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Fixed points of meromorphic functions
and of their differences and shifts

by Zong-Xuan Chen (Guangzhou)

Abstract. Let f(z) be a finite order transcendental meromorphic function such that
λ(1/f(z)) < σ(f(z)), and let c ∈ C \ {0} be a constant such that f(z + c) 6≡ f(z) + c. We
mainly prove that

max{τ(f(z)), τ(∆cf(z))} = max{τ(f(z)), τ(f(z + c))}
= max{τ(∆cf(z)), τ(f(z + c))} = σ(f(z)),

where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic
function g(z), and σ(g(z)) denotes the order of growth of g(z).

1. Introduction and results. We assume the reader is familiar with
the basic notions of Nevanlinna’s value distribution theory (see [10, 13, 15,
16]. In addition, we use σ(f(z)) to denote the order of growth of a meromor-
phic f(z); and λ(f(z)) and λ(1/f(z)) to denote, respectively, the exponents
of convergence of zeros and of poles of f(z). We also use τ(f(z)) to denote
the exponent of convergence of fixed points of f(z), which is defined as

τ(f(z)) = lim sup
r→∞

logN
(
r, 1
f(z)−z

)
log r

.

Fixed points are an important topic in the theory of meromorphic func-
tions. Bergweiler and Pang [3] proved the following theorem.

Theorem A (see [3]). Let f be a transcendental meromorphic function
and let R be a rational function, R 6≡ 0. Suppose that all but finitely many
zeros and poles of f are multiple. Then f ′ −R has infinitely many zeros.

When R = z, Theorem A shows that f ′(z) has infinitely many fixed
points under the assumption of the theorem.

Recently, a number of articles (e.g. [1, 2, 4–6, 8, 9, 11–14]) focus on com-
plex difference equations and difference analogues of Nevanlinna’s theory.
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The functions f1(z) = ez + z, f2(z) = ez + z − 1, and f3(z) = ez + 1
2z

2

have the property that f1(z), f2(z + 1) = eez + z and ∆2πif3(z) =
f3(z + 2πi)− f3(z) = 2πiz − 2π2 each have only finitely many fixed points.
Even for meromorphic functions of small growth, Chen and Shon [4] showed
that there exists a meromorphic function f0 such that σ(f0)<1 and ∆cf0(z)
= f0(z + c)− f0(z) has only finitely many fixed points. They also proved

Theorem B (see [4]). Let φ(r) be a positive non-decreasing function on
[1,∞) which satisfies limr→∞ φ(r) =∞. Then there exists a transcendental
meromorphic function f with

lim sup
r→∞

T (r, f)

r
<∞ and lim inf

r→∞

T (r, f)

φ(r) log r
<∞,

such that g(z) = ∆f(z) = f(z + 1) − f(z) has only one fixed point and
satisfies

lim sup
r→∞

T (r, g)

φ(r) log r
<∞.

For a meromorphic function f(z), its divided difference f(z+c)−f(z)
f(z) may

also have only finitely many fixed points: for example, if f(z) = zez then
f(z+1)−f(z)

f(z) = (z+1)e−z
z has only finitely many fixed points. Chen and Shon

[5] obtained the following results.

Theorem C (see [5]). Let c ∈ C \ {0} be a constant and f be a tran-
scendental meromorphic function of order of growth σ(f) = σ < 1 or of the
form f(z) = h(z)eaz where a 6= 0 is a constant, and h(z) is a transcendental
meromorphic function with σ(h) < 1. Suppose that p(z) is a nonconstant
polynomial. Then

G(z) =
f(z + c)− f(z)

f(z)
− p(z)

has infinitely many zeros.

From Theorem C, we easily see that under the assumptions of Theo-

rem C, the divided difference G1(z) = f(z+c)−f(z)
f(z) has infinitely many fixed

points. The example f(z) = zez shows that the result of Theorem C is sharp.
However, we find that the function f(z) = ez + z has no fixed point,

but f(z + 1) = eez + z + 1 and ∆1f(z) = f(z + 1) − f(z) = (e − 1)ez + 1
each have infinitely many fixed points. Thus, it is natural to ask about the
relationships between fixed points of a meromorphic function f(z) and its
shift f(z + c) and its difference ∆cf(z) = f(z + c)− f(z).

In this article, we prove the following.

