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An alternative proof of Petty’s theorem on equilateral sets

by Tomasz Kobos (Kraków)

Abstract. The main goal of this paper is to provide an alternative proof of the
following theorem of Petty: in a normed space of dimension at least three, every 3-element
equilateral set can be extended to a 4-element equilateral set. Our approach is based on
the result of Kramer and Németh about inscribing a simplex into a convex body. To prove
the theorem of Petty, we shall also establish that for any three points in a normed plane,
forming an equilateral triangle of side p, there exists a fourth point, which is equidistant
to the given points with distance not larger than p. We will also improve the example
given by Petty and obtain the existence of a smooth and strictly convex norm in Rn for
which there exists a maximal 4-element equilateral set. This shows that the theorem of
Petty cannot be generalized to higher dimensions, even for smooth and strictly convex
norms.

1. Introduction. Let X be a real n-dimensional vector space equipped
with a norm ‖·‖. We say that a set S ∈ X is equilateral if there is a p > 0 such
that ‖x−y‖ = p for all x, y ∈ S, x 6= y. We then say that S is a p-equilateral
set. Let us denote the by e(X) equilateral dimension of X, defined as the
maximal cardinality of an equilateral set in X. For many classical spaces
(like `np ) determining the equilateral dimension is an open problem. It is not
difficult to show that the equilateral dimension of the n-dimensional space
equipped with the Euclidean norm is n + 1, and it is 2n for the `∞ norm.
It is known (see [11] and [13]) that 2n is, in fact, an upper bound for the
equilateral dimension of any normed space X of dimension n. Moreover, the
bound is attained if and only if there exists a linear isometry between X
and `n∞.

It is believed that n + 1 is similarly a lower bound for the equilateral
dimension of any n-dimensional normed space. For n = 1 and n = 2 this is
an easy exercise. For n = 3 it has been proved by Petty and in the case n = 4
quite recently by Makeev [8]. For n ≥ 5 only weaker estimates on the size of
a maximal equilateral set are known (for the best bound to date see [15]).
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In the three-dimensional setting even more can be demonstrated. We have
the following

Theorem 1.1 (Petty [11]). Let X be a real 3-dimensional vector space,
equipped with a norm ‖ · ‖. Assume that a, b, c ∈ X form a p-equilateral set
in the norm ‖ · ‖. Then there exists d ∈ X such that

‖d− a‖ = ‖d− b‖ = ‖d− c‖ = p.

In other words, every equilateral set of three elements can be extended to an
equilateral set of four elements.

The main goal of this paper is to give an alternative proof of Petty’s the-
orem (see Section 4). In his original reasoning Petty used a two-dimensional
result called a monotonicity lemma (see Section 3.5 of [10]). Our approach
will be based on a result of Kramer and Németh (Theorem 2.1).

We will need to investigate the properties of the circumcircle of an equi-
lateral set in the plane. We shall prove

Proposition 1.2. Let ‖ · ‖ be a norm on the plane. Assume a, b, c ∈ R2

form a p-equilateral set in this norm. Then there exists s ∈ R2 such that

‖a− s‖ = ‖b− s‖ = ‖c− s‖ ≤ p.

In other words, on the plane every equilateral set of size 3 has a circumcircle
of radius not greater than the common distance.

This result has also appeared in [9, Lemma 2.4 and Theorem 3.1] in the
case of a strictly convex norm, but we give a simpler proof.

In Section 5, we study an extension of the example given by Petty in [11].
For n ≥ 4, he has constructed a norm in Rn and a 4-element equilateral
set which cannot be extended to a 5-element equilateral set. In particular,
Theorem 1.1 cannot be generalized to higher dimensions. However, the norm
given by Petty is not smooth and not strictly convex. It is therefore natural
to ask whether the smoothness or strict convexity of the norm would enable
us to generalize Theorem 1.1 to higher dimensions. We answer this question
negatively in

Theorem 1.3. For every n ≥ 4 there exist a smooth and strictly convex
norm ‖ · ‖ in Rn and a1, a2, a3, a4 ∈ Rn forming a p-equilateral set such that
there is no a5 with

‖a5 − a1‖ = ‖a5 − a2‖ = ‖a5 − a3‖ = ‖a5 − a4‖ = p.

