eα, 1/2 < α ≤ 1,

where F (s) =
	s
0 f(t) dt and G(s) =

	s
0 g(t) dt. Clearly, Jλ,µ is continuously

differentiable on Eα, and for every u, v ∈ Eα we have

〈J ′λ,µ(u), v〉 = −
T�

0

1

2
[(c0D

α
t u(t), ctD

α
T v(t)) + (ctD

α
Tu(t), c0D

α
t v(t))] dt(3.2)

− λ
T�

0

β(t)f(u(t))v(t) dt− µ
T�

0

γ(t)g(u(t))v(t) dt.

Now, by (2.11) we have the following lemma:

Lemma 3.1. Let 1/2 < α ≤ 1 and Jλ,µ be defined by (3.1). If u ∈ Eα
is a solution of the Euler equation J ′λ,µ = 0, then u is a solution of problem
(2.10) which satisfies problem (1.1).

Proof. The proof is similar to that of [JZ, Theorem 4.2] and is omitted.

The goal of this work is to establish some new criteria for system (1.1) to
have at least three weak solutions in X, by means of a very recent abstract
critical points result of B. Ricceri [R]. First, we recall [R, Theorem 1], with
easy modifications, that we are going to use.

Theorem 3.2. Let X be a reflexive real Banach space; let Φ : X → R be
a coercive, continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous
inverse on X∗; and let Ψ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact and

Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̃ ∈ X, with r < Φ(x̃), such that
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(a1)
supx∈Φ−1(]−∞,r]) Ψ(x)

r
<
Ψ(x̃)

Φ(x̃)
;

(a2) for each λ in

Λr :=

]
Φ(x̃)

Ψ(x̃)
,

r

supx∈Φ−1(]−∞,r]) Ψ(x)

[
the functional Φ− λΨ is coercive.

Then, for each compact interval [a, b] ⊆ Λr, there exists ρ > 0 with the
following property: for every λ ∈ [a, b] and every C1 functional Γ : X → R
with compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ], the
equation

Φ′(x)− λΨ ′(x)− µΓ ′(x) = 0

has at least three solutions in X whose norms are less than ρ.

We recall that the derivative of Φ admits a continuous inverse on X when
there exists a continuous operator T : X∗ → X such that T (Φ′(x)) = x for
all x ∈ X.

Lemma 3.3. Let T : Eα → (Eα)∗ be the operator defined by

〈T (u), v〉 = −
T�

0

1

2
[(c0D

α
t u(t), ctD

α
T v(t)) + (ctD

α
Tu(t), c0D

α
t v(t))] dt

for all u, v ∈ Eα, where (Eα)∗ denotes the dual of Eα. Then T admits a
continuous inverse on (Eα)∗.

Proof. By (2.12), for every u, v ∈ Eα we have

〈T (u1)− T (u2), u1 − u2〉 = −
T�

0

1

2

[(
c
0D

α
t (u1(t)− u2(t)), ctDα

T (u1(t)− u2(t))
)

+
(
c
tD

α
T (u1(t)− u2(t)), c0Dα

t (u1(t)− u2(t))
)]
dt

= −
T�

0

(
c
0D

α
t (u1(t)− u2(t)), ctDα

T (u1(t)− u2(t))
)
dt

≥ |cos(πα)| ‖u1 − u2‖2α > 0.

So T is a strictly monotone operator.
Moreover, for un → u in Eα, we have T (un) ⇀ T (u) in (Eα)∗. Since Eα

is reflexive, we get T (un) ⇀ T (u) in (Eα)∗. Hence T is demicontinuous. On
the other hand, T is coercive since

〈T (u), u〉 ≥ |cos(πα)| ‖u‖2α.
Now, we show that

(3.3) if un ⇀ u and T (un)→ T (u) then un → u.
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Let us take a sequence {un} ⊆ Eα such that un ⇀ u in Eα and T (un) →
T (u) in (Eα)∗. Then

(3.4) 〈T (un)− T (u), un − u〉 ≤ ‖T (un)− T (u)‖α‖un − u‖α → 0.

