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A class of singular fourth-order boundary value problems
with nonhomogeneous nonlinearity

by Qingliu Yao (Nanjing)

Abstract. We study the existence of positive solutions to a class of singular nonlinear
fourth-order boundary value problems in which the nonlinearity may lack homogeneity.
By introducing suitable control functions and applying cone expansion and cone compres-
sion, we prove three existence theorems. Our main results improve the existence result
in [Z. L. Wei, Appl. Math. Comput. 153 (2004), 865–884] where the nonlinearity has a
certain homogeneity.

1. Introduction. Let α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ρ = αγ+αδ+βγ
> 0. The purpose of this paper is to study the existence of positive solutions
to the following nonlinear fourth-order two-point boundary value problem:

(P)

{
u(4)(t) = f(t, u(t),−u′′(t)), 0 < t < 1,

u(0) = u(1) = 0, αu′′(0)− βu′′′(0) = 0, γu′′(1) + δu′′′(1) = 0.

Here, a function u∗ ∈ C3[0, 1] is called a positive solution to the problem
(P) if u∗(t) satisfies (P) and u∗(t) > 0, 0 < t < 1.

If β = δ = 0, the problem (P) is the well-known elastic beam equation
with two simply supported ends. When f : [0, 1]× [0,∞]× [0,∞)→ [0,∞)
is continuous, the nonlinear problem (P) has attracted wide attention (see
[1, 3, 7, 9, 10, 12, 14, 17, 25] and the references therein).

Throughout this paper, f : (0, 1)×(0,∞)×(0,∞)→ [0,∞) is continuous.
Therefore, f(t, u, v) may be singular at t = 0 and/or t = 1 for any (u, v) ∈
[0,∞)× [0,∞), and at u = 0 and/or v = 0 for any t ∈ [0, 1].

The positive solutions of the problem (P) with singularities have been
investigated by many authors (see [4, 8, 11, 15, 16, 22, 24]). For example,
Z. L. Wei [22] established the following existence theorem by using the upper
and lower solution method.
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Theorem 1.1 ([22, Theorem 3.1]). Suppose that

(a1) f(t, ξ(t), 1) 6≡ 0 and 0 <
	1
0 f(t, ξ(t), ζ(t)) dt <∞, where

ξ(t) = t(1− t), ζ(t) =
(αt+ β)[γ(1− t) + δ]

(α+ β)(γ + δ)
.

(a2) There exist constants λ1, λ2, µ1, µ2 (−∞<λ1, λ2≤0, 0≤µ1, µ2<1,
µ1 + µ2 < 1) such that, for any 0 < c ≤ 1 and (t, u, v) ∈ (0, 1) ×
(0,∞)× (0,∞),

cµ1f(t, u, v) ≤ f(t, cu, v) ≤ cλ1f(t, u, v),

cµ2f(t, u, v) ≤ f(t, u, cv) ≤ cλ2f(t, u, v).

Then the problem (P) has a positive solution u∗ ∈ C3[0, 1].

Theorem 1.1 extends and improves some results of D. O’Regan [16] when
β = δ = 0 and f(t, u, v) = f(t, u). The theorem has the following advantages:

(1) The nonlinearity f(t, u(t),−u′′(t)) not only depends on the unknown
function u(t) but also on its second derivative u′′(t).

(2) The function f(t, u, v) may be singular at t = 0, t = 1, and at u = 0,
v = 0 if λ1, λ2 < 0.

(3) It is easier to verify the homogeneity condition (a2).

For the singular problem (P) satisfying the homogeneity condition (a2),
Theorem 1.1 is very effective and convenient. Consequently, the method
in [22] has been applied successfully to various singular boundary value
problems (see [4, 20, 23, 31, 32]).

However, in Theorem 1.1, the condition (a2) is also rather restrictive. As
pointed out by Z. L. Wei [22], typical functions satisfying (a2) are those of
the form

f(t, u, v) =

m∑
i=1

n∑
j=1

ωj,iu
µjvλi ,

where ωj,i ∈ C(0, 1), ωj,i(t) > 0 on (0, 1), µj ∈ (−∞,∞), λi < 1, µj+λi < 1,
i = 1, . . . ,m, j = 1, . . . , n.

Additionally, Theorem 1.1 only yields the existence of one positive solu-
tion, with no information about multiple positive solutions.

The purpose of this paper is to improve Theorem 1.1. We will remove
the homogeneity condition (a2) and establish the multiplicity of positive
solutions for the singular problem (P).
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Let

θ =
αγ + δα

2αγ + γβ + δα
,

η =
3δ + 2γ

6(δ + γ)
θ − β + 2α

2(β + α)
θ2 +

[
δ + 2γ

2(δ + γ)
− 3β − 2α

6(β + α)

]
θ3

−
[

α

3(β + α)
+

γ

3(δ + γ)

]
θ4.