Theorem 1.1. Let f(z) be a finite order meromorphic function such
that λ(1/f(z)) < σ(f(z)), and let c ∈ C \ {0} be a constant such that



Fixed points of meromorphic functions 155

f(z + c) 6≡ f(z) + c. Set ∆cf(z) = f(z + c)− f(z). Then

max{τ(f(z)), τ(∆cf(z))} = σ(f(z)),

max{τ(f(z)), τ(f(z + c))} = σ(f(z)),

max{τ(∆cf(z)), τ(f(z + c))} = σ(f(z)).

Remark 1.1. (i) By Theorem 1.1, if f(z) and c satisfy the assumptions
of the theorem, then at least two of τ(f(z)), τ(f(z + c)) and τ(∆cf(z)) are
equal to σ(f(z)).

(ii) Generally, one might think that τ(f(z)) = τ(f(z + c)) for a finite
order meromorphic function f(z). But in fact, generally,

τ(f(z)) 6= τ(f(z + c)).

For example, f1(z) = ez + z satisfies τ(f1(z)) = 0 and τ(f1(z + 1)) = 1
(where f1(z + 1) = eez + z + 1). This shows that

τ(f1(z)) 6= τ(f1(z + 1)).

Similarly,

τ(∆1f1(z)) = 1 6= τ(f1(z)) = 0;

and f2(z) = ez + z − 2 satisfies

τ(∆2f(z)) = 1 6= τ(f2(z + 2)) = 0.

So an obvious question to ask is what conditions guarantee that

τ(f(z)) = τ(f(z + c)) = τ(∆cf(z)) = σ(f(z)).

The following two theorems answer this question.

Theorem 1.2. Let f(z) be a finite order meromorphic function such that
λ(1/f(z)) < σ(f(z)), and c ∈ C\{0} be a constant such that f(z+c) 6≡ f(z).
If f(z) has a Borel exceptional value d ∈ C, then

τ(f(z)) = τ(f(z + c)) = τ(∆cf(z)) = σ(f(z)).

Theorem 1.3. Let f(z) be a finite order meromorphic function such
that λ(1/f(z)) < σ(f(z)), and let c ∈ C \ {0} be a constant such that
f(z + c) 6≡ f(z). If all but finitely many zeros of f(z) are multiple, then

τ(f(z)) = τ(f(z + c)) = σ(f(z)).

Remark 1.2. Theorem 1.1 fails if we replace “fixed points” with “zeros”.
For example, the function f2(z) = ez has no zero, and ∆1f2(z) = (e− 1)ez

and f2(z + 1) = ez+1 have no zero either.

Remark 1.3. The condition “f(z + c) 6≡ f(z) + c” cannot be omitted
in Theorem 1.1. For example, for f(z) = ez + z, both f(z) and ∆2πif(z) =
f(z + 2iπ) − f(z) = 2iπ have only finitely many fixed points, and c = 2πi
satisfies f(z + c) ≡ f(z) + c.
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But we do not know whether the condition “λ(1/f(z)) < σ(f(z))” may
be omitted.

2. Proof of Theorem 1.1. We need the following lemmas.

Lemma 2.1 (see [6, 9]). Let f(z) be a meromorphic function with σ(f(z))
= σ <∞, and let c be a nonzero constant. Then for each ε (0 < ε < 1),

T (r, f(z + c)) = T (r, f(z)) +O(rσ−1+ε) +O(log r).

Lemma 2.2 (see [6, 9]). Let f(z) be a meromorphic function such that
λ(1/f(z)) = λ <∞ and let η 6= 0 be fixed. Then for each ε (0 < ε < 1),

N(r, f(z + η)) = N(r, f(z)) +O(rλ−1+ε) +O(log r).

