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Partial integrability on Thurston manifolds

by Hyeseon Kim (Pohang)

Abstract. We determine the maximal number of independent holomorphic functions
on the Thurston manifolds M2r+2, r ≥ 1, which are the first discovered compact non-
Kähler almost Kähler manifolds. We follow the method which involves analyzing the
torsion tensor dθ mod θ, where θ = (θ1, . . . , θr+1) are independent (1, 0)-forms.

1. Introduction. For an almost complex manifold (M2n, J), n ≥ 1, the
integrability of J implies that there exist n independent local holomorphic
functions on M2n. Newlander and Nirenberg [NN] presented a potential-
theoretic approach to the integrability problem on almost complex mani-
folds. If an almost complex structure is non-integrable, then the maximal
number of independent local holomorphic functions is less than half the
dimension of the manifold.

In this paper we are concerned with the partial integrability problem for
generalized Thurston manifolds. In [Th], Thurston constructed examples
of compact almost Kähler manifolds that are non-Kähler. His examples are
now called Thurston manifolds; they have odd first Betti number. This result
is connected with the classification of non-Kähler structures given in [Ab]
and [W].

In [CFL], Cordero, Fernández, and de León constructed a large family
of compact almost Kähler manifolds M2r+2, r ≥ 1, that are non-Kähler;
then they computed the curvature, the Ricci, ∗-Ricci, and torsion tensors
of the almost complex structure to detect some identities [Gr]. Their ex-
amples are called generalized Thurston manifolds. The torsion tensor in
[CFL] is the Nijenhuis tensor, a skew-symmetric (1, 2)-tensor that deter-
mines the integrability of an almost complex structure. The image bundle
of the Nijenhuis tensor under a certain non-degeneracy condition also plays
a crucial rôle in the partial integrability problem in the almost complex
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setting (see [Kr], [M81], and [M86]). In [MT] and [To], obstructions to lo-
cal calibrations of almost complex structures are presented; Tomassini [To]
gave several non-calibrable examples in R4 and R6 including the Thurston
manifold M4. These results motivated the study of compact non-Kähler al-
most complex structures with respect to partial integrability. It turns out
that generalized Thurston manifolds are of type (1, 1) in the sense of Def-
inition 2.5 (see Sect. 3). However, in general, an almost complex manifold
does not have that kind of constancy in type.

Instead of the Nijenhuis tensor we use the torsion tensor dθ mod θ, where
θ = (θ1, . . . , θn) are independent (1, 0)-forms; namely, our approach provides
a complex version of the method of prolongation of subbundles of a tan-
gent bundle, initiated by Cartan [C] and Gardner [Ga], and we determine
a certain type of an almost complex manifold (M2n, J) (see Definitions 2.1
and 2.5). Han and Kim [HK] gave a systematic method for deciding par-
tial integrability of almost complex manifolds. This method is an algebraic
approach rather than a vector field approach by analyzing the Nijenhuis ten-
sor; they also used a theorem of Nirenberg which relates the closedness of
a subbundle of (T ∗M)1,0 and the number of independent local holomorphic
functions, applying the Newlander–Nirenberg theorem and the Frobenius
theorem (see [BCH] or [Tr]).

In Sect. 2, we will first recall some basics of almost complex mani-
folds, namely (J, J̃)-biholomorphism, integrability, local holomorphic func-
tions with the independence condition. Then we will consider the partial in-
tegrability problem for generalized Thurston manifolds, introduced in [CFL];
as our main result we will prove that every generalized Thurston manifold
is of type (1, 1) (see Theorem 2.7 and Sect. 3).

2. Preliminaries

2.1. Almost complex structures and integrability. We denote
byM2n, n ≥ 1, a smooth (C∞) manifold of dimension 2n. Let J be an almost
complex structure on M2n, that is, for each p ∈M2n, Jp : TpM

2n → TpM
2n

is a smooth (in p) linear map such that Jp◦Jp = −Id. Then the pair (M2n, J)
is called an almost complex manifold. Let zj = xj + ixn+j be the standard
coordinate functions of Cn ' R2n. The standard complex structure Jst on Cn
is a representative example for almost complex structures, defined by

Jst

(
∂

∂xj

)
=

∂

∂xn+j
, Jst

(
∂

∂xn+j

)
= − ∂

∂xj
,

for each j = 1, . . . , n. For almost complex manifolds (M,J) and (M̃, J̃), a
differentiable mapping F : M → M̃ is said to be (J, J̃)-holomorphic if its
differential dF satisfies dF ◦ J = J̃ ◦ dF ; if moreover F is a diffeomorphism,
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then it is called a (J, J̃)-biholomorphism. A complex manifold is an almost
complex manifold such that, at each point in M , there exists a neighborhood
(J, Jst)-biholomorphic to an open subset of Cn. In this case, we call J a
complex structure.