If α = γ = 1, β = δ = 0, then θ = 1
2 , η = 1

24 . In addition, define

q(t) = min{t, 1− t}, p(t) = min

{
β + αt

β + α
,
δ + γ(1− t)

δ + γ

}
.

In this paper, we use the following assumption:

(H) For each pair of positive numbers r1 < r2, there exists a nonnegative
function jr2r1 ∈ L

1[0, 1] ∩ C(0, 1) such that

f(t, u, v) ≤ jr2r1 (t), ∀0 < t < 1, ηr1q(t) ≤ u ≤ 1
8r2, r1p(t) ≤ v ≤ r2.

For the singular problem (P), we will see that the assumption (H) ensures
the complete continuity of the associated integral operator T (see Section 2),
and guarantees that the solution u∗(t) belongs to C3[0, 1] ∩ C4(0, 1).

In Sections 2 and 3, we will construct a proper cone and introduce two
control functions. Applying these new tools, we will prove three theorems on
the existence of single and double positive solutions to (P). In Section 4, we
will verify that the main results improve Theorem 1.1 in the great majority
of cases. In Section 5, we will give two examples.

Recently, a large number of papers on nonlinear singular boundary value
problems have appeared (see [2, 6, 13, 15, 19, 21, 26–30]). Motivated by
these papers, we will apply the Guo–Krasnosel’skĭı fixed point theorem of
cone expansion-compression type to study the singular problem (P). In this
paper, the upper and lower solution method is not applied.

2. Preliminaries. Let G1(t, s) and G2(t, s) be the Green functions of
the homogeneous linear problems

−u′′(t) = 0, 0 ≤ t ≤ 1, u(0) = u(1) = 0,

and

−u′′(t) = 0, 0 ≤ t ≤ 1, αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,

respectively. Then, for 0 ≤ t ≤ s ≤ 1,

G1(t, s) = t(1− s), G2(t, s) =
(β + αt)(δ + γ − γs)

ρ
,
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while for 0 ≤ s ≤ t ≤ 1,

G1(t, s) = s(1− t), G2(t, s) =
(β + αs)(δ + γ − γt)

ρ
.

Obviously, G1(t, s) ≥ 0 and G2(t, s) ≥ 0 for any 0 ≤ t, s ≤ 1.
Direct computations give that

β + αθ

β + α
=
δ + γ(1− θ)

δ + γ
, η =

1�

0

G1(θ, s)p(s) ds.

This implies 0 < θ < 1, 0 < η < 1. Moreover,

max
0≤t≤1

1�

0

G1(t, s) ds = 1
2 max
0≤t≤1

t(1− t) = 1
8 .

Consider the Banach space C2[0, 1] equipped with the norm

|||u||| = max{‖u‖, ‖u′′‖}, where ‖u‖ = max
0≤t≤1

|u(t)|.

Let

C2
0 [0, 1] = {u ∈ C2[0, 1] : u(0) = u(1) = 0},

K = {u ∈ C2
0 [0, 1] : u(t) ≥ ‖u‖q(t), −u′′(t) ≥ ‖u′′‖p(t), 0 ≤ t ≤ 1}.

Then K is a cone of nonnegative functions in C2[0, 1]. Write

K(r) = {u ∈ K : |||u||| < r}, ∂K(r) = {u ∈ K : |||u||| = r}.
For u ∈ K \ {0}, define the associated integral operator T as follows:

(Tu)(t) =

1�

0

1�

0

G1(t, s)G2(s, τ)f(τ, u(τ),−u′′(τ)) dτ ds, 0 ≤ t ≤ 1.

Lemma 2.1. If u ∈ K, then |||u||| = ‖u′′‖ and η‖u′′‖ ≤ ‖u‖ ≤ 1
8‖u

′′‖.

Proof. Since u(0) = u(1) = 0, one has u(t) =
	1
0G1(t, s)[−u′′(s)] ds. So

‖u‖ ≤ ‖u′′‖ max
0≤t≤1

1�

0

G1(t, s) ds = 1
8‖u

′′‖.

Since −u′′(t) ≥ ‖u′′‖p(t) ≥ 0, one has

‖u‖ = max
0≤t≤1

1�

0

G1(t, s)[−u′′(s)] ds ≥ max
0≤t≤1

1�

0

G1(t, s)‖u′′‖p(s) ds

≥ ‖u′′‖
1�

0

G1(θ, s)p(s) ds = η‖u′′‖.