Proof of Theorem 1.1. First, we prove that max{τ(f(z)), τ(∆cf(z))} =
σ(f(z)). Suppose that τ(f(z)) < σ(f(z)). Since z0 is a pole of f(z)−z if and
only if z0 is a pole of f(z), we see that λ(1/f(z)−z) = λ(1/f(z)) < σ(f(z)).
Thus, since f(z) is of finite order, f(z)− z can be written as

(2.1) f(z)− z = zs
p1(z)

q1(z)
eh(z) =

p(z)

q(z)
eh(z) = F (z)eh(z),

where: h(z) is a nonconstant polynomial with deg h(z) = σ(f(z)); s is
an integer; if s ≥ 0 then p(z) = zsp1(z), q(z) = q1(z); if s < 0 then
p(z) = p1(z), q(z) = z−sq1(z), p1(z) and q1(z) are canonical products (or
polynomials) formed by nonzero zeros and poles of f(z) − z respectively;
and F (z) = p(z)/q(z), so that

λ(p(z)) = σ(p(z)) = λ(f(z)− z) = τ(f(z)) < σ(f(z)),(2.2)

λ(q(z)) = σ(q(z)) = λ

(
1

f(z)− z

)
= λ

(
1

f(z)

)
< σ(f(z)).(2.3)

So,

(2.4) σ(F (z)) = max{σ(p(z)), σ(q(z))} < σ(f(z)).

Set

(2.5) g(z) = ∆cf(z)− z = f(z + c)− f(z)− z.
Now we only need to prove λ(g(z)) = σ(f(z)). Substituting (2.1) into (2.5),
we obtain

(2.6) g(z) = F (z + c)eh(z+c) − F (z)eh(z) − (z − c) = E(z)eh(z) − (z − c)
where

(2.7) E(z) = F (z + c)eh(z+c)−h(z) − F (z).

If E(z) ≡ 0, then by (2.1) and (2.7), we have F (z+c)eh(z+c) = F (z)eh(z)

and

f(z + c) = F (z + c)eh(z+c) + z + c = F (z)eh(z) + z + c = f(z) + c,
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that is,
f(z + c) ≡ f(z) + c,

contrary to assumption. Thus, E(z) 6≡ 0.
By Lemma 2.1, we see that

(2.8) T (r, F (z + c)) = T (r, F (z)) + S(r, F (z)).

By (2.4), (2.7), (2.8) and deg[h(z + c)− h(z)] = deg h(z)− 1, we find that

(2.9) σ(E(z)) < deg h(z) = σ(g(z)) = σ(f(z)).

Now, by (2.6) and (2.9), g(z) is of regular growth and σ(g(z)) = σ(eh(z)),
so that

(2.10) N(r, g(z)) = N(r, E(z)) = o{T (r, g(z))}.
By (2.6), we obtain

(2.11) g′(z) = E(z)eh(z)
[
E′(z)

E(z)
+ h′(z)

]
− 1.

By (2.11), we see that E′(z)
E(z) + h′(z) 6≡ 0. In fact, if E′(z)

E(z) + h′(z) ≡ 0, then

g′(z) ≡ −1, a contradiction. So we obtain

N

(
r,

1

g′(z)− (−1)

)
= N

(
r,

1

E(z)
(E′(z)
E(z) + h′(z)

))(2.12)

≤ T
(
r, E(z)

(
E′(z)

E(z)
+ h′(z)

))
.

By (2.6) and (2.9), we see that T (r, g(z)) = T (r, eh(z)) + S(r, g(z)). Since
h(z) is a polynomial, (2.9) yields

(2.13) T

(
r, E(z)

(
E′(z)

E(z)
+ h′(z)

))
= S(r, g(z)).

Hence, by (2.12) and (2.13),

(2.14) N

(
r,

1

g′(z)− (−1)

)
= S(r, g(z)).

By the Milloux inequality, (2.10) and (2.14),

T (r, g(z)) ≤ N(r, g(z)) +N

(
r,

1

g(z)

)
(2.15)

+N

(
r,

1

g′(z)− (−1)

)
+ S(r, g(z))

= N

(
r,

1

g(z)

)
+ S(r, g(z)).

By (2.15), we obtain λ(g(z)) = σ(g(z)) = σ(f(z)). Hence, max{τ(f(z)),
τ(∆cf(z))} = σ(f(z)).



158 Z. X. Chen

Secondly, we prove max{τ(f(z)), τ(f(z + c))} = σ(f(z)).

Suppose that τ(f(z)) < σ(f(z)). Then (2.1)–(2.4) hold. Set

(2.16) g1(z) = f(z + c)− z = F (z + c)eh(z+c) + c.

Then σ(g1(z)) = σ(f(z + c)) = σ(f(z)). By Lemma 2.1 and (2.4),

T (r, F (z + c)) = T (r, F (z)) + S(r, F (z))(2.17)

= S(r, g1(z)) = o{T (r, g1(z)}.

