Fixed points of meromorphic functions and of their differences and shifts

by Zong-Xuan Chen (Guangzhou)

$$
\begin{aligned}
& \text { Abstract. Let } f(z) \text { be a finite order transcendental meromorphic function such that } \\
& \begin{aligned}
\lambda(1 / f(z))<\sigma(f(z)), \text { and let } c \in \mathbb{C} \backslash\{0\} \text { be a constant such that } f(z+c) \not \equiv f(z)+c \text {. We } \\
\text { mainly prove that }
\end{aligned} \\
& \qquad \begin{aligned}
\max \left\{\tau(f(z)), \tau\left(\Delta_{c} f(z)\right)\right\} & =\max \{\tau(f(z)), \tau(f(z+c))\} \\
& =\max \left\{\tau\left(\Delta_{c} f(z)\right), \tau(f(z+c))\right\}=\sigma(f(z)),
\end{aligned}
\end{aligned}
$$

where $\tau(g(z))$ denotes the exponent of convergence of fixed points of the meromorphic function $g(z)$, and $\sigma(g(z))$ denotes the order of growth of $g(z)$.

1. Introduction and results. We assume the reader is familiar with the basic notions of Nevanlinna's value distribution theory (see [10, 13, 15 , [16]. In addition, we use $\sigma(f(z))$ to denote the order of growth of a meromorphic $f(z)$; and $\lambda(f(z))$ and $\lambda(1 / f(z))$ to denote, respectively, the exponents of convergence of zeros and of poles of $f(z)$. We also use $\tau(f(z))$ to denote the exponent of convergence of fixed points of $f(z)$, which is defined as

$$
\tau(f(z))=\limsup _{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f(z)-z}\right)}{\log r}
$$

Fixed points are an important topic in the theory of meromorphic functions. Bergweiler and Pang [3] proved the following theorem.

Theorem A (see [3]). Let f be a transcendental meromorphic function and let R be a rational function, $R \not \equiv 0$. Suppose that all but finitely many zeros and poles of f are multiple. Then $f^{\prime}-R$ has infinitely many zeros.

When $R=z$, Theorem A shows that $f^{\prime}(z)$ has infinitely many fixed points under the assumption of the theorem.

Recently, a number of articles (e.g. [1, 2, 4, 6, 8, 9, 11-14) focus on complex difference equations and difference analogues of Nevanlinna's theory.

[^0]The functions $f_{1}(z)=e^{z}+z, f_{2}(z)=e^{z}+z-1$, and $f_{3}(z)=e^{z}+\frac{1}{2} z^{2}$ have the property that $f_{1}(z), f_{2}(z+1)=e e^{z}+z$ and $\Delta_{2 \pi i} f_{3}(z)=$ $f_{3}(z+2 \pi i)-f_{3}(z)=2 \pi i z-2 \pi^{2}$ each have only finitely many fixed points. Even for meromorphic functions of small growth, Chen and Shon [4] showed that there exists a meromorphic function f_{0} such that $\sigma\left(f_{0}\right)<1$ and $\Delta_{c} f_{0}(z)$ $=f_{0}(z+c)-f_{0}(z)$ has only finitely many fixed points. They also proved

Theorem B (see [4]). Let $\phi(r)$ be a positive non-decreasing function on $[1, \infty)$ which satisfies $\lim _{r \rightarrow \infty} \phi(r)=\infty$. Then there exists a transcendental meromorphic function f with

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r}<\infty \quad \text { and } \quad \liminf _{r \rightarrow \infty} \frac{T(r, f)}{\phi(r) \log r}<\infty
$$

such that $g(z)=\Delta f(z)=f(z+1)-f(z)$ has only one fixed point and satisfies

$$
\limsup _{r \rightarrow \infty} \frac{T(r, g)}{\phi(r) \log r}<\infty
$$

For a meromorphic function $f(z)$, its divided difference $\frac{f(z+c)-f(z)}{f(z)}$ may also have only finitely many fixed points: for example, if $f(z)=z e^{z}$ then $\frac{f(z+1)-f(z)}{f(z)}=\frac{(z+1) e-z}{z}$ has only finitely many fixed points. Chen and Shon [5] obtained the following results.

Theorem $\mathrm{C}($ see [5]). Let $c \in \mathbb{C} \backslash\{0\}$ be a constant and f be a transcendental meromorphic function of order of growth $\sigma(f)=\sigma<1$ or of the form $f(z)=h(z) e^{a z}$ where $a \neq 0$ is a constant, and $h(z)$ is a transcendental meromorphic function with $\sigma(h)<1$. Suppose that $p(z)$ is a nonconstant polynomial. Then

$$
G(z)=\frac{f(z+c)-f(z)}{f(z)}-p(z)
$$

has infinitely many zeros.
From Theorem C, we easily see that under the assumptions of Theorem C, the divided difference $G_{1}(z)=\frac{f(z+c)-f(z)}{f(z)}$ has infinitely many fixed points. The example $f(z)=z e^{z}$ shows that the result of Theorem C is sharp.