It follows that η‖u′′‖ ≤ ‖u‖ ≤ 1
8‖u

′′‖ and |||u||| = ‖u′′‖.
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Lemma 2.2. Suppose that (H) holds. Then:

(1) T : K(r2)\K(r1)→ K is completely continuous for any 0 < r1 < r2.

(2) For any u ∈ K(r2) \K(r1),

(Tu)′′(t) = −
1�

0

G2(t, s)f(s, u(s),−u′′(s)) ds, 0 ≤ t ≤ 1.

Proof. Define the operators T1, F, J as follows:

(T1u)(t) =

1�

0

G2(t, s)f(s, u(s),−u′′(s)) ds, 0 ≤ t ≤ 1,

(Fu)(t) = f(t, u(t),−u′′(t)), 0 < t < 1,

(Ju)(t) =

1�

0

G2(t, s)u(s) ds, 0 ≤ t ≤ 1.

Step I. Let u ∈ K(r2) \ K(r1). Then r1 ≤ |||u||| ≤ r2. By Lemma 2.1,
ηr1 ≤ ‖u‖ ≤ 1

8r2 and r1 ≤ ‖u′′‖ ≤ r2. So, for any 0 ≤ t ≤ 1,

ηr1q(t) ≤ ‖u‖q(t) ≤ u(t) ≤ ‖u‖ ≤ 1
8r2,

r1p(t) ≤ ‖u′′‖p(t) ≤ −u′′(t) ≤ ‖u′′‖ = r2.

Let jr2r1 (t) be as in (H). Then

f(t, u(t),−u′′(t)) ≤ jr2r1 (t), ∀0 < t < 1.

Step II. By Step I,

sup
u∈K(r2)\K(r1)

1�

0

|(Fu)(t)| dt =

1�

0

f(t, u(t),−u′′(t)) dt ≤
1�

0

jr2r1 (t) dt <∞.

Let un, u0 ∈ K(r2) \ K(r1), n = 1, 2, . . . , with |||un − u0||| → 0. Then
max0≤t≤1 |un(t) − u0(t)| → 0 and max0≤t≤1 |u′′n(t) − u′′0(t)| → 0. Since f :
(0, 1)× (0,∞)× (0,∞)→ [0,∞) is continuous, one has

f(t, un(t), u′′n(t))− f(t, u0(t), u
′′
0(t))→ 0, ∀0 < t < 1.

By Step I, for any n = 0, 1, . . . and any 0 < t < 1,

f(t, un(t),−u′′n(t)) ≤ jr2r1 (t),

|f(t, un(t),−u′′n(t))− f(t, u0(t),−u′′0(t))| ≤ 2jr2r1 (t).

Applying the Lebesgue dominated convergence theorem [5, Theorem 2.1],
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we get

lim
n→∞

1�

0

|(Fun)(t)− (Fu0)(t)| dt

= lim
n→∞

1�

0

|f(t, un(t),−u′′n(t))− f(t, u0(t),−u′′0(t))| dt

=

1�

0

lim
n→∞

|f(t, un(t),−u′′n(t))− f(t, u0(t),−u′′0(t))| dt = 0.

Therefore, F : K(r2) \K(r1)→ L1[0, 1] is bounded and continuous.

Step III. Obviously, J : L1[0, 1]→ C[0, 1] is a bounded linear operator.
By the Arzelà–Ascoli theorem and a standard argument, J : L1[0, 1] →
C[0, 1] is completely continuous.

By Step II, T1 = J ◦ F : K(r2) \K(r1)→ C[0, 1] is continuous.

If W ⊂ K(r2) \K(r1) is a bounded set, then the set F (W ) ⊂ L1[0, 1] is
bounded by Step II. So, T1(W ) = J(F (W )) ⊂ C[0, 1] is precompact.

Therefore, T1 : K(r2) \K(r1)→ C[0, 1] is completely continuous.

Step IV. Let u ∈ K(r2) \K(r1). By Step III, T1u ∈ C[0, 1] and

(Tu)(t) =

1�

0

G1(t, s)(T1u)(s) ds, ∀0 ≤ t ≤ 1.

Since G(0, s) = G(1, s) = 0 for any 0 ≤ s ≤ 1, one has (Tu)(0) = (Tu)(1)
= 0. By the definition of G1(t, s), then

(Tu)(t) = (1− t)
t�

0

s(T1u)(s) ds+ t

1�

t

(1− s)(T1u)(s) ds, ∀0 ≤ t ≤ 1.