By (2.4), (2.16) and (2.17), g1(z) is of regular growth. Thus, we deduce that

(2.18) N(r, g1(z)) = N(r, F (z + c)) ≤ T (r, F (z)) = o{T (r, g1(z))}

and

N

(
r,

1

g1(z)− c

)
= N

(
r,

1

F (z + c)

)
≤ T (r, F (z + c))(2.19)

= T (r, F (z)) + S(r, F (z)) = o{T (r, g1(z)}.

By the second fundamental theorem, (2.16), (2.18) and (2.19),

T (r, g1(z)) ≤ N(r, g1(z)) +N

(
r,

1

g1(z)

)
(2.20)

+N

(
r,

1

g1(z)− c

)
+ S(r, g(z))

= N

(
r,

1

g1(z)

)
+ S(r, g1(z)).

By (2.20), we obtain λ(g1(z)) = σ(g1(z)) = σ(f(z)). Hence, max{τ(f(z)),
τ(f(z + c))} = σ(f(z)).

Thirdly, we prove max{τ(∆cf(z)), τ(f(z + c))} = σ(f(z)). Because
σ(f(z + c)) = σ(f(z)) = σ and λ(1/f(z)) < σ(f(z)), we see that N(r, f(z))
is of order σ1 (< σ). By Lemma 2.2, we obtain

(2.21) N(r, f(z + c)) = N(r, f(z)) +O(rσ1−1+ε) +O(log r).

This gives

λ

(
1

f(z + c)− z

)
= λ

(
1

f(z + c)

)
= λ(1/f(z)) = σ1 < σ(f(z)).

Now suppose that τ(f(z + c)) < σ(f(z)). Since λ
(

1
f(z+c)−z

)
< σ(f(z)), we

see that f(z + c)− z can be written as

(2.22) f(z + c)− z =
p∗(z)

q∗(z)
eh
∗(z) = F ∗(z)eh

∗(z),

where h∗(z) is a nonconstant polynomial with deg h∗(z) = σ(f(z + c)),
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F ∗(z) = p∗(z)/q∗(z), and p∗(z) and q∗(z) are entire functions such that

λ(p∗(z)) = σ(p∗(z)) = λ(f(z + c)− z)(2.23)

= τ(f(z + c)) < σ(f(z + c)),

and

λ(q∗(z)) = σ(q∗(z)) = λ

(
1

f(z + c)− z

)
(2.24)

= λ

(
1

f(z + c)

)
< σ(f(z + c)).

So,

(2.25) σ(F ∗(z)) = max{σ(p∗(z)), σ(q∗(z))} < σ(f(z + c)).

Thus, by (2.22) we obtain

(2.26) ∆cf(z) = f(z + c)− f(z) = F ∗(z)eh
∗(z) − F ∗(z − c)eh∗(z−c) + c.

Set g2(z) = ∆cf(z)− z. Then

(2.27) g2(z) = E∗(z)eh
∗(z) + c− z,

where E∗(z) = F ∗(z)−F ∗(z− c)eh∗(z−c)−h∗(z). As deg(h∗(z− c)− h∗(z)) =
deg h∗(z) − 1 and (2.27), we see that σ(E∗(z)) < σ(g2(z)) = σ(eh

∗(z)) =
σ(f(z)). Using the same method as in the proof of the first step, we deduce
that λ(g2(z)) = σ(g2(z)) = σ(f(z)).

Hence, max{τ(∆cf(z)), τ(f(z + c))} = σ(f(z)).

3. Proof of Theorem 1.2. We need the following lemma.

Lemma 3.1 (see [7, pp. 69–70] or [16, pp. 79–80]). Suppose that n ≥ 2
and let fj(z), j=1, . . . , n, be meromorphic functions and gj(z), j=1, . . . , n,
be entire functions such that

(i)
∑n

j=1 fj(z) exp{gj(z)} ≡ 0;
(ii) when 1 ≤ j < k ≤ n, gj(z)− gk(z) is not constant;

(iii) when 1 ≤ j ≤ n and 1 ≤ h < k ≤ n,
T (r, fj) = o{T (r, exp{gh − gk})} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic
measure.

Then fj(z) ≡ 0, j = 1, . . . , n.