However, we find that the function $f(z)=e^{z}+z$ has no fixed point, but $f(z+1)=e e^{z}+z+1$ and $\Delta_{1} f(z)=f(z+1)-f(z)=(e-1) e^{z}+1$ each have infinitely many fixed points. Thus, it is natural to ask about the relationships between fixed points of a meromorphic function $f(z)$ and its shift $f(z+c)$ and its difference $\Delta_{c} f(z)=f(z+c)-f(z)$.

In this article, we prove the following.
ThEOREM 1.1. Let $f(z)$ be a finite order meromorphic function such that $\lambda(1 / f(z))<\sigma(f(z))$, and let $c \in \mathbb{C} \backslash\{0\}$ be a constant such that

$$
\begin{aligned}
& f(z+c) \not \equiv f(z)+c . \operatorname{Set} \Delta_{c} f(z)=f(z+c)-f(z) . \text { Then } \\
& \max \left\{\tau(f(z)), \tau\left(\Delta_{c} f(z)\right)\right\}=\sigma(f(z)), \\
& \max \{\tau(f(z)), \tau(f(z+c))\}=\sigma(f(z)), \\
& \max \left\{\tau\left(\Delta_{c} f(z)\right), \tau(f(z+c))\right\}=\sigma(f(z)) .
\end{aligned}
$$

Remark 1.1. (i) By Theorem 1.1, if $f(z)$ and c satisfy the assumptions of the theorem, then at least two of $\tau(f(z)), \tau(f(z+c))$ and $\tau\left(\Delta_{c} f(z)\right)$ are equal to $\sigma(f(z))$.
(ii) Generally, one might think that $\tau(f(z))=\tau(f(z+c))$ for a finite order meromorphic function $f(z)$. But in fact, generally,

$$
\tau(f(z)) \neq \tau(f(z+c))
$$

For example, $f_{1}(z)=e^{z}+z$ satisfies $\tau\left(f_{1}(z)\right)=0$ and $\tau\left(f_{1}(z+1)\right)=1$ (where $f_{1}(z+1)=e e^{z}+z+1$). This shows that

$$
\tau\left(f_{1}(z)\right) \neq \tau\left(f_{1}(z+1)\right)
$$

Similarly,

$$
\tau\left(\Delta_{1} f_{1}(z)\right)=1 \neq \tau\left(f_{1}(z)\right)=0
$$

and $f_{2}(z)=e^{z}+z-2$ satisfies

$$
\tau\left(\Delta_{2} f(z)\right)=1 \neq \tau\left(f_{2}(z+2)\right)=0
$$

So an obvious question to ask is what conditions guarantee that

$$
\tau(f(z))=\tau(f(z+c))=\tau\left(\Delta_{c} f(z)\right)=\sigma(f(z))
$$

The following two theorems answer this question.
ThEOREM 1.2. Let $f(z)$ be a finite order meromorphic function such that $\lambda(1 / f(z))<\sigma(f(z))$, and $c \in \mathbb{C} \backslash\{0\}$ be a constant such that $f(z+c) \not \equiv f(z)$. If $f(z)$ has a Borel exceptional value $d \in \mathbb{C}$, then

$$
\tau(f(z))=\tau(f(z+c))=\tau\left(\Delta_{c} f(z)\right)=\sigma(f(z))
$$

Theorem 1.3. Let $f(z)$ be a finite order meromorphic function such that $\lambda(1 / f(z))<\sigma(f(z))$, and let $c \in \mathbb{C} \backslash\{0\}$ be a constant such that $f(z+c) \not \equiv f(z)$. If all but finitely many zeros of $f(z)$ are multiple, then

$$
\tau(f(z))=\tau(f(z+c))=\sigma(f(z))
$$

REMARK 1.2. Theorem 1.1 fails if we replace "fixed points" with "zeros". For example, the function $f_{2}(z)=e^{z}$ has no zero, and $\Delta_{1} f_{2}(z)=(e-1) e^{z}$ and $f_{2}(z+1)=e^{z+1}$ have no zero either.

REmARK 1.3. The condition " $f(z+c) \not \equiv f(z)+c$ " cannot be omitted in Theorem 1.1. For example, for $f(z)=e^{z}+z$, both $f(z)$ and $\Delta_{2 \pi i} f(z)=$ $f(z+2 i \pi)-f(z)=2 i \pi$ have only finitely many fixed points, and $c=2 \pi i$ satisfies $f(z+c) \equiv f(z)+c$.