Differentiating the above equality twice, we get

(Tu)′′(t) = −(T1u)(t) = −
1�

0

G2(t, s)f(s, u(s),−u′′(s)) ds, ∀0 ≤ t ≤ 1.

Consequently, Tu ∈ C2
0 [0, 1].

By the complete continuity of T1, we see that T : K(r2)\K(r1)→ C2
0 [0, 1]

is completely continuous.

Step V. Simple computations give, for 0 ≤ t, s ≤ 1,

q(t)G1(s, s) ≤ G1(t, s) ≤ G1(s, s), p(t)G2(s, s) ≤ G2(t, s) ≤ G2(s, s).
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So, for any u ∈ K(r2) \K(r1) and 0 ≤ t ≤ 1,

(Tu)(t) ≥ q(t)
1�

0

1�

0

G1(s, s)G2(s, τ)f(τ, u(τ),−u′′(τ)) dτ ds

≥ q(t) max
0≤t≤1

1�

0

1�

0

G1(t, s)G2(s, τ)f(τ, u(τ),−u′′(τ)) dτ ds

= ‖Tu‖q(t),
and

−(Tu)′′(t) ≥ p(t)
1�

0

G2(s, s)f(s, u(s),−u′′(s)) ds

≥ p(t) max
0≤t≤1

1�

0

G2(t, s)f(s, u(s),−u′′(s)) ds = ‖(Tu)′′‖p(t).

It follows that T : K(r2) \K(r1)→ K.
Our study is based on the following Guo–Krasnosel’skĭı fixed point the-

orem of cone expansion-compression type.

Lemma 2.3. Let X be a Banach space, let K be a cone in X, and let
Ω1, Ω2 be bounded open subsets of K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Assume that
T : Ω2 \Ω1 → K is a completely continuous operator such that either

• ‖Tx‖ ≤ ‖x‖, x ∈ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ ∂Ω2, or
• ‖Tx‖ ≥ ‖x‖, x ∈ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ ∂Ω2.

Then T has a fixed point in Ω2 \Ω1.

3. Main results. In order to state the main results, we need the fol-
lowing control functions and constants:

ϕ(r) =

1�

0

max
{
f(t, u, v) : ηrq(t) ≤ u ≤ 1

8r, rp(t) ≤ v ≤ r
}
dt,

ψ(r) =

1−σ�

σ

min
{
f(t, u, v) : ηrq(t) ≤ u ≤ 1

8r, rp(t) ≤ v ≤ r
}
dt,

ϕ
0

= lim inf
r→+0

ϕ(r)/r, ϕ∞ = lim inf
r→∞

ϕ(r)/r,

ψ0 = lim sup
r→+0

ψ(r)/r, ψ∞ = lim sup
r→∞

ψ(r)/r,

A = max
0≤t,s≤1

G2(t, s), B = min
σ≤t,s≤1−σ

G2(t, s),

where 0 < σ < 1
2 is a constant. In real problems, we can choose σ depending

on the properties of f(t, u, v).
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If the assumption (H) is satisfied, then the control functions ϕ(r), ψ(r)
are well defined for any r > 0.

Direct computations show that B = 1
ρ(β + σα)(δ + σγ) and

A =



αδ + βδ

ρ
if −αγ + αδ ≥ γβ;

ρ

4αγ
if −αγ + αδ ≤ γβ ≤ αγ + αδ;

γβ + βδ

ρ
if αγ + αδ ≤ γβ.

In particular, if α = γ = 1, β = δ = 0, then A = 1/4, B = σ2.

We obtain the following existence theorems.

Theorem 3.1. Suppose that (H) holds and there exist 0 < a < b such
that one of the following conditions is satisfied:

(b1) ϕ(a) ≤ A−1a, ψ(b) ≥ B−1b.
(b2) ψ(a) ≥ B−1a, ϕ(b) ≤ A−1b.

Then the problem (P) has a positive solution u∗ ∈ K such that u∗ ∈ C3[0, 1]∩
C4(0, 1) and a ≤ |||u∗||| ≤ b.

Theorem 3.2. Suppose that (H) holds and there exist 0 < a < b < c
such that one of the following conditions is satisfied:

(c1) ϕ(a) ≤ A−1a, ψ(b) > B−1b and ϕ(c) ≤ A−1c.
(c2) ψ(a) ≥ B−1a, ϕ(b) < A−1b and ψ(c) ≥ B−1c.

Then the problem (P) has two positive solutions u∗1, u
∗
2 ∈ K such that u∗1, u

∗
2 ∈

C3[0, 1] ∩ C4(0, 1) and a ≤ |||u∗1||| < b < |||u∗2||| ≤ c.