Let us consider the real tangent bundle TM spanned by the vector fields

X1, JX1, . . . , Xn, JXn.

Then the complexified tangent bundle CTM has the decomposition

CTM = T 1,0M ⊕ T 0,1M,

where T 1,0M (T 0,1M , respectively) is the subbundle of rank n of eigen-
vectors of J associated with the eigenvalue i (−i, respectively). A section to
T 1,0M (T 1,0M , respectively) is called a (1, 0)-vector field ((0, 1)-vector field,
respectively). More specifically, for each j = 1, . . . , n,

Zj = 1
2(Xj − iJXj)

is a (1, 0)-vector field. The fields Z1, . . . , Zn are linearly independent; hence,
they are generators of T 1,0M . Therefore, the complex vector fields Z1, . . . , Zn
are generators of T 0,1M .

Definition 2.1. An almost complex structure J is said to be integrable
if the bundle T 1,0M is formally integrable, that is,

[Γ (T 1,0M), Γ (T 1,0M)] ⊂ Γ (T 1,0M),

which means that the Lie bracket of any two sections of T 1,0M is again a
section of T 1,0M .

The integrability of J is equivalent to the vanishing of the Nijenhuis
tensor NJ :

NJ(X,Y ) = [X̃, Ỹ ] + J [JX̃, Ỹ ] + J [X̃, Ỹ ]− [JX̃, JỸ ]

for p ∈ M and X,Y ∈ TpM . Here X̃ and Ỹ are vector fields that coincide
with X and Y respectively at the point p.

Definition 2.2. A complex-valued function f is said to be holomorphic
if

Zjf = 0, j = 1, . . . , n.

Holomorphic functions f1, . . . , fm are said to be independent if

(2.1) df1 ∧ · · · ∧ dfm 6= 0.

Theorem 2.3 ([NN]). An almost complex structure J is a complex struc-
ture if and only if J is integrable.

The Newlander–Nirenberg theorem can be rephrased as the closedness
of a certain subbundle of the complexified cotangent bundle.
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Consider the exterior algebra of differential forms with complex coeffi-
cients:

Ω∗ = Ω0 ⊕Ω1 ⊕ · · · ⊕Ω2n,

where Ω0 is the ring of smooth complex-valued functions and Ωs (1 ≤ s
≤ 2n) is the module over Ω0 of complex-valued smooth s-forms on M .

Definition 2.4. A subalgebra I of Ω∗ is called an algebraic ideal if I
satisfies the following:

(i) I ∧Ω∗ ⊂ I;
(ii) if φ =

∑2n
s=0 φs ∈ I, where φs ∈ Ωs, then each φs is in I (homogene-

ity condition).

The homogeneity condition implies that I is a two-sided ideal, that is,
Ω∗∧I ⊂ I (cf. [BC3G]). Let ψ = (ψ1, . . . , ψl) be a system of smooth 1-forms
on M . Let us denote by I(ψ), or simply (ψ), the algebraic ideal generated
by ψ. Then each element of (ψ) can be written in the form

l∑
k=1

ξk ∧ ψk

for some ξk ∈ Ω∗. For two elements α and β of Ω∗, we say that

α− β ≡ 0 mod (ψ)

if α−β ∈ (ψ). This concept can be generalized to complex differential forms.
We denote by CT ∗M the complexified cotangent bundle. Let

θ1, . . . , θn, θ̄1, . . . , θ̄n

be the dual 1-forms of Z1, . . . , Zn, Z1, . . . , Zn. Then the integrability of J is
equivalent to

dθl ≡ 0 mod (θ), ∀l = 1, . . . , n,

where θ = (θ1, . . . , θn) and d is the exterior derivative. This means that (θ) is
a closed ideal. If there exist n independent holomorphic functions f1, . . . , fn

on M , then (df1, . . . , dfn) is a closed ideal and (θ) = (df1, . . . , dfn).