But we do not know whether the condition " $\lambda(1 / f(z))<\sigma(f(z))$ " may be omitted.
2. Proof of Theorem 1.1. We need the following lemmas.

Lemma 2.1 (see [6, 9]). Let $f(z)$ be a meromorphic function with $\sigma(f(z))$ $=\sigma<\infty$, and let c be a nonzero constant. Then for each $\varepsilon(0<\varepsilon<1)$,

$$
T(r, f(z+c))=T(r, f(z))+O\left(r^{\sigma-1+\varepsilon}\right)+O(\log r)
$$

Lemma 2.2 (see [6, 9]). Let $f(z)$ be a meromorphic function such that $\lambda(1 / f(z))=\lambda<\infty$ and let $\eta \neq 0$ be fixed. Then for each $\varepsilon(0<\varepsilon<1)$,

$$
N(r, f(z+\eta))=N(r, f(z))+O\left(r^{\lambda-1+\varepsilon}\right)+O(\log r)
$$

Proof of Theorem 1.1. First, we prove that $\max \left\{\tau(f(z)), \tau\left(\Delta_{c} f(z)\right)\right\}=$ $\sigma(f(z))$. Suppose that $\tau(f(z))<\sigma(f(z))$. Since z_{0} is a pole of $f(z)-z$ if and only if z_{0} is a pole of $f(z)$, we see that $\lambda(1 / f(z)-z)=\lambda(1 / f(z))<\sigma(f(z))$. Thus, since $f(z)$ is of finite order, $f(z)-z$ can be written as

$$
\begin{equation*}
f(z)-z=z^{s} \frac{p_{1}(z)}{q_{1}(z)} e^{h(z)}=\frac{p(z)}{q(z)} e^{h(z)}=F(z) e^{h(z)} \tag{2.1}
\end{equation*}
$$

where: $h(z)$ is a nonconstant polynomial with $\operatorname{deg} h(z)=\sigma(f(z)) ; s$ is an integer; if $s \geq 0$ then $p(z)=z^{s} p_{1}(z), q(z)=q_{1}(z)$; if $s<0$ then $p(z)=p_{1}(z), q(z)=z^{-s} q_{1}(z), p_{1}(z)$ and $q_{1}(z)$ are canonical products (or polynomials) formed by nonzero zeros and poles of $f(z)-z$ respectively; and $F(z)=p(z) / q(z)$, so that

$$
\begin{align*}
& \lambda(p(z))=\sigma(p(z))=\lambda(f(z)-z)=\tau(f(z))<\sigma(f(z)) \tag{2.2}\\
& \lambda(q(z))=\sigma(q(z))=\lambda\left(\frac{1}{f(z)-z}\right)=\lambda\left(\frac{1}{f(z)}\right)<\sigma(f(z)) \tag{2.3}
\end{align*}
$$

So,

$$
\begin{equation*}
\sigma(F(z))=\max \{\sigma(p(z)), \sigma(q(z))\}<\sigma(f(z)) \tag{2.4}
\end{equation*}
$$

Set

$$
\begin{equation*}
g(z)=\Delta_{c} f(z)-z=f(z+c)-f(z)-z \tag{2.5}
\end{equation*}
$$

Now we only need to prove $\lambda(g(z))=\sigma(f(z))$. Substituting (2.1) into (2.5), we obtain

$$
\begin{equation*}
g(z)=F(z+c) e^{h(z+c)}-F(z) e^{h(z)}-(z-c)=E(z) e^{h(z)}-(z-c) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
E(z)=F(z+c) e^{h(z+c)-h(z)}-F(z) \tag{2.7}
\end{equation*}
$$

If $E(z) \equiv 0$, then by (2.1) and 2.7 , we have $F(z+c) e^{h(z+c)}=F(z) e^{h(z)}$ and

$$
f(z+c)=F(z+c) e^{h(z+c)}+z+c=F(z) e^{h(z)}+z+c=f(z)+c
$$

that is,

$$
f(z+c) \equiv f(z)+c
$$

contrary to assumption. Thus, $E(z) \not \equiv 0$.
By Lemma 2.1, we see that

$$
\begin{equation*}
T(r, F(z+c))=T(r, F(z))+S(r, F(z)) . \tag{2.8}
\end{equation*}
$$

By (2.4), 2.7), 2.8) and $\operatorname{deg}[h(z+c)-h(z)]=\operatorname{deg} h(z)-1$, we find that

$$
\begin{equation*}
\sigma(E(z))<\operatorname{deg} h(z)=\sigma(g(z))=\sigma(f(z)) . \tag{2.9}
\end{equation*}
$$

