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Existence of periodic solutions for Liénard-type p-Laplacian
systems with variable coefficients

by Wenbin Liu, Jiaying Liu, Huixing Zhang, Zhigang Hu
and Yanqiang Wu (Xuzhou)

Abstract. We study the existence of periodic solutions for Liénard-type p-Laplacian
systems with variable coefficients by means of the topological degree theory. We present
sufficient conditions for the existence of periodic solutions, improving some known results.

1. Introduction. In the past two decades, the p-Laplacian equation

(1.1) (φp(x
′))′ = f(t, x, x′),

where φp(s) = |s|p−2s (s 6= 0) and φp(0) = 0 for p > 1, has been extensively
studied and applied to many scientific fields. For instance, it is used as the
model of turbulent flow in a porous medium [8, 3], the model of animal and
insect dispersion [11], and also the model of non-Newtonian liquid [7]. Re-
cently, many important results have been established for the one-dimensional
p-Laplacian equation (1.1) associated with two-point boundary conditions
(see [1, 4, 5, 12, 10, 15] and references therein), with periodic boundary con-
ditions (see [13, 16, 2]), as well as multi-point boundary conditions (see e.g.
[6]). However, it seems that results on higher dimensional p-Laplacian equa-
tions are very few. It is worth mentioning that Manásevich and Mawhin [9]
studied the existence of periodic solutions for the n-dimensional p-Laplacian
system (1.1) by using extended continuation theorems.

In the present paper, we are concerned with the existence of T -periodic
solutions for a Liénard-type p-Laplacian system with variable coefficients

(1.2) (φp(x
′))′ + F (t, x)x′ +G(t, x) = E(t), t ∈ R,

where F (t, x) = diag(β1(t)f1(x1), . . . , βn(t)fn(xn)), βi ∈ C(R), βi(t + T )
= βi(t), β

′
i ∈ L1[0, T ], fi ∈ C(R) (i = 1, . . . , n), G ∈ C(R × Rn,Rn),

G(t+ T, x) = G(t, x), E ∈ C(R,Rn), E(t+ T ) = E(t), and φp : Rn → Rn is
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defined by

φp(x) = (φp(x1), . . . , φp(xn)), x = (x1, . . . , xn),

φp(xi) = |xi|p−2xi, p > 1, i = 1, . . . , n.

Obviously, (1.2) is a classical non-autonomous n-dimensional Liénard equa-
tion when p = 2 and F (t, x) = F (x) = diag(f1(x1), . . . , fn(xn)). In this case,	T
0 fi(xi(t))x

′
i(t) dt = 0 if x(·) is T -periodic. However, for the case of variable

coefficients, since
T�

0

βi(t)fi(xi(t))x
′
i(t) dt 6= 0

and many methods and techniques cannot be applied, dealing with (1.2) is
more difficult.

In addition, [14] studied the existence of periodic solutions for a scalar
Duffing-type p-Laplacian equation

(1.3) (φp(x
′))′ + cx′ + g(t, x) = e(t),

under the conditions

(A1) xg(t, x) < 0 for |x| > 0, t ∈ R,
(A2) 22−pMT p < 1 and g(t, x) ≥ −M |x|p−1 −K for x ≥ 0 and t ∈ R.

Apparently, (1.3) is the same as (1.2) if n = 1 and F (t, x) = C; and our
main results do not demand condition (A2).

2. Main results. To state our results, we use standard notations: 〈·, ·〉
denotes the usual inner product in Rn; | · | denotes the Euclidean norm
defined by

|x| =
( n∑
i=1

|xi|p
)1/p

for x = (x1, . . . , xn) ∈ Rn;

| · |p denotes the norm in Lp([0, T ],Rn) defined by

|x|p =
( n∑
i=1

T�

0

|xi(t)|p dt
)1/p

.

Moreover CkT (R,Rn) = {x(·) ∈ Ck(R,Rn) : x(t + T ) = x(t) for all t ∈ R},
k = 0, 1, and the norm in CT is denoted by |x|∞ = maxt∈[0,T ] |x(t)|. Finally,
we set

x̄ =
1

T

T�

0

x(t) dt, x̃(t) = x(t)− x̄, for x(·) ∈ C(R,Rn).