2.2. Partial integrability and main result. Attempting to general-
ize the Newlander–Nirenberg theorem [NN], we are mainly concerned with
the partial integrability on generalized Thurston manifolds. Partial integra-
bility means that there exist m (m ≤ n) holomorphic functions with the in-
dependence condition in (2.1). We use a complex version of Cartan–Gardner
theory [C], [Ga] to determine partial integrability of generalized Thurston
manifolds (cf. [BC3G] and [HK]).

For any subbundle I ⊂ (T ∗M)1,0 we denote by I the module over Ω0

of smooth sections of I and by (I) the algebraic ideal of Ω∗ generated by
all smooth sections of I. Now we shall start with I = I(0) = (T ∗M)1,0. We
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consider the composition of the exterior derivative d : I → Ω2 with the
projection,

I
d−→ Ω2 π−→ Ω2/(I).

Let δ = π◦d. Then we define the submodule I(1) of I as ker δ. Assuming that
I(1) has constant rank on M , I(1) can be seen as a subbundle of (T ∗M)1,0.
This subbundle is called the first derived system of (T ∗M)1,0. Now we have
a short exact sequence of modules over Ω0:

0→ I(1) → I
δ−→ dI/(I)→ 0.

Notice that J is integrable if I(1) = I. If I(1) ( I, then we consider

I(1)
d−→ Ω2 π−→ Ω2/(I(1));

we define the submodule I(2) as ker δ for δ = π ◦ d. Assuming that I(k−1)

has constant rank on M , we define inductively the kth derived system I(k)

by

0→ I(k) → I(k−1)
δ−→ dI(k−1)/(I(k−1))→ 0.

Let ν be the smallest non-negative integer with I(ν) = I(ν+1). Then we have
a sequence of subbundles

(2.2) (T ∗M)1,0 := I = I(0) ⊃ I(1) ⊃ · · · ⊃ I(ν−1) ⊃ I(ν);
each I(ν) is a closed subbundle of I.

Definition 2.5. An almost complex manifold (M,J) is of type (ν, q) if
I(ν) has rank q.

In [HK], Han and Kim gave a systematic approach to construct the closed
subbundle of differentials of the maximal set of independent holomorphic
functions (see Propositions 2.3 and 2.4 therein); they proved the following:

Theorem 2.6 ([HK]). Let M2n, n ≥ 2, be a C∞ manifold with C∞ al-
most complex structure J . Let (T ∗M)1,0 be the bundle of (1, 0)-forms. Then,
under a generic assumption of non-degeneracy at each step of the construc-
tion, there exists a sequence of subbundles (T ∗M)1,0 := I(0) ⊃ I(1) ⊃ · · ·
and a non-negative integer ν such that for k = 0, 1, 2, . . . ,

(i) I(k+1) ( I(k) if k < ν;
(ii) I(k+1) = I(k) if k ≥ ν;

(iii) dI(k+1) ≡ 0 mod I(k).

Moreover, a function u is holomorphic if and only if du ∈ I(ν), thus the
number of independent holomorphic functions is equal to the rank of I(ν).

For independent (1, 0)-forms θ = (θ1, . . . , θn), we set

(2.3) dθl ≡
∑
j<k

T ljkθ̄
j ∧ θ̄k mod (θ),



266 H. Kim

where j, k, l = 1, . . . , n. Then (2.3) can be written as follows:

(2.4)


dθ1

...

dθn

 ≡

T 1
12 T 1

13 · · · T 1
n−1,n

...
...

. . .
...

Tn12 Tn13 · · · Tnn−1,n


︸ ︷︷ ︸

T


θ̄1 ∧ θ̄2

θ̄1 ∧ θ̄3
...

θ̄n−1 ∧ θ̄n

 mod (θ).

The n×
(
n
2

)
matrix T is called the torsion of J with respect to the coframe θ.

By observing the torsion T and its prolongations, we determine the type
(ν, q) (see [H] for prolongation theory).

Let G be the closed subgroup of Gl(r + 3,C), r ≥ 1, defined by

(2.5) G =





1 0 · · · 0 ar+1
1 ar+2

1 0

0 1 · · · 0 ar+1
2 ar+2

2 0
...

...
. . .

...
...

...
...

0 0 · · · 1 ar+1
r ar+2

r 0

0 0 · · · 0 1 ar+2
r+1 0

0 0 · · · 0 0 1 0

0 0 · · · 0 0 0 e2πiθ


: aji , θ ∈ R


.