This improves the example given by Petty.
For a survey on equilateral sets in finite-dimensional normed spaces,

see [14].
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2. Preliminaries. We shall recall some standard definitions of Banach
space theory and convex geometry. A convex and compact set C ⊂ Rn is
called a convex body if its interior is non-empty. A convex body C is symmet-
ric if it is symmetric with respect to the origin. It is smooth if every point on
the boundary of C lies on exactly one supporting hyperplane of C. A convex
body C is strictly convex if it does not contain a segment on the bound-
ary. The unit ball of any norm in Rn is a symmetric convex body and vice
versa—every symmetric convex body is the unit ball of exactly one norm.
We say that a norm ‖·‖ is smooth or strictly convex if so is the corresponding
unit ball. A sphere in the given norm on the plane is called a circle.

A set P ⊂ Rn is called a convex polytope if it is the convex hull of a
finite number of points, i.e. P = conv{p1, . . . , pm}. If there does not exist a
proper subset S of {p1, . . . , pm} such that P = convS, then the points pi
are the vertices of P . A convex polytope P ⊂ Rn with exactly n+1 vertices
is called a simplex. A simplex is non-degenerate if it is not contained in an
affine subspace of dimension n − 1. A (positive) homothet of a set A ⊂ Rn

is λA+ v = {λa+ v : a ∈ A}, where λ > 0 and v ∈ Rn are arbitrary.
We shall use the following theorem of Kramer and Németh, which gives

sufficient conditions on a convex body C ⊂ Rn for every non-degenerate
simplex of Rn to have a homothet inscribed in C.

Theorem 2.1 (Kramer & Németh [6]). Let C be a smooth and strictly
convex body in Rn and let p0, p1, . . . , pn be the vertices of a non-degenerate
simplex. Then there exist z ∈ Rn and r > 0 such that the points z + rp0,
z + rp1, . . . , z + rpn lie on the boundary of C.

It is worth pointing out that while smoothness is necessary, strict con-
vexity can in fact be dropped, as shown independently by Gromov [4] and
Makeev [7]. For our purposes, however, the weaker version of the theorem is
sufficient.

It is much harder to guarantee the uniqueness of an inscribed homothet.
However, in the two-dimensional case we have the following

Proposition 2.2. Let C be a strictly convex body in the plane and let
p0, p1, p2 be the vertices of a non-degenerate triangle. Then there exists at
most one pair of z ∈ R2 and r > 0 such that the points z+rp0, z+rp1, z+rp2
lie on the boundary of C.

Proof. An elementary proof can be found in [10, Section 3.2].

Combining these two results, we obtain

Corollary 2.3. Let C be a smooth and strictly convex body in the plane.
Then, for every non-degenerate triangle, there exists exactly one homothet
of C passing through its vertices.
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Remark 2.4. A generalization of Proposition 2.2 to higher dimensions
does not hold in the following strong sense: if every simplex in Rn (where
n ≥ 3) has at most one homothet inscribed in a fixed convex body C, then
C must be an ellipsoid. This characterization of finite-dimensional Hilbert
space was established by Goodey [3].

To take advantage of the preceding results we have to assume smoothness
and strict convexity of a norm. To reduce the general case to this setting,
we will use a special kind of smooth and strictly convex approximation. The
proof of Theorem 1.3 will also rely on this technique. We have the intuitive

Proposition 2.5. Assume that ‖ · ‖ is a norm in Rn and unit vectors
±p1, . . . ,±pm are the vertices of a symmetric convex polytope. Then for every
ε > 0 there exists a smooth and strictly convex norm ‖ · ‖0 in Rn such that

(1− ε)‖x‖0 ≤ ‖x‖ ≤ (1 + ε)‖x‖0
for every x ∈ Rn, and ‖pi‖0 = 1 for i = 1, . . . ,m.