To prove our main results, we need two technical lemmas:
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Lemma 2.1 ([9]). Assume that Ω is an open bounded set in C1
T such

that:

(1) For each λ ∈ (0, 1), the problem

(2.1) (φp(x
′))′ = λf(t, x, x′), x(0) = x(T ), x′(0) = x′(T ),

has no solution on ∂Ω, where f ∈ C(R×R2n,Rn), x = (x1, . . . , xn)
∈ Rn.

(2) The equation

F (a) =
1

T

T�

0

f(t, a, 0) dt = 0

has no solution on ∂Ω ∩ Rn.
(3) The Brouwer degree satisfies

degB(F,Ω ∩ Rn, 0) 6= 0.

Then problem (2.1) has a solution in Ω̄ when λ = 1.

In order to make use of Lemma 2.1 in the study of equation (1.2), let us
consider the homotopy equation

(2.2) (φp(x
′))′ = λ[E(t)− F (t, x)x′ −G(t, x)], 0 ≤ λ ≤ 1,

and establish the following lemma:

Lemma 2.2. Suppose that:

(1) there exists a constant d > 0 such that

〈G(t, x), x〉 ≤ 0, (t, x) ∈ R× Rn, |x| > d;

(2) β′i(t)
	z
0 fi(s)s ds ≥ 0, t ∈ R, z ∈ R, i = 1, . . . , n.

Then any T -periodic solution x(·) of equation (2.2) satisfies the inequality

(2.3) |x′|p ≤ ε|x̄|+K(ε, |ad|1, |E|1),
where ad(·) ∈ L1[0, T ], |G(t, x)| ≤ ad(t) for (t, x) ∈ [0, T ]×Rn, |x| ≤ d, ε is
an arbitrary positive number, and K(·, ·, ·) > 0 is a constant.

Proof. First, we define the function r : R× Rn → Rn by

r(t, x) =


G(t, x), |x| > d,

G

(
t, d

x

|x|

)
|x|
d
, 0 < |x| ≤ d,

0, x = 0,

and set

h(t, x) = G(t, x)− r(t, x).

Then, for any (t, x) ∈ R× Rn, we have

(2.4) 〈r(t, x), x〉 ≤ 0, |h(t, x)| ≤ 2ad(t).
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Rewrite (2.2) as

(2.5) − (φp(x
′))′ = λ

[
F (t, x)x′ + r(t, x) + h(t, x)− E(t)

]
.

Taking the inner product with x(t) on both sides of (2.5), integrating on
[0, T ], and noting

T�

0

βi(t)fi(xi(t))xi(t)x
′
i(t) dt = −

T�

0

β′i(t)

xi(t)�

0

fi(s)s ds dt ≤ 0

with (2.4) we have

T�

0

(|x′1(t)|p + · · ·+ |x′n(t)|p) dt = λ
n∑
i=1

T�

0

βi(t)fi(xi(t))xi(t)x
′
i(t) dt(2.6)

+ λ

T�

0

〈r(t, x) + h(t, x)− E(t), x〉 dt

≤ λ
T�

0

〈h(t, x)− E(t), x(t)〉 dt

= λ

T�

0

〈h(t, x)− E(t), x̃(t) + x̄〉 dt

≤
T�

0

(2|ad(t)|+ |E(t)|)(|x̃(t)|+ |x̄|) dt.

It follows that
T�

0

(2|ad(t)|+ |E(t)|)|x̃(t)| dt ≤ |x̃|∞(2|ad|1 + |E|1)(2.7)

≤ µp

p
|x̃|p∞ +

1

qµq
(2|ad|1 + |E|1)q,

where µ is an arbitrary positive constant, and p, q > 1 with 1/p+ 1/q = 1.