Now, by 2.6) and 2.9), $g(z)$ is of regular growth and $\sigma(g(z))=\sigma\left(e^{h(z)}\right)$, so that

$$
\begin{equation*}
N(r, g(z))=N(r, E(z))=o\{T(r, g(z))\} . \tag{2.10}
\end{equation*}
$$

By (2.6), we obtain

$$
\begin{equation*}
g^{\prime}(z)=E(z) e^{h(z)}\left[\frac{E^{\prime}(z)}{E(z)}+h^{\prime}(z)\right]-1 . \tag{2.11}
\end{equation*}
$$

By (2.11), we see that $\frac{E^{\prime}(z)}{E(z)}+h^{\prime}(z) \not \equiv 0$. In fact, if $\frac{E^{\prime}(z)}{E(z)}+h^{\prime}(z) \equiv 0$, then $g^{\prime}(z) \equiv-1$, a contradiction. So we obtain

$$
\begin{align*}
N\left(r, \frac{1}{g^{\prime}(z)-(-1)}\right) & =N\left(r, \frac{1}{E(z)\left(\frac{E^{\prime}(z)}{E(z)}+h^{\prime}(z)\right)}\right) \tag{2.12}\\
& \leq T\left(r, E(z)\left(\frac{E^{\prime}(z)}{E(z)}+h^{\prime}(z)\right)\right) .
\end{align*}
$$

By (2.6) and 2.9), we see that $T(r, g(z))=T\left(r, e^{h(z)}\right)+S(r, g(z))$. Since $h(z)$ is a polynomial, (2.9) yields

$$
\begin{equation*}
T\left(r, E(z)\left(\frac{E^{\prime}(z)}{E(z)}+h^{\prime}(z)\right)\right)=S(r, g(z)) . \tag{2.13}
\end{equation*}
$$

Hence, by (2.12) and (2.13),

$$
\begin{equation*}
N\left(r, \frac{1}{g^{\prime}(z)-(-1)}\right)=S(r, g(z)) . \tag{2.14}
\end{equation*}
$$

By the Milloux inequality, (2.10) and (2.14),

$$
\begin{align*}
T(r, g(z)) \leq & N(r, g(z))+N\left(r, \frac{1}{g(z)}\right) \tag{2.15}\\
& +N\left(r, \frac{1}{g^{\prime}(z)-(-1)}\right)+S(r, g(z)) \\
= & N\left(r, \frac{1}{g(z)}\right)+S(r, g(z))
\end{align*}
$$

By 2.15), we obtain $\lambda(g(z))=\sigma(g(z))=\sigma(f(z))$. Hence, $\max \{\tau(f(z))$, $\left.\tau\left(\Delta_{c} f(z)\right)\right\}=\sigma(f(z))$.

Secondly, we prove $\max \{\tau(f(z)), \tau(f(z+c))\}=\sigma(f(z))$.
Suppose that $\tau(f(z))<\sigma(f(z))$. Then (2.1)-(2.4) hold. Set

$$
\begin{equation*}
g_{1}(z)=f(z+c)-z=F(z+c) e^{h(z+c)}+c . \tag{2.16}
\end{equation*}
$$

Then $\sigma\left(g_{1}(z)\right)=\sigma(f(z+c))=\sigma(f(z))$. By Lemma 2.1 and 2.4,

$$
\begin{align*}
T(r, F(z+c)) & =T(r, F(z))+S(r, F(z)) \tag{2.17}\\
& =S\left(r, g_{1}(z)\right)=o\left\{T\left(r, g_{1}(z)\right\} .\right.
\end{align*}
$$

By (2.4), (2.16) and (2.17), $g_{1}(z)$ is of regular growth. Thus, we deduce that

$$
\begin{equation*}
N\left(r, g_{1}(z)\right)=N(r, F(z+c)) \leq T(r, F(z))=o\left\{T\left(r, g_{1}(z)\right)\right\} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{align*}
N\left(r, \frac{1}{g_{1}(z)-c}\right) & =N\left(r, \frac{1}{F(z+c)}\right) \leq T(r, F(z+c)) \tag{2.19}\\
& =T(r, F(z))+S(r, F(z))=o\left\{T\left(r, g_{1}(z)\right\}\right.
\end{align*}
$$

By the second fundamental theorem, (2.16), (2.18) and (2.19),

$$
\begin{align*}
T\left(r, g_{1}(z)\right) \leq & N\left(r, g_{1}(z)\right)+N\left(r, \frac{1}{g_{1}(z)}\right) \tag{2.20}\\
& +N\left(r, \frac{1}{g_{1}(z)-c}\right)+S(r, g(z)) \\
= & N\left(r, \frac{1}{g_{1}(z)}\right)+S\left(r, g_{1}(z)\right)
\end{align*}
$$

By 2.20, we obtain $\lambda\left(g_{1}(z)\right)=\sigma\left(g_{1}(z)\right)=\sigma(f(z))$. Hence, $\max \{\tau(f(z))$, $\tau(f(z+c))\}=\sigma(f(z))$.