Then G = H(1, r) × S1, where H(1, r) is the generalized Heisenberg group
(cf. [CFG]) and S1 is the unit circle. We denote by Γ the discrete subgroup
of matrices with integer entries. Then we define the generalized Thurston
manifold M2r+2 as the quotient of H(1, r)×S1 by the discrete subgroup Γ .
In Section 3 we define an almost complex structure J̃ on M2r+2 for a fixed r,
and we prove our main result:

Theorem 2.7. The generalized Thurston manifold (M2r+2, J̃) is of type
(1, 1).

Remark 2.8. In the case where r = 1, the manifold M4 is the Thurston
manifold, introduced in [Th].

3. Types of generalized Thurston manifolds. We will show that
each generalized Thurston manifold is of type (1, 1) for a certain almost com-
plex complex structure J̃ . Let {xk, y, pk, t} be the local coordinate functions
on G defined by

xk(A) = ar+1
k , y(A) = ar+2

r+1, pk(A) = ar+2
k , t(A) = θ (1 ≤ k ≤ r)

for all A ∈ G in (2.5) (cf. [CFG]). Then we define

αk = dxk, β = dy, γk = dpk − xkdy, η = dt (1 ≤ k ≤ r);
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these 1-forms are linearly independent and left-invariant on G. Let

Xk =
∂

∂xk
, Y =

∂

∂y
+

r∑
j=1

xj
∂

∂pj
, Pk =

∂

∂pk
, T =

∂

∂t

be the vector fields dual to {αk, β, γk, η}.
First we define an almost complex structure J on G as follows:

JXk := Pk, JPk := −Xk, JY := T, JT := −Y (1 ≤ k ≤ r).
In [To], Tomassini introduced this almost complex structure on M4. Con-
sidering the canonical projection π : G → M2r+2, we define left-invariant
1-forms on M2r+2 by

π∗(α̃k) = αk, π∗(β̃) = β, π∗(γ̃k) = γk, π∗(η̃) = η (1 ≤ k ≤ r).
Then we define an almost complex structure J̃ on M2r+2 such that

π∗(JX) = J̃(π∗X) for every X ∈ Γ (TG).

Now we shall determine the torsion matrix (2.4) for (M2r+2, J̃). By let-
ting

θk = 1
2{dx

k + idpk − ixkdy} (1 ≤ k ≤ r),
θr+1 = 1

2{dy + idt},
as generators of (1, 0)-forms on G, we descend these (1, 0)-forms to M2r+2.
Then, for some local coordinate functions {x̃k, ỹ, p̃k, t̃} on M2r+2, we define

θ̃k := 1
2{α̃

k + iγ̃k} = 1
2{dx̃

k + idp̃k − ix̃kdỹ} (1 ≤ k ≤ r),
θ̃r+1 := 1

2{β̃ + iη̃} = 1
2{dỹ + idt̃},

(3.1)

as generators of (1, 0)-forms on M2r+2, that is, I = (θ̃1, . . . , θ̃r+1) for M2r+2

in (2.2).
By applying the exterior derivative d to (3.1) we obtain

dθ̃k = −1
2 idx̃

k ∧ dỹ

= −1
2 i{θ̃

k +
¯̃
θk} ∧ {θ̃r+1 +

¯̃
θr+1} (1 ≤ k ≤ r),

dθ̃r+1 = 0.

(3.2)

Now we shall evaluate dθ̃k mod (I). For each 1 ≤ k ≤ r, we have

(3.3) dθ̃k ≡ −1
2 i

¯̃
θk ∧ ¯̃

θr+1 mod (θ̃1, . . . , θ̃r+1).

From (3.3) and the second equation in (3.2), we deduce that the torsion
matrix T has rank r on M2r+2. Considering the first derived system, we let
I(1) = (θ̃r+1). It is a closed subbundle of I. By Theorem 2.6, we conclude
that (M2r+2, J̃) is of type (1, 1). This completes the proof of Theorem 2.7.

Remark 3.1. The type for (M2r+2, J̃), r ≥ 1, is independent of the
choice of dimension r.



268 H. Kim

Acknowledgements. This research was supported by an NRF grant
2011-0030044 (SRC-GAIA) of the Ministry of Education, The Republic of
Korea.

References

[Ab] E. Abbena, An example of an almost Kähler manifold which is not Kählerian,
Boll. Un. Mat. Ital. A (6) 3 (1984), 383–392.

[BCH] S. Berhanu, P. D. Cordaro and J. Hounie, An Introduction to Involutive Struc-
tures, Cambridge Univ. Press, 2008.

[BC3G] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffiths,
Exterior Differential Systems, Springer, New York, 1991.
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