Noting
	T
0 x̃i(t) dt = 0 where x̃i(t) is the component of x̃(t), there exists

ti ∈ [0, T ] such that x̃i(ti) = 0 (i = 1, . . . , n). It is easy to check from

x̃i(t) =

t�

ti

x̃′i(s) ds =

t�

ti

x′i(s) ds,

that

|x̃i(t)| ≤
T�

0

|x̃′i(s)| ds,

|x̃i(t)|p ≤
(T�
0

|x̃′i(s)| ds
)p
≤ T p/q

T�

0

|x̃′i(s)|p ds,
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n∑
i=1

|x̃i(t)|p ≤ T p/q
n∑
i=1

T�

0

|x̃′i(s)|p ds.

Thus

(2.8) |x̃|p∞ ≤ T p/q|x′|pp.
From (2.8), inequality (2.7) can be rewritten as

(2.9)

T�

0

(2|ad(t)|+ |E(t)|)|x̃(t)| dt ≤ µp

p
T p/q|x′|pp +

1

qµq
(2|ad|1 + |E|1)q.

On the other hand, we know that

T�

0

(2|ad(t)|+ |E(t)|)|x̄| dt = |x̄|(2|ad|1 + |E|1),(2.10)

≤ ηp

p
|x̄|p +

1

qηq
(2|ad|1 + |E|1)q,

where η is an arbitrary positive number. Choosing µ such that 1−(µp/p)T p/q

> 0, (2.6) together with (2.9) and (2.10) gives

|x′|pp ≤
ηp

c2p
|x̄|p +

1

c2q

(
1

µq
+

1

ηq

)
(2|ad|1 + |E|1)q

where c2 = 1− (µp/p)T p/q > 0. Letting

εp :=
ηp

c2p
, Kp :=

1

c2q

(
1

µq
+

1

ηq

)
(2|ad|1 + |E|1)q,

we obtain (2.3).

Remark. From the proof of the lemma, we see that if the functional
G(t, x) satisfies Carathéodory’s condition, the result of the lemma is still
true.

Next, we state one of our main results:

Theorem 2.3. Suppose that

(H1) there exists a constant d > 0 such that, for any t ∈ R and x =
(x1, . . . , xn) ∈ Rn with |xi| > d,

(2.11) Gi(t, x)xi < 0, i = 1, . . . , n,

where Gi(t, x) is the component of G(t, x);
(H2) β′i(t)

	z
0 fi(s)s ds ≥ 0 and β′i(t)z

	z
0 fi(s) ds ≥ 0, for all t, z ∈ R and

i = 1, . . . , n;

(H3)
	T
0 E(t)dt = 0.

Then equation (1.2) has a T -periodic solution.
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Proof. In order to use Lemma 2.1, we first consider equation (2.2) and
find an a priori estimate for its T -periodic solutions. Suppose that x(·) is a
T -periodic solution of (2.2); then x(·) satisfies inequality (2.3), i.e.,

|x′|p ≤ ε|x̄|+K(ε, |ad|1, |E|1).

Integrating both sides of (2.2) on [0, T ], and using the conditions x(0) = x(T )
and x′(0) = x′(T ), we have

T�

0

βi(t)fi(xi(t))x
′
i(t) dt+

T�

0

Gi(t, x(t)) dt = 0, i = 1, . . . , n.

Integration by parts yields

−
T�

0

β′i(t)

xi(t)�

0

fi(s) ds dt+

T�

0

Gi(t, x(t)) dt = 0, i = 1, . . . , n.

By conditions (H1), (H2), and since x(t) = x̄+ x̃(t), we have

x̄i − max
t∈[0,T ]

|x̃i(t)| ≤ min
t∈[0,T ]

xi(t) < d,

x̄i + max
t∈[0,T ]

|x̃i(t)| ≥ max
t∈[0,T ]

xi(t) > −d, i = 1, . . . , n.

Thus, we obtain

|x̄i| ≤ d+ max
t∈[0,T ]

|x̃i(t)| = d+ |x̃i|∞ ≤ d+ |x̃|∞, i = 1, . . . , n,

and

(2.12) |x̄| =
( n∑
i=1

|x̄i|p
)1/p

≤ n1/p(d+ |x̃|∞).

From (2.8) and (2.12), it is easy to derive that

(2.13) |x̄| ≤ n1/pd+ n1/pT 1/q|x′|p.