Thirdly, we prove $\max \left\{\tau\left(\Delta_{c} f(z)\right), \tau(f(z+c))\right\}=\sigma(f(z))$. Because $\sigma(f(z+c))=\sigma(f(z))=\sigma$ and $\lambda(1 / f(z))<\sigma(f(z))$, we see that $N(r, f(z))$ is of order $\sigma_{1}(<\sigma)$. By Lemma 2.2, we obtain

$$
\begin{equation*}
N(r, f(z+c))=N(r, f(z))+O\left(r^{\sigma_{1}-1+\varepsilon}\right)+O(\log r) . \tag{2.21}
\end{equation*}
$$

This gives

$$
\lambda\left(\frac{1}{f(z+c)-z}\right)=\lambda\left(\frac{1}{f(z+c)}\right)=\lambda(1 / f(z))=\sigma_{1}<\sigma(f(z)) .
$$

Now suppose that $\tau(f(z+c))<\sigma(f(z))$. Since $\lambda\left(\frac{1}{f(z+c)-z}\right)<\sigma(f(z))$, we see that $f(z+c)-z$ can be written as

$$
\begin{equation*}
f(z+c)-z=\frac{p^{*}(z)}{q^{*}(z)} e^{h^{*}(z)}=F^{*}(z) e^{h^{*}(z)}, \tag{2.22}
\end{equation*}
$$

where $h^{*}(z)$ is a nonconstant polynomial with $\operatorname{deg} h^{*}(z)=\sigma(f(z+c))$,
$F^{*}(z)=p^{*}(z) / q^{*}(z)$, and $p^{*}(z)$ and $q^{*}(z)$ are entire functions such that

$$
\begin{align*}
\lambda\left(p^{*}(z)\right) & =\sigma\left(p^{*}(z)\right)=\lambda(f(z+c)-z) \tag{2.23}\\
& =\tau(f(z+c))<\sigma(f(z+c))
\end{align*}
$$

and

$$
\begin{align*}
\lambda\left(q^{*}(z)\right) & =\sigma\left(q^{*}(z)\right)=\lambda\left(\frac{1}{f(z+c)-z}\right) \tag{2.24}\\
& =\lambda\left(\frac{1}{f(z+c)}\right)<\sigma(f(z+c))
\end{align*}
$$

So,

$$
\begin{equation*}
\sigma\left(F^{*}(z)\right)=\max \left\{\sigma\left(p^{*}(z)\right), \sigma\left(q^{*}(z)\right)\right\}<\sigma(f(z+c)) \tag{2.25}
\end{equation*}
$$

Thus, by 2.22 we obtain

$$
\begin{equation*}
\Delta_{c} f(z)=f(z+c)-f(z)=F^{*}(z) e^{h^{*}(z)}-F^{*}(z-c) e^{h^{*}(z-c)}+c . \tag{2.26}
\end{equation*}
$$

Set $g_{2}(z)=\Delta_{c} f(z)-z$. Then

$$
\begin{equation*}
g_{2}(z)=E^{*}(z) e^{h^{*}(z)}+c-z \tag{2.27}
\end{equation*}
$$

where $E^{*}(z)=F^{*}(z)-F^{*}(z-c) e^{h^{*}(z-c)-h^{*}(z)}$. As $\operatorname{deg}\left(h^{*}(z-c)-h^{*}(z)\right)=$ $\operatorname{deg} h^{*}(z)-1$ and 2.27), we see that $\sigma\left(E^{*}(z)\right)<\sigma\left(g_{2}(z)\right)=\sigma\left(e^{h^{*}(z)}\right)=$ $\sigma(f(z))$. Using the same method as in the proof of the first step, we deduce that $\lambda\left(g_{2}(z)\right)=\sigma\left(g_{2}(z)\right)=\sigma(f(z))$.

Hence, $\max \left\{\tau\left(\Delta_{c} f(z)\right), \tau(f(z+c))\right\}=\sigma(f(z))$.
3. Proof of Theorem 1.2, We need the following lemma.

Lemma 3.1 (see [7, pp. 69-70] or [16, pp. 79-80]). Suppose that $n \geq 2$ and let $f_{j}(z), j=1, \ldots, n$, be meromorphic functions and $g_{j}(z), j=1, \ldots, n$, be entire functions such that
(i) $\sum_{j=1}^{n} f_{j}(z) \exp \left\{g_{j}(z)\right\} \equiv 0$;
(ii) when $1 \leq j<k \leq n, g_{j}(z)-g_{k}(z)$ is not constant;
(iii) when $1 \leq j \leq n$ and $1 \leq h<k \leq n$,

$$
T\left(r, f_{j}\right)=o\left\{T\left(r, \exp \left\{g_{h}-g_{k}\right\}\right)\right\} \quad(r \rightarrow \infty, r \notin E),
$$

where $E \subset(1, \infty)$ is of finite linear measure or finite logarithmic measure.