Proof of Theorem 1.2. Since f(z) has a Borel exceptional value d ∈ C
and λ(1/f(z)) < σ(f(z)), we see that f(z) can be written as

(3.1) f(z) = d+
p(z)

q(z)
eh1(z) = d+ F1(z)e

h1(z),
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where h1(z) is a nonconstant polynomial with deg h1(z) = σ(f(z)), F1(z) =
p(z)/q(z), and p(z), q(z) are nonzero entire functions such that

λ(p(z)) = σ(p(z)) = λ(f(z)− d) < σ(f(z)),(3.2)

λ(q(z)) = σ(q(z)) = λ

(
1

f(z)− d

)
= λ(1/f(z)) < σ(f(z)).(3.3)

So,

(3.4) σ(F1(z)) = max{σ(p(z)), σ(q(z))} < σ(f(z)).

First, we prove that τ(f(z)) = σ(f(z)). Suppose that τ(f(z)) < σ(f(z)).
Since z0 is a pole of f(z) − z if and only if it is a pole of f(z), we see that
λ(1/f(z)− z) = λ(1/f(z)) < σ(f(z)). Thus, f(z)− z can be written as

(3.5) f(z)− z =
a(z)

b(z)
eh2(z) = F2(z)e

h2(z)

where h2(z) is a nonconstant polynomial with deg h2(z) = σ(f(z)), a(z), b(z)
are nonzero entire functions, and F2(z) = a(z)/b(z), so that

λ(a(z)) = σ(a(z)) = λ(f(z)− z) = τ(f(z)) < σ(f(z)),(3.6)

λ(b(z)) = σ(b(z)) = λ

(
1

f(z)− z

)
= λ(1/f(z)) < σ(f(z)).(3.7)

So, by (3.6) and (3.7), we have

(3.8) σ(F2(z)) = max{σ(a(z)), σ(b(z))} < σ(f(z)).

By (3.1) and (3.5), we obtain

(3.9) F1(z)e
h1(z) − F2(z)e

h2(z) + F0(z)e
h0(z) = 0,

where F0(z) = d− z, h0(z) = 0.
If deg(h1(z)−h2(z)) = deg h1(z), then since eh1(z), eh2(z), eh1(z)−h2(z) are

of regular growth, by (3.4) and (3.8) we obtain

(3.10) T (r, Fj(z)) = o{T (r, ehk(z)−hs(z)}, j = 0, 1, 2; 0 ≤ s < k ≤ 2.

Now Lemma 3.1, (3.9) and (3.10) yield

F1(z) ≡ F2(z) ≡ F0(z) ≡ d− z ≡ 0,

a contradiction.
If deg(h1(z)− h2(z)) < deg h1(z), then by (3.9) we obtain

(3.11) eh1(z)(F1(z)− F2(z)e
h2(z)−h1(z)) + d− z = 0.

If F1(z)− F2(z)e
h2(z)−h1(z) ≡ 0, then d− z ≡ 0, a contradiction; if F1(z)−

F2(z)e
h2(z)−h1(z) 6≡ 0, then the order of growth of the left side of (3.11) is

deg h1(z) = σ(f(z)), also a contradiction. Hence τ(f(z)) = σ(f(z)).
Secondly, we prove that τ(f(z + c)) = σ(f(z)). By Lemma 2.1,

T (r, f(z + c)) = T (r, f(z)) + S(r, f(z)).
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Using a similar method to the proof of the first step, we conclude that
τ(f(z + c)) = σ(f(z)).

Thirdly, we prove that τ(∆cf(z)) = σ(f(z)). Suppose that τ(∆cf(z)) <
σ(f(z)). As in the proof of the first step, ∆cf(z)− z can be written as

(3.12) ∆cf(z)− z = f(z + c)− f(z)− z = F3(z)e
h3(z)

where h3(z) is a polynomial with deg h3(z) ≤ σ(f(z)) and F3(z) ( 6≡ 0) is a
meromorphic function such that

(3.13) σ(F3(z)) < σ(f(z)).

Substituting (3.1) into (3.12), we obtain

F1(z + c)eh1(z+c) − F1(z)e
h1(z) − F3(z)e

h3(z) − z = 0,

that is,

(3.14) eh1(z)(F1(z + c)eh1(z+c)−h1(z) − F1(z))− F3(z)e
h3(z) − z = 0.