Proof. See [2] for a much more general result.

3. Circumcircle of an equilateral set in the plane. In this section
we prove Proposition 1.2. Results from the preceding section are not required
here. We begin with a simple

Lemma 3.1. Let ‖·‖ be a norm in the plane and let v ∈ R2 be a non-zero
vector. Consider the mapping f , defined on the unit disc B of the norm ‖ · ‖
by

f(x) = max{t ≥ 0 : ‖x+ tv‖ = 1}.
Then f is continuous and bounded by 2/‖v‖.

Proof. For any x ∈ B and any t > 2/‖v‖, we have

‖|x+ tv‖ ≥ ‖tv‖ − ‖x‖ > 2− 1 = 1.

This proves the boundedness statement.
To prove the continuity of f , let D be the diameter of B orthogonal to

v and denote by P : B → D the orthogonal projection. It is clear that f
factors as f = f ◦P and it is therefore enough to check the continuity of the
restriction f̃ = f |D.

Let (xn)n∈N ⊂ D be a sequence converging to x ∈ D. As f̃ is bounded,
it is enough to check that every convergent subsequence of (f̃(xn))n∈N con-
verges to f̃(x). So, assume that limk→∞ f̃(xnk

) = y for some subsequence
(f̃(xnk

))k∈N. Since

‖x+ yv‖ = lim
k→∞

‖xnk
+ f̃(xnk

)v‖ = 1,

we have y ≤ f̃(x), by the definition of f .
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On the other hand, it is immediate to check that f̃ is a concave function.
As concave functions defined on closed intervals are lower semicontinuous,
we must have y ≥ f̃(x). Therefore y = f̃(x) and the lemma is proved.

Proof of Proposition 1.2. We can suppose that p = 1 and denote the unit
circle in the norm ‖ · ‖ by S. Define f, g : S → R by

f(x) = max{t ≥ 0 : ‖x+ t(c− a)‖ = 1},
g(x) = max{t ≥ 0 : ‖x+ t(b− a)‖ = 1}.

By the preceding lemma, the mappings f and g are continuous and bounded
by 2. At the same time, f(a− c) = g(a− b) = 2. Therefore f(x) ≥ g(x) for
x = a− c and f(x) ≤ g(x) for x = a− b.

The intermediate value theorem implies that on the closed arc of the unit
circle between the points a − b and a − c, there exists a point z such that
f(z) = g(z) = r for some r ≥ 0 (see Figure 1). For that z we have

‖z + r(c− a)‖ = ‖z + r(b− a)‖ = 1.

If r > 0, then the points z, z + r(c − a), z + r(b − a) are the vertices of a
non-degenerate triangle inscribed in the unit circle, which is a homothet of
the triangle with vertices a, b, c. Therefore, we can circumscribe a circle of
radius 1/r around the triangle with vertices a, b, c. It suffices to show that
r ≥ 1 (and in particular r > 0).

Fig. 1. Proof of Proposition 1.2

To do so, consider the parallelogram with vertices 0, c − b, a − b, a − c.
The points z and z+ r(c− a) lie outside this parallelogram and the segment
connecting them is parallel to one of its sides (as (c− b)− (a− b) = c− a).
Hence r ≥ 1.
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4. Proof of Petty’s theorem. In this section we prove Theorem 1.1.
We will only need the two- and three-dimensional cases of the following
lemma, but we prove it in general form.

Lemma 4.1. If p0, p1, . . . , pn are the vertices of a non-degenerate simplex
in Rn, then the points pi − pj, where 0 ≤ i 6= j ≤ n, are the vertices of the
convex polytope conv{pi − pj : 0 ≤ i 6= j ≤ n}.