Then $f_{j}(z) \equiv 0, j=1, \ldots, n$.
Proof of Theorem 1.2. Since $f(z)$ has a Borel exceptional value $d \in \mathbb{C}$ and $\lambda(1 / f(z))<\sigma(f(z))$, we see that $f(z)$ can be written as

$$
\begin{equation*}
f(z)=d+\frac{p(z)}{q(z)} e^{h_{1}(z)}=d+F_{1}(z) e^{h_{1}(z)} \tag{3.1}
\end{equation*}
$$

where $h_{1}(z)$ is a nonconstant polynomial with $\operatorname{deg} h_{1}(z)=\sigma(f(z)), F_{1}(z)=$ $p(z) / q(z)$, and $p(z), q(z)$ are nonzero entire functions such that

$$
\begin{align*}
& \lambda(p(z))=\sigma(p(z))=\lambda(f(z)-d)<\sigma(f(z)) \tag{3.2}\\
& \lambda(q(z))=\sigma(q(z))=\lambda\left(\frac{1}{f(z)-d}\right)=\lambda(1 / f(z))<\sigma(f(z)) \tag{3.3}
\end{align*}
$$

So,

$$
\begin{equation*}
\sigma\left(F_{1}(z)\right)=\max \{\sigma(p(z)), \sigma(q(z))\}<\sigma(f(z)) \tag{3.4}
\end{equation*}
$$

First, we prove that $\tau(f(z))=\sigma(f(z))$. Suppose that $\tau(f(z))<\sigma(f(z))$. Since z_{0} is a pole of $f(z)-z$ if and only if it is a pole of $f(z)$, we see that $\lambda(1 / f(z)-z)=\lambda(1 / f(z))<\sigma(f(z))$. Thus, $f(z)-z$ can be written as

$$
\begin{equation*}
f(z)-z=\frac{a(z)}{b(z)} e^{h_{2}(z)}=F_{2}(z) e^{h_{2}(z)} \tag{3.5}
\end{equation*}
$$

where $h_{2}(z)$ is a nonconstant polynomial with $\operatorname{deg} h_{2}(z)=\sigma(f(z)), a(z), b(z)$ are nonzero entire functions, and $F_{2}(z)=a(z) / b(z)$, so that

$$
\begin{align*}
& \lambda(a(z))=\sigma(a(z))=\lambda(f(z)-z)=\tau(f(z))<\sigma(f(z)) \tag{3.6}\\
& \lambda(b(z))=\sigma(b(z))=\lambda\left(\frac{1}{f(z)-z}\right)=\lambda(1 / f(z))<\sigma(f(z)) \tag{3.7}
\end{align*}
$$

So, by (3.6) and (3.7), we have

$$
\begin{equation*}
\sigma\left(F_{2}(z)\right)=\max \{\sigma(a(z)), \sigma(b(z))\}<\sigma(f(z)) \tag{3.8}
\end{equation*}
$$

By (3.1) and (3.5), we obtain

$$
\begin{equation*}
F_{1}(z) e^{h_{1}(z)}-F_{2}(z) e^{h_{2}(z)}+F_{0}(z) e^{h_{0}(z)}=0 \tag{3.9}
\end{equation*}
$$

where $F_{0}(z)=d-z, h_{0}(z)=0$.
If $\operatorname{deg}\left(h_{1}(z)-h_{2}(z)\right)=\operatorname{deg} h_{1}(z)$, then since $e^{h_{1}(z)}, e^{h_{2}(z)}, e^{h_{1}(z)-h_{2}(z)}$ are of regular growth, by (3.4) and (3.8) we obtain

$$
\begin{equation*}
T\left(r, F_{j}(z)\right)=o\left\{T\left(r, e^{h_{k}(z)-h_{s}(z)}\right\}, \quad j=0,1,2 ; 0 \leq s<k \leq 2\right. \tag{3.10}
\end{equation*}
$$

Now Lemma 3.1, 3.9 and 3.10 yield

$$
F_{1}(z) \equiv F_{2}(z) \equiv F_{0}(z) \equiv d-z \equiv 0
$$

a contradiction.
If $\operatorname{deg}\left(h_{1}(z)-h_{2}(z)\right)<\operatorname{deg} h_{1}(z)$, then by (3.9) we obtain

$$
\begin{equation*}
e^{h_{1}(z)}\left(F_{1}(z)-F_{2}(z) e^{h_{2}(z)-h_{1}(z)}\right)+d-z=0 \tag{3.11}
\end{equation*}
$$

If $F_{1}(z)-F_{2}(z) e^{h_{2}(z)-h_{1}(z)} \equiv 0$, then $d-z \equiv 0$, a contradiction; if $F_{1}(z)-$ $F_{2}(z) e^{h_{2}(z)-h_{1}(z)} \not \equiv 0$, then the order of growth of the left side of 3.11 is $\operatorname{deg} h_{1}(z)=\sigma(f(z))$, also a contradiction. Hence $\tau(f(z))=\sigma(f(z))$.