Combining (2.3) with (2.13), and choosing ε > 0 such that 1−εn1/pT 1/q > 0,
we have

(2.14) |x′|p ≤
n1/pdε+K(ε, |ad|1, |E|1)

1− εn1/pT 1/q
=: d1.

It follows from (2.8) and (2.13) that

|x̃|∞ ≤ T 1/qd1, |x̄| ≤ n1/pd+ n1/pT 1/qd1,

which directly leads to

|x|∞ ≤ |x̄|+ |x̃|∞ ≤ T 1/qd1 + n1/pd+ n1/pT 1/qd1 =: d2.
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Since xi(0) = xi(T ), there exists ti ∈ (0, T ) such that x′i(ti) = 0. Inte-
grating (2.2) from ti to t, we get

φp(x
′
i(t)) + λ

t�

ti

βi(s)fi(xi(s))x
′
i(s) ds+ λ

t�

ti

Gi(s, x(s)) ds = λ

t�

ti

Ei(s) ds,

i = 1, . . . , n. This yields

|x′i(t)|p−1 ≤M1

T�

0

|x′i(t)| dt+M2T +M3T

≤M1T
1/q
(T�
0

|x′i(t)|p dt
)1/p

+M2T +M3T

≤M1T
1/qd1 + (M2 +M3)T =: Mp−1

4 ,

where M1 = max0≤t≤T, |x|≤d2 |βi(t)fi(xi)|, M2 = max0≤t≤T, |x|≤d2 |G(t, x)|,
M3 = max0≤t≤T |E(t)|. Thus,

|x′(t)| ≤ n1/pM4 =: d3, t ∈ [0, T ].

Define

Ω = {x ∈ C1
T : |x|∞ < d2 + 1, |x′|∞ < d3 + 1},

F (·) =

T�

0

G(t, ·) dt : Rn → Rn.

Note that F (a) = 0 has no solution on ∂Ω ∩ Rn from the condition (2.11)
and d2 > d. Now we may construct a homotopy H(·, λ) : Rn × [0, 1] → Rn
by

H(a, λ) = λa− (1− λ)F (a) =: Hλ(a).

From (H1) it is easy to verify that

〈H(a, λ), a〉 > 0 on ∂Ω ∩ Rn, 0 ≤ λ ≤ 1.

Thus, we have

degB(Hλ, Ω ∩ Rn, 0) = degB(−F,Ω ∩ Rn, 0) = degB(I,Ω ∩ Rn, 0) = 1.

By Lemma 2.1, we conclude that (1.2) has a T -periodic solution.

Applying Theorem 2.3, we immediately get

Corollary 2.4. Assume conditions (H1) and (H3) in Theorem 2.3 hold.
Then the Liénard-type p-Laplacian system

(φp(x
′(t)))′ + diag(c1f1(x1), . . . , cnfn(xn))x′ +G(t, x) = E(t),

where ci (i = 1, . . . , n) are constants, has a T -periodic solution.

In addition, if condition (H1) is weakened to condition (1) of Lemma 2.2,
then the following result can be obtained.
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Theorem 2.5. Assume that conditions (1), (2) of Lemma 2.2 and

(C1) b(·) = lim sup
|x|→∞

〈G(·, x), x〉
|x|

∈ L1[0, T ], b(t) ≤ 0,

T�

0

b(t) dt < 0

hold. Then equation (1.2) has a T -periodic solution.

Proof. We first look for an a priori estimate for T -periodic solutions of
(2.2). Suppose that x(·) is such a solution; then it satisfies (2.3), i.e.,

|x′|p ≤ ε|x̄|p +K(ε, |ad|1, |E|1).

In order to estimate |x̄|, set ε ≤ 1/(2T 1/q) in (2.3). Then (2.8) gives

|x̃|∞ ≤ T 1/q|x′|p ≤ 1
2 |x̄|+ c1,

where c1 > 0 is independent of λ. We deduce from x(t) = x̃(t) + x̄ that

(2.15) |x(t)| ≥ |x̄| − |x̃|∞ ≥ 1
2 |x̄| − c1, t ∈ [0, T ].