Proof. For a contradiction suppose that some of these points can be
written as a convex combination of the others. Without loss of generality,
we can assume that it is pn − p0.

Set qi = pi − p0 for i = 0, 1, . . . , n. Because the simplex with vertices
p0, p1, . . . , pn is non-degenerate, the vectors qi are linearly independent for
i = 1, . . . , n. We will show that if

qn =
∑

0≤k 6=l≤n
tk,l(pk − pl),

where tk,l ∈ [0, 1] and
∑

0≤k 6=l≤n tk,l = 1, then tn,0 = 1 and tk,l = 0 for
(k, l) 6= (n, 0). We have

qn =
∑

0≤k 6=l≤n
tk,l(pk − pl) =

∑
0≤k 6=l≤n

tk,l(qk − ql)

=
n∑

k=1

( ∑
0≤l≤n
l 6=k

tk,l −
∑

0≤l≤n
l 6=k

tl,k

)
qk.

Since the vectors q1, . . . , qn are linearly independent, comparing the coeffi-
cients of qn gives

n−1∑
l=0

tn,l −
n−1∑
l=0

tl,n = 1.

Because the numbers tk,l are non-negative and their sum is 1, we obtain
n−1∑
l=0

tn,l = 1 and tk,l = 0 for k 6= n.

If tn,0 = 1 and tn,l = 0 for 1 ≤ l ≤ n − 1 the claim follows. So, assume
that tn,l 6= 0 for some 1 ≤ l ≤ n − 1. But then it is easy to see that the
coefficient of ql in the above combination is −tn,l 6= 0, contrary to the linear
independence of q1, . . . , qn. This proves the lemma.

With the results of the preceding sections at hand, we are ready to give
an alternative proof of Petty’s theorem.

Proof of Theorem 1.1. Suppose that p = 1. First we assume that the
norm ‖ ·‖ is smooth and strictly convex. Let π be the affine plane containing
a, b, c. In a similar fashion to Makeev [8], we will consider sections of the unit
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ball B with planes parallel to π and use the continuity of these cuts. All such
sections which are not empty and not single-point are smooth and strictly
convex bodies in the plane. From Corollary 2.3 we know that in all such
sections we can inscribe exactly one homothet of the triangle with vertices
a, b, c. To be more precise, let v be the unit vector perpendicular to π and
denote Bt = B ∩ (π + tv). Let t1 < t2 be such that

#Bt > 1 ⇔ t ∈ (t1, t2).

Corollary 2.3 implies that for every t ∈ (t1, t2) there exists exactly one pair
of z ∈ π and r > 0 such that

‖z + ra+ tv‖ = ‖z + rb+ tv‖ = ‖z + rc+ tv‖ = 1.

Denote by z : (t1, t2) → π and r : (t1, t2) → (0,∞) the resulting mappings.
We shall verify that the mapping (z, r) : (t1, t2)→ π × (0,∞) is continuous.
Indeed, suppose that tn → t. It is easy to see that z and r are bounded,
and therefore we can pick a subsequence (tnk

)k∈N such that (z(tnk
))k∈N and

(r(tnk
))k∈N converge to some z′ and r′ respectively. It follows from the con-

tinuity of the norm that

‖z′ + r′a+ tv‖ = ‖z′ + r′b+ tv‖ = ‖z′ + r′c+ tv‖ = 1,

and taking the uniqueness into account we conclude that z′ = z(t) and
r′ = r(t). This proves our claim.

In particular, the mapping r is continuous. Let s ∈ (t1, t2) be such that Bs

is a section containing 0. Then Bs is a smooth, strictly convex and symmetric
convex body obtained by restricting the norm ‖ · ‖ to the two-dimensional
vector space parallel to π. By Theorem 1.2, it follows that r(s) ≥ 1. Moreover,
if t → t1, then diamBt → 0. Therefore continuity implies that r(t) = 1 for
some t ∈ (t1, t2). Then

‖z(t) + tv + a‖ = ‖z(t) + tv + b‖ = ‖z(t) + tv + c‖ = 1,

and hence d = −(z(t) + tv) is the desired point. This completes the proof in
the case of a smooth and strictly convex norm.