Secondly, we prove that $\tau(f(z+c))=\sigma(f(z))$. By Lemma 2.1,

$$
T(r, f(z+c))=T(r, f(z))+S(r, f(z))
$$

Using a similar method to the proof of the first step, we conclude that $\tau(f(z+c))=\sigma(f(z))$.

Thirdly, we prove that $\tau\left(\Delta_{c} f(z)\right)=\sigma(f(z))$. Suppose that $\tau\left(\Delta_{c} f(z)\right)<$ $\sigma(f(z))$. As in the proof of the first step, $\Delta_{c} f(z)-z$ can be written as

$$
\begin{equation*}
\Delta_{c} f(z)-z=f(z+c)-f(z)-z=F_{3}(z) e^{h_{3}(z)} \tag{3.12}
\end{equation*}
$$

where $h_{3}(z)$ is a polynomial with $\operatorname{deg} h_{3}(z) \leq \sigma(f(z))$ and $F_{3}(z)(\not \equiv 0)$ is a meromorphic function such that

$$
\begin{equation*}
\sigma\left(F_{3}(z)\right)<\sigma(f(z)) . \tag{3.13}
\end{equation*}
$$

Substituting (3.1) into (3.12), we obtain

$$
F_{1}(z+c) e^{h_{1}(z+c)}-F_{1}(z) e^{h_{1}(z)}-F_{3}(z) e^{h_{3}(z)}-z=0,
$$

that is,

$$
\begin{equation*}
e^{h_{1}(z)}\left(F_{1}(z+c) e^{h_{1}(z+c)-h_{1}(z)}-F_{1}(z)\right)-F_{3}(z) e^{h_{3}(z)}-z=0 . \tag{3.14}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
F_{1}(z+c) e^{h_{1}(z+c)-h_{1}(z)}-F_{1}(z) \not \equiv 0 \tag{3.15}
\end{equation*}
$$

In fact, if $F_{1}(z+c) e^{h_{1}(z+c)-h_{1}(z)}-F_{1}(z) \equiv 0$, then by (3.1), we obtain $f(z+c) \equiv f(z)$, contrary to assumption.

From (3.4), (3.13)-(3.15) and $\operatorname{deg}\left(h_{1}(z+c)-h_{1}(z)\right)=\operatorname{deg} h_{1}(z)-1$, we obtain

$$
\begin{equation*}
\operatorname{deg} h_{3}(z)=\operatorname{deg} h_{1}(z)=\sigma(f(z))=k . \tag{3.16}
\end{equation*}
$$

If $\operatorname{deg}\left(h_{3}(z)-h_{1}(z)\right)=k$, then by Lemma 3.1 and (3.14),

$$
F_{1}(z+c) e^{h_{3}(z+c)-h_{1}(z)}-F_{1}(z) \equiv F_{3}(z) \equiv z \equiv 0,
$$

a contradiction.
If $\operatorname{deg}\left(h_{3}(z)-h_{1}(z)\right)<k$, then (3.14) can be rewritten as

$$
\begin{equation*}
e^{h_{1}(z)}\left(F_{1}(z+c) e^{h_{1}(z+c)-h_{1}(z)}-F_{1}(z)-F_{3}(z) e^{h_{3}(z)-h_{1}(z)}\right)-z=0, \tag{3.17}
\end{equation*}
$$

and using a similar method to the proof of the first step, we obtain a contradiction.

Hence, $\tau\left(\Delta_{c} f(z)\right)=\sigma(f(z))$.
4. Proof of Theorem 1.3. We need the following lemma.

Lemma 4.1. Let $f(z)$ be a meromorphic function with $\lambda(f(z))=\lambda<\infty$ and let $\eta \neq 0$ be fixed. Then for each $\varepsilon(0<\varepsilon<1)$,

$$
N\left(r, \frac{1}{f(z+\eta)}\right)=N\left(r, \frac{1}{f(z)}\right)+O\left(r^{\lambda-1+\varepsilon}\right)+O(\log r) .
$$

Proof. Use the same method as in the proof of Lemma 2.1.