Now, we claim that there exists a constant c2 > 0 independent of λ such
that

(2.16) |x̄| ≤ c2.

Otherwise there exists λn ∈ (0, 1] such that xn(·), a T -periodic solution of
(2.2) (when λ = λn), has the property |x̄n| → ∞ as n→∞. Together with
(2.15) this leads to

(2.17) |xn(t)| → ∞ as n→∞,

uniformly on [0, T ]. Taking the inner product with xn(t) on both sides of
(2.2) (when λ = λn) and integrating over [0, T ], we obtain

−
T�

0

〈φp(x′n(t)), x′n(t)〉 dt+ λn

T�

0

〈G(t, xn(t)), xn(t)〉 dt

− λn
n∑
i=1

T�

0

β′i(t)

xni(t)�

0

fi(s)s ds dt = λn

T�

0

〈E(t), xn(t)〉 dt,

where xni(t) is the ith component of xn(t).

Since
T�

0

〈φp(x′n(t)), x′n(t)〉 dt =

T�

0

|x′n(t)|p dt ≥ 0,

and
T�

0

β′i(t)

xni(t)�

0

fi(s)s ds dt ≥ 0,
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we have

(2.18) 0 ≤
T�

0

〈G(t, xn(t)), xn(t)〉 dt−
T�

0

〈E(t), x̃n(t)〉 dt.

From condition (C1) and (2.17), we know that for any given ε > 0, there
exists a constant N > 0 such that when n ≥ N ,

(2.19) 〈G(t, xn(t)), xn(t)〉 ≤ [b(t) + ε]|xn(t)|, t ∈ [0, T ].

Combining (2.18) and (2.19), we deduce

(2.20) 0 ≤ min
t∈[0,T ]

|xn(t)|
T�

0

b(t) dt+ Tε|xn|∞ + |E|1|x̃n|∞, n ≥ N.

From (2.3) and (2.8) we see that

(2.21) |x̃n|∞ ≤ T 1/qε|x̄n|+ c3,

where c3 is a number independent of λn. Thus, we have

(2.22) |xn|∞ ≤ |x̃n|∞ + |x̄n| ≤ [1 + T 1/qε]|x̄n|+ c3.

In addition, we know from (2.15) that

(2.23) min
t∈[0,T ]

|xn(t)| ≥ 1
2 |x̄n| − c1.

Noting
	T
0 b(t) dt < 0, (2.20)–(2.23) yield

(2.24) 0 ≤ 1
2 |x̄n|

T�

0

b(t) dt+ ε[T (1 + T 1/qε) + |E|1T 1/q]|x̄n|+ c4,

where c4 is a constant independent of λn. Choosing ε > 0 such that

1
2

T�

0

b(t) dt+ ε[T (1 + T 1/qε) + |E|1T 1/q] < 0,

we see from (2.17) that (2.24) is a contradiction as n → ∞. Consequently,
the claim (2.16) is true, and moreover,

|x̃|∞ ≤ 1
2c2 + c1.

Thus

|x|∞ ≤ |x̃|∞ + |x̄| ≤ 1
2c2 + c1 + c2 =: c5.

Using a similar argument to the proof of Theorem 2.3, we find that
there exists a constant d6 > 0 independent of λ such that |x′|∞ ≤ d6. Using
Lemma 2.1 again, we can immediately conclude that (1.2) has a T -periodic
solution.
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3. Example. To illustrate the applications of the above theorems,we
give an example. Consider the system (T = 2π)(

φp(x
′
1)

φp(x
′
2)

)′
+

(
β(t)x21 0

0 β(t)x42

)(
x1

x2

)′
−
(

(sin t)2x31x
2
2

(cos t)2x41x
5
2

)
=

(
sin t

cos t

)
.

where

β(t) =

{
arctan(tan t), kπ − π/2 < t < kπ + π/2,

±π/2, t = kπ ± π/2, k = ±1,±2, . . . .

It is easy to check that the above system satisfies the conditions of Theorem
2.3. So we know that it has a T -periodic solution.
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