Now let ‖ · ‖ be an arbitrary norm in R3. We shall reduce this case to
the previous one by application of Lemma 4.1 and Proposition 2.5. As the
points a − b, b − c, c − a, b − a, c − b, a − c are the vertices of a symmetric
convex hexagon, Proposition 2.5 implies that for every n ∈ N we can find a
smooth and strictly convex norm ‖ · ‖n such that(

1− 1

n

)
‖x‖n ≤ ‖x‖ ≤

(
1 +

1

n

)
‖x‖n

for every x ∈ R3 and

‖a− b‖n = ‖b− c‖n = ‖c− a‖n = 1.
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We have already proved that for every n ∈ N we can find dn ∈ R3 such
that

‖dn − a‖n = ‖dn − b‖n = ‖dn − c‖n = 1.

It is clear that the sequence (dn)n∈N is bounded, so it contains some subse-
quence (dnk

)k∈N convergent to a point d ∈ R3. From the inequalities

1− 1

nk
≤ ‖dnk

− a‖ ≤ 1 +
1

nk

it follows that ‖d− a‖ = 1 and analogously ‖d− b‖ = ‖d− c‖ = 1.

5. Existence of a smooth and strictly convex norm with a 4-ele-
ment maximal equilateral set. In Rn we can introduce a norm ‖ · ‖ by
‖(x1, x2, . . . , xn)‖ = |x1| +

√
x22 + x23 + . . .+ x2n. Petty has proved that for

n ≥ 4 it is possible to find a 4-element equilateral set in this normed space,
which is maximal with respect to inclusion. In [16] Swanepoel and Villa have
generalized this example to every space of the form X ⊕1 R, where X has
at least one smooth point on the unit sphere. Spaces arising in this way are
never smooth or strictly convex, however. In the same paper the authors have
also proved that some of the `np spaces (with n ≥ 4 and 1 < p < 2) contain
5-element equilateral sets which are maximal with respect to inclusion. It
remains to answer if a smooth and strictly convex space of dimension n ≥ 4
can possess such a 4-element equilateral set. Using Proposition 2.5 we will
obtain, in a non-constructive way, the existence of a space with this property.

Proof of Theorem 1.3. In Rn consider the `1 norm (which of course is
neither smooth nor strictly convex), i.e. ‖(x1, . . . , xn)‖ = |x1| + · · · + |xn|.
Let

a1 = (1, 0, . . . , 0), a2 = (−1, 0, . . . , 0),

a3 =

(
0,

1

n− 1
,

1

n− 1
,

1

n− 1
, . . . ,

1

n− 1

)
,

a4 =

(
0,− 1

2(n− 1)
,− 3

2(n− 1)
,− 1

n− 1
,− 1

n− 1
, . . . ,− 1

n− 1

)
.

It is immediate to check that the ai’s form a 2-equilateral set in the `1
norm. We will prove that there does not exist x ∈ Rn which extends this set
to a 5-point equilateral set. Indeed, suppose that x = (x1, . . . , xn) is such a
point. From the equalities

‖x− a1‖ = ‖x+ a1‖ = 2

we conclude that x1 = 0 and |x2|+ |x3|+ · · ·+ |xn| = 1. Combining this with

‖x− a2‖ = ‖x− a3‖ = 2,
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we get

2 = |x2|+ |x3|+ · · ·+ |xn|+ 1

=

∣∣∣∣x2 − 1

n− 1

∣∣∣∣+ ∣∣∣∣x3 − 1

n− 1

∣∣∣∣+ · · ·+ ∣∣∣∣xn − 1

n− 1

∣∣∣∣
=

∣∣∣∣x2 + 1

2(n− 1)

∣∣∣∣+ ∣∣∣∣x3 + 3

2(n− 1)