Proof of Theorem 1.3. We only prove that $\tau(f(z+c))=\sigma(f(z))$ since the method of the proof of $\tau(f(z))=\sigma(f(z))$ is the same.

If $\lambda(f(z))<\sigma(f(z))$, then $f(z)$ has Borel exceptional value 0 , so that by Theorem 1.2, we see that $\tau(f(z+c))=\sigma(f(z))$.

Now we suppose that $\lambda(1 / f(z))<\lambda(f(z))=\sigma(f(z))$. By Lemmas 2.2 and 4.1,

$$
\begin{equation*}
\lambda\left(\frac{1}{f(z+c)}\right)<\lambda(f(z+c))=\sigma(f(z)) . \tag{4.1}
\end{equation*}
$$

Suppose that $\tau(f(z+c))<\sigma(f(z))$. Since $\lambda\left(\frac{1}{f(z+c)-z}\right)=\lambda\left(\frac{1}{f(z+c)}\right)<$ $\sigma(f(z))$, we see that, as in the proof of Theorem 1.1, $f(z+c)-z$ can be written as

$$
\begin{equation*}
f(z+c)-z=F(z) e^{h(z)} \tag{4.2}
\end{equation*}
$$

where $h(z)$ is a nonconstant polynomial and $F(z)$ is a meromorphic function such that $\sigma(F(z))<\sigma(f(z))=\operatorname{deg} h(z)$. Thus, by (4.2),

$$
\begin{aligned}
f^{\prime}(z+c) & =F(z) e^{h(z)}\left(\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)\right)+1 \\
& =f(z+c)\left(\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)\right)-z\left(\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)\right)+1
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{f^{\prime}(z+c)}{f(z+c)}=\left(\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)\right)-\left(z \frac{F^{\prime}(z)}{F(z)}+z h^{\prime}(z)-1\right) \frac{1}{f(z+c)} \tag{4.3}
\end{equation*}
$$

We claim that

$$
z \frac{F^{\prime}(z)}{F(z)}+z h^{\prime}(z)-1 \not \equiv 0 .
$$

In fact, otherwise $\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)=\frac{1}{z}$. By integrating, we obtain $F(z) e^{h(z)}=$ αz, where $\alpha(\neq 0)$ is a constant. This contradicts (4.2).

Since $\sigma(F(z))<\sigma(f(z))=\lambda(f(z+c))$ and $h^{\prime}(z)$ is a polynomial, we see that

$$
\sigma\left(\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)\right)<\sigma(f(z)), \quad \sigma\left(z \frac{F^{\prime}(z)}{F(z)}+z h^{\prime}(z)-1\right)<\sigma(f(z))
$$

and there exists a point z_{0} which is a multiple zero of $f(z+c)$, and is neither a zero of $z \frac{F^{\prime}(z)}{F(z)}+z h^{\prime}(z)-1$, nor a pole of $\frac{F^{\prime}(z)}{F(z)}+h^{\prime}(z)$. Thus, the right side of (4.3) has a multiple pole at $z=z_{0}$, but the left side of (4.3) has only a simple pole at $z=z_{0}$, is a contradiction.

Hence $\tau(f(z+c))=\sigma(f(z))$.
Acknowledgements. This research was partly supported by the National Natural Science Foundation of China (grant no. 11171119).

References

[1] M. Ablowitz, R. G. Halburd and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), 889-905.
[2] W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), 133-147.
[3] W. Bergweiler and X. C. Pang, On the derivative of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278 (2003), 285-292.
[4] Z. X. Chen and K. H. Shon, On zeros and fixed points of differences of meromorphic functions, J. Math. Anal. Appl. 344 (2008), 373-383.
[5] Z. X. Chen and K. H. Shon, Properties of differences of meromorphic functions, Czechoslovak Math. J. 61 (136) (2011), 213-224.
[6] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), 105-129.
[7] F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington, D.C., 1972.
[8] R. G. Halburd and R. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477-487.
[9] R. G. Halburd and R. Korhonen, Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations, J. Phys. A 40 (2007), 1-38.
[10] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[11] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), 352-363.
[12] K. Ishizaki, On difference Riccati equations and second order linear difference equations, Aequat. Math. 81 (2011), 185-198.
[13] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
[14] I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. London Math. Soc. 76 (2007), 556-566.
[15] L. Yang, Value Distribution Theory, Science Press, Beijing, 1993.
[16] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.

Zong-Xuan Chen

School of Mathematical Sciences
South China Normal University
510631, Guangzhou, P.R. China
E-mail: chzx@vip.sina.com

Received 16.5.2012

[^0]: 2010 Mathematics Subject Classification: Primary 30D35; Secondary 39A10.
 Key words and phrases: meromorphic function, complex difference, shift, fixed point.