Note that

〈T (un)− T (u), un − u〉 = −
T�

0

(
c
0D

α
t (un(t)− u(t)), ctD

α
T (un(t)− u(t))

)
dt

≥ |cos(πα)| ‖un − u‖2α.
So, by (3.4), we have ‖un − u‖2α → 0 as n→∞, and hence un → u in Eα.

Note that the strict monotonicity of T implies its injectivity. Moreover,
T is coercive and demicontinuous, so it is semicontinuous. Consequently,
thanks to the Minty–Browder theorem [Z1], the operator T is a surjection
and admits an inverse mapping.

It then suffices to show the continuity of T−1. Let fn → f in (Eα)∗. Let
{un} in Eα be such that

T−1(fn) = un and T−1(f) = u.

By the coercivity of T , {un} is bounded in the reflexive space Eα. For a
suitable subsequence, we have un ⇀ ũ in Eα, which implies

lim
n→∞

〈T (un)− T (u), un − ũ〉 = lim
n→∞

〈fn − f, un − ũ〉 = 0.

It follows from (3.3) and the continuity of T that un → ũ in Eα and T (un)→
T (ũ) in (Eα)∗.

Moreover, since T is an injection, we conclude that u = ũ.

We assume that the nonlinear term f ∈ C(R,R) has the following prop-
erties:

(H1) There exist constants a1, a2, a3 > 0 such that

|F (s)| ≤ a1|s|2 + a2|s|2−q + a3, s ∈ R,
for some q ∈ (0, 2) and

a1 ∈
[
0,
|cos(πα)|

2
‖β‖−1∞

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)−2)
.

(G1) g ∈ C(R+,R) and there exist constants M > 0 and γ ∈ (0, 2) such
that

g(0) = 0 and |g(s)| ≤M + s2−γ .

Our main result reads as follows.

Theorem 3.4. Let α ∈ (1/2, 1] and f ∈ C(R,R) be a function such that
(H1) and (G1) hold. Assume that there exist positive constants α1, β1, δ, γ
with α1 + β1 < 1 and δ > γLα1,β1 and a function ωδ ∈ Eα such that
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−
T�

0

(c0D
α
t ωδ(t),

c
tD

α
Tωδ(t)) dt+

T�

0

|ωδ(t)|2 dt > 2γ,(3.5)

	T
0 β(t)F (ωδ(t)) dt

δ2
> Kα1,β1‖β‖∞

[
a1

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2 2

|cos(πα)|
(3.6)

+ a2T
q/2

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q( 2

|cos(πα)|

)1−q/2 1

γq
+ a3T

]
,

where

Kα1,β1 =
1

L2
α1,β1

=
1

2|cos(πα)|

[
1

Γ 2(2− α)(3− 2α)

×
(
β21α

3−2α
1 + T 3−2α − (T − β1)3−2α

)]
> 0.

Then, for each compact interval

[a, b] ⊂ Λα1,β1,γ,δ

:=

[	T
0 β(t)F (ωδ(t)) dt

Kα1,β1δ
2

, ‖β‖−1∞
[
a1

( √
2T (α+1)/2

Γ (α)(2α− 1)1/2

)2 2

|cos(πα)|

+ a2T
q/2

( √
2T (α+1)/2

Γ (α)(2α− 1)1/2

)2−q( 2

|cos(πα)|

)1−q/2 1

γq
+ a3T

]−1]
⊆
]
Φ(ωδ)

Ψ(ωδ)
,

γ2

supu∈Φ−1(]−∞,γ2]) Ψ(u)

[
,

there exists ρ > 0 with the following property: for every λ ∈ [a, b] and any
g which satisfies (G1), there exists δ > 0 such that, for each µ ∈ [0, δ], the
problem (1.1) has at least three distinct solutions in Eα whose norms are
less than ρ.

Proof. In order to apply Theorem 3.2 to our problem, let X := Eα and
consider the functionals Φ, Ψ : Eα → R defined by

(3.7)

Φ(u) = −1

2

T�

0

(c0D
α
t u(t), ctD

α
Tu(t)) dt,

Ψ(u) =

T�

0

β(t)F (u(t)) dt, ∀u ∈ Eα.