We claim that

(3.15) F1(z + c)eh1(z+c)−h1(z) − F1(z) 6≡ 0.

In fact, if F1(z + c)eh1(z+c)−h1(z) − F1(z) ≡ 0, then by (3.1), we obtain
f(z + c) ≡ f(z), contrary to assumption.

From (3.4), (3.13)–(3.15) and deg(h1(z+ c)− h1(z)) = deg h1(z)− 1, we
obtain

(3.16) deg h3(z) = deg h1(z) = σ(f(z)) = k.

If deg(h3(z)− h1(z)) = k, then by Lemma 3.1 and (3.14),

F1(z + c)eh3(z+c)−h1(z) − F1(z) ≡ F3(z) ≡ z ≡ 0,

a contradiction.

If deg(h3(z)− h1(z)) < k, then (3.14) can be rewritten as

(3.17) eh1(z)
(
F1(z + c)eh1(z+c)−h1(z) − F1(z)− F3(z)e

h3(z)−h1(z))− z = 0,

and using a similar method to the proof of the first step, we obtain a con-
tradiction.

Hence, τ(∆cf(z)) = σ(f(z)).

4. Proof of Theorem 1.3. We need the following lemma.

Lemma 4.1. Let f(z) be a meromorphic function with λ(f(z)) = λ <∞
and let η 6= 0 be fixed. Then for each ε (0 < ε < 1),

N

(
r,

1

f(z + η)

)
= N

(
r,

1

f(z)

)
+O(rλ−1+ε) +O(log r).

Proof. Use the same method as in the proof of Lemma 2.1.
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Proof of Theorem 1.3. We only prove that τ(f(z + c)) = σ(f(z)) since
the method of the proof of τ(f(z)) = σ(f(z)) is the same.

If λ(f(z)) < σ(f(z)), then f(z) has Borel exceptional value 0, so that by
Theorem 1.2, we see that τ(f(z + c)) = σ(f(z)).

Now we suppose that λ(1/f(z)) < λ(f(z)) = σ(f(z)). By Lemmas 2.2
and 4.1,

(4.1) λ

(
1

f(z + c)

)
< λ(f(z + c)) = σ(f(z)).

Suppose that τ(f(z + c)) < σ(f(z)). Since λ
(

1
f(z+c)−z

)
= λ

(
1

f(z+c)

)
<

σ(f(z)), we see that, as in the proof of Theorem 1.1, f(z + c) − z can be
written as

(4.2) f(z + c)− z = F (z)eh(z),

where h(z) is a nonconstant polynomial and F (z) is a meromorphic function
such that σ(F (z)) < σ(f(z)) = deg h(z). Thus, by (4.2),

f ′(z + c) = F (z)eh(z)
(
F ′(z)

F (z)
+ h′(z)

)
+ 1

= f(z + c)

(
F ′(z)

F (z)
+ h′(z)

)
− z
(
F ′(z)

F (z)
+ h′(z)

)
+ 1,

so that

(4.3)
f ′(z + c)

f(z + c)
=

(
F ′(z)

F (z)
+ h′(z)

)
−
(
z
F ′(z)

F (z)
+ zh′(z)− 1

)
1

f(z + c)
.

We claim that

z
F ′(z)

F (z)
+ zh′(z)− 1 6≡ 0.

In fact, otherwise F ′(z)
F (z) + h′(z) = 1

z . By integrating, we obtain F (z)eh(z) =

αz, where α ( 6= 0) is a constant. This contradicts (4.2).
Since σ(F (z)) < σ(f(z)) = λ(f(z+ c)) and h′(z) is a polynomial, we see

that

σ

(
F ′(z)

F (z)
+ h′(z)

)
< σ(f(z)), σ

(
z
F ′(z)

F (z)
+ zh′(z)− 1

)
< σ(f(z))

and there exists a point z0 which is a multiple zero of f(z+c), and is neither

a zero of z F
′(z)
F (z) + zh′(z)− 1, nor a pole of F ′(z)

F (z) + h′(z). Thus, the right side

of (4.3) has a multiple pole at z = z0, but the left side of (4.3) has only a
simple pole at z = z0, is a contradiction.

Hence τ(f(z + c)) = σ(f(z)).
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