∣∣∣∣+ ∣∣∣∣x4 + 1

n− 1

∣∣∣∣+ · · ·+ ∣∣∣∣xn +
1

n− 1

∣∣∣∣.
We shall show that this system of equations does not have a solution. Indeed,
the usual triangle inequality easily implies that

|x2|+ |x3|+ · · ·+ |xn|+1 ≥
∣∣∣∣x2− 1

n− 1

∣∣∣∣+ ∣∣∣∣x3− 1

n− 1

∣∣∣∣+ · · ·+ ∣∣∣∣xn− 1

n− 1

∣∣∣∣
and

|x2|+ |x3|+ · · ·+ |xn|+ 1 ≥
∣∣∣∣x2 + 1

2(n− 1)

∣∣∣∣+ ∣∣∣∣x3 + 3

2(n− 1)

∣∣∣∣
+

∣∣∣∣x4 + 1

n− 1

∣∣∣∣+ · · ·+ ∣∣∣∣xn +
1

n− 1

∣∣∣∣.
Moreover, in the inequality |a|+ |b| ≥ |a+ b| equality holds exactly when a
and b are of the same sign. Therefore, the vector (x1, . . . , xn) = (0, . . . , 0) is
the only possible solution of the system under consideration, but it is not a
unit vector. This proves our claim.

It is not hard to check by hand the linear independence of the vectors
a2 − a1, a3 − a1 and a4 − a1, which implies that a1, a2, a3, a4 are the
vertices of a non-degenerate tetrahedron. By Lemma 4.1 we know that set
{ai − aj : 1 ≤ i 6= j ≤ 4} is the set of vertices of its convex hull. Applying
Proposition 2.5, we can pick a sequence ‖ · ‖k of smooth and strictly convex
norms such that (

1− 1

k

)
‖x‖k ≤ ‖x‖ ≤

(
1 +

1

k

)
‖x‖k

for every x ∈ Rn and ‖ai − aj‖k = 2 for 1 ≤ i 6= j ≤ 4 and k ∈ N.
Suppose that our assertion is not true. This means that for any smooth

and strictly convex norm in Rn (where n ≥ 4), every 4-point equilateral set
can be extended to a 5-point equilateral set. In particular, for every k ∈ N
there exists xk ∈ Rn such that

‖xk − a1‖k = ‖xk − a2‖k = ‖xk − a3‖k = ‖xk − a4‖k = 2.

As (xk)k∈N is bounded, it has a subsequence convergent to x ∈ Rn. Now it
is easy to see that x extends a1, a2, a3, a4 to a 5-point equilateral set in
the `1 norm. This contradicts the previous part of the reasoning, and the
conclusion follows.
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6. Concluding remarks. As we already mentioned in the introduction,
probably the most natural question in the field of equilateral sets which
remains open is

Question 6.1 (see [5], [11], [12]). Does the inequality e(X) ≥ n+1 hold
for every normed space X of dimension n?

It is reasonable to ask if the approach that led us to the alternative proof
of Petty’s theorem can be helpful in answering Question 6.1 also in higher
dimensions. Using a similar approach Makeev has proved the case n = 4
in [8]. It is also the largest dimension for which the answer to Question 6.1
is known to be affirmative. Reduction of the general case to the situation in
which the norm is smooth and strictly convex can be done in exactly the same
way as in the presented proof. We can therefore try to use Theorem 2.1. On
the other hand, Proposition 2.2 cannot be generalized to higher dimensions
and in consequence it seems that establishing a continuous behaviour of
the spheres, circumscribed about the variable simplex, is a serious technical
issue. However, the main difficulty lies probably in obtaining the higher-
dimensional analogue of Theorem 1.2. We already know from the previous
section that such an analogue could hold only for certain equilateral sets,
i.e. we would have to find an equilateral set with the sphere of small radius
passing through its vertices. This requires a different idea than for the planar
case.
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