It is clear that both Φ and Ψ are well-defined and continuously Gâteaux
differentiable. This follows from Lemma 3.3 and the standard fact that Φ
is a coercive, sequentially weakly lower semicontinuous functional whose
Gâteaux derivative admits a continuous inverse on (Eα)∗.
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We claim that Ψ ′ : Eα → (Eα)∗ is a compact operator. To see this, it
is enough to show that Ψ ′ is strongly continuous on Eα. For this, for fixed
u ∈ Eα let un ⇀ u weakly in Eα as n→∞. According to (2.7) and Lemma
2.9, we have un → u in C([0, T ],R), which yields

T�

0

β(t)f(un(t))dt→
T�

0

β(t)f(u(t)) dt strongly as n→∞.

Thus, Ψ ′ is strongly continuous on Eα, which implies that Ψ ′ is a compact
operator by [Z2, Proposition 26.2]. Hence the claim is true.

Now, Φ(0) = Ψ(0) = 0. Let ρ ∈ ]0,+∞[ and consider the function

χ(ρ) :=
supω∈Φ−1(]−∞,ρ]) Ψ(ω)

ρ
.

Taking into account (H1) and by the Hölder inequality, it follows that

Ψ(u) =

T�

0

β(t)F (u(t)) dt ≤
T�

0

β(t)[a1(u(t))2 + a2(u(t))2−q + a3] dt

≤ ‖β‖∞
[
a1

T�

0

|u(t)|2 dt+ a2

(T�
0

12/q dt
)q/2(T�

0

|u(t)|2 dt
)1−p/2

+ a3T
]

≤ ‖β‖∞[a1‖u‖2∞ + a2T
q/2‖u‖2−q∞ + a3T ]

≤ a1‖β‖∞
( √

2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2

‖u‖2α

+ a2T
q/2‖β‖∞

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q
‖u‖2−qα + ‖β‖∞a3T.

Then, for every u ∈ Eα such that u ∈ Φ−1(]−∞, ρ], owing to (2.12), we get

Ψ(u) ≤ ‖β‖∞
[
a1

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2 2ρ

|cos(πα)|

+ a2T
q/2

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q( 2

|cos(πα)|

)1−q/2
ρ1−q/2 + a3T

]
.

Hence, by using the definition of Φ,

sup
u∈Φ−1(]−∞,ρ])

Ψ(u) ≤ ‖β‖∞
[
a1

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2 2ρ

|cos(πα)|

+ a2T
q/2

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q( 2

|cos(πα)|

)1−q/2
ρ1−q/2 + a3T

]
.
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This yields

(3.8) χ(ρ) ≤ ‖β‖∞
[
a1

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2 2

|cos(πα)|

+ a2T
q/2

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q( 2

|cos(πα)|

)1−q/2 1

ρq/2
+ a3T

]
for every ρ > 0. Let

ωδ(t) =


δβ1t if 0 ≤ t < α1,

δα1β1 if δ1 ≤ t ≤ T − β1,
δα1(T − t) if T − β1 < t ≤ T.

It is easy to see that ωδ ∈ Eα and

(3.9) 0 < Φ(ωδ) ≤
1

2|cos(πα)|

[
1

Γ 2(2− α)(3− 2α)

(
β21α

3−2α
1 + T 3−2α

− (T − β1)3−2α
)]
δ2.

A direct computation taking into account that δ>γLα1,β1 yields γ2<Φ(ωδ).

Moreover,

(3.10) Ψ(ωδ) =

T�

0

β(t)F (ωδ(t)) dt.

Hence, from (3.9) and (3.10), one has

(3.11)
Ψ(ωδ)

Φ(ωδ)
≥

	T
0 β(t)F (ωδ(t)) dt

Kα1,β1δ
2

.

In view of (3.6) and taking into account (3.8) and (3.11), we get

χ(γ2) =
supω∈Φ−1(]−∞,ρ]) Ψ(ω)

γ2

≤ ‖β‖∞
[
a1

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2 2

|cos(πα)|

+ a2T
q/2

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q( 2

|cos(πα)|

)1−q/2 1

γq
+ a3T

]
<

	T
0 β(t)F (ωδ(t)) dt

Kα1,β1δ
2

≤ Ψ(ωδ)

Φ(ωδ)
.

Therefore, the assumption (a1) of Theorem 3.2 is satisfied with x̃ := ωδ and
r := γ2. Moreover, owing to (H1), by (2.12) and the Hölder inequality,
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Φ(u)− λΨ(u) = −1

2

T�

0

(c0D
α
t u(t), ctD

α
Tu(t)) dt− λ

T�

0

β(t)F (u(t)) dt

≥ −1

2

T�

0

(c0D
α
t u(t), ctD

α
Tu(t)) dt−

T�

0

β(t)[a1(u(t))2 + a2(u(t))2−q + a3] dt

≥ |cos(πα)|
2

T�

0

|c0Dα
t u(t)|2 dt

− ‖β‖∞
[
a1

T�

0

|u(t)|2 dt+ a2

(T�
0

12/q dt
)q/2(T�

0

|u(t)|2 dt
)1−p/2

+ a3T
]

≥ |cos(πα)|
2

‖u‖2α − ‖β‖∞[a1‖u‖2∞ + a2T
q/2‖u‖2−q∞ + a3T ]

≥
[
|cos(πα)|

2
− a1‖β‖∞

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2]
‖u‖2α

− a2T q/2‖β‖∞
( √

2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2−q
‖u‖2−qα − ‖β‖∞a3T.

Since q ∈ (0, 2), the functional Φ− λΨ is coercive for every positive param-
eter, in particular, for every

λ ∈ Λα1,β1,γ,δ ⊆
]
Φ(ωδ)

Ψ(ωδ)
,

γ2

supu∈Φ−1(]−∞,γ2]) Ψ(u)

[
.

In particular, on account of Theorem 3.2, for every interval [a, b] ⊂ Λα1,β1,γ,δ,
there exists ρ > 0 with the following property: for every λ ∈ [a, b] and every
g ∈ C(R+,R) which satisfies (G1), there exists δ > 0 such that for every
µ ∈ [0, δ], the equation Φ′(x) − λΨ ′(x) − µΓ ′(x) = 0 admits at least three
solutions in Eα whose norms are less than ρ, where Γ : Eα → R is defined
by

(3.12) Γ (u) =

T�

0

γ(t)G(u(t)) dt.

Here, we have exploited again the fact that Eα is compactly embedded in
C([0, T ],RN ) for every 1/2 < α ≤ 1, thus Γ is of class C1 with compact
derivative. Since the solutions of system (1.1) are exactly the critical points
of the functional Jλ,µ = Φ′(x)−λΨ ′(x)−µΓ ′(x) = 0, the proof is complete.

Remark. The hypothesis a1∈
[
0, |cos(πα)|2 ‖β‖−1∞

( √
2T (2α−1)/2

Γ (α)(α+1)1/2

)−2)
in (H1)

can be substituted by the following growth condition.

(H2) lim sup|s|→∞ F (s)/s2 = 0.
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Indeed, owing to (H1), problem (1.1) is well defined. Therefore, the func-
tional Φ − λΨ is coercive for every λ ∈ (0,∞). Indeed, for every ε > 0 we
have |F (s)| ≤ ε|s|2 + c(ε) for every s ∈ R. Consequently, for every u ∈ Eα,

Φ(u)− λΨ(u)

≥
[
|cos(πα)|

2
− ε‖β‖∞

( √
2T (2α−1)/2

Γ (α)(α+ 1)1/2

)2]
‖u‖2α − c(ε)T‖β‖∞.

Hence, Φ− λΨ is coercive for every real positive parameter λ.

Remark. Let f ∈ C(R+,R+) be such that

|f(s)| ≤ c1|s|r−1, ∀s ∈ R,
for some c1 > 0 and r ∈ (2,∞). Clearly, the above growth condition is a
particular case of hypothesis (H1) and implies f(0) = 0. In this setting,
under the additional hypothesis (H2), Theorem 3.4 ensures the existence of
at least three solutions for every

λ > λ∗ :=
1

Kα1,β1

inf
δ>0

ωδ∈Eα

	T
0 β(t)F (ωδ(t)) dt

δ2
.
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