Theorem 3.3. Suppose that (H) holds and one of the following condi-
tions is satisfied:

(d1) ϕ
0
< A−1, ψ∞ > B−1.

(d2) ψ0 > B−1, ϕ∞ < A−1.

Then the problem (P) has a positive solution u∗ ∈ C3[0, 1] ∩ C4(0, 1).

Proof of Theorem 3.1. We only prove the case (b2).

By Lemma 2.2(1), T : K(b) \K(a)→ K is completely continuous.

If u ∈ ∂K(b), then |||u||| = b. By Lemma 2.1, ηb ≤ ‖u‖ ≤ 1
8b, ‖u

′′‖ = b.
This implies that

ηbq(t) ≤ u(t) ≤ 1
8b, bp(t) ≤ −u′′(t) ≤ b, ∀0 ≤ t ≤ 1.

So,
	1
0 f(t, u(t),−u′′(t)) dt ≤ ϕ(b). Since Tu ∈ K, one has |||Tu||| = ‖(Tu)′′‖
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by Lemma 2.1. It follows that

|||Tu||| = ‖(Tu)′′‖ = max
0≤t≤1

1�

0

G2(t, s)f(s, u(s),−u′′(s)) ds

≤ max
0≤t,s≤1

G2(t, s)

1�

0

f(s, u(s),−u′′(s)) ds ≤ AA−1b = b = |||u|||.

If u ∈ ∂K(a), then |||u||| = a. By Lemma 2.1,

ηaq(t) ≤ u(t) ≤ 1
8a, ap(t) ≤ −u′′(t) ≤ a, ∀0 ≤ t ≤ 1.

Hence,
	1−σ
σ f(t, u(t),−u′′(t)) dt ≥ ψ(a). It follows that

|||Tu||| = ‖(Tu)′′‖ ≥ min
σ≤t≤1−σ

1−σ�

σ

G2(t, s)f(s, u(s),−u′′(s)) ds

≥ min
σ≤t,s≤1−σ

G2(t, s)

1−σ�

σ

f(s, u(s),−u′′(s)) ds ≥ BB−1a = a = |||u|||.

According to Lemma 2.3, the operator T has a fixed point u∗ ∈ K(b) \
K(a). So, u∗ ∈ K, a ≤ |||u∗||| ≤ b and u∗(t) ≥ ‖u∗‖q(t) ≥ ηaq(t) > 0,
0 < t < 1.

Applying u∗ = Tu∗ and Lemma 2.2(1), one has, for 0 ≤ t ≤ 1,

u∗(t) =

1�

0

1�

0

G1(t, s)G2(s, τ)f(τ, u∗(τ),−(u∗)′′(τ)) dτ ds,

(u∗)′′(t) = −
1�

0

G2(t, s)f(s, u∗(s),−(u∗)′′(s)) ds.

Since f(t, u∗(t),−(u∗)′′(t)) is integrable on [0, 1], successively differentiating
the second equality, we get

(u∗)′′′(t) = −
1�

0

∂

∂t
G2(t, s)f(s, u∗(s),−(u∗)′′(s)) ds, ∀0 ≤ t ≤ 1,

(u∗)(4)(t) = f(t, u∗(t),−(u∗)′′(t)), ∀0 < t < 1.

These equalities show u∗ ∈ C3[0, 1] ∩ C4(0, 1).

Since u∗ = Tu∗ ∈ C2
0 [0, 1], one has u∗(0) = u∗(1) = 0. By the expressions

of u∗(t) and (u∗)′′(t), it is easy to prove that

α(u∗)′′(0)− β(u∗)′′′(0) = 0, γ(u∗)′′(1) + δ(u∗)′′′(1) = 0.

Therefore, u∗ ∈ K is a positive solution of the problem (P).

Proof of Theorem 3.2. We only prove the case (c1).
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Applying the conditions ϕ(a) ≤ A−1a, ψ(b) > B−1b and imitating the
proof of Theorem 3.1, we can prove that the problem (P) has a positive
solution u∗1 ∈ K such that u∗1 ∈ C3[0, 1] ∩ C4(0, 1) and a ≤ |||u∗1||| < b.
Similarly, since ψ(b) > B−1b, ϕ(c) ≤ A−1c, (P) has another positive solution
u∗2 ∈ K such that u∗2 ∈ C3[0, 1] ∩ C4(0, 1) and b < |||u∗2||| ≤ c.

Proof of Theorem 3.3. The proof is direct from Theorem 3.1.

4. On Theorem 1.1. Proposition 4.4 below shows that Theorem 1.1
is a special case of Theorem 3.3 under some stronger conditions, and The-
orem 3.3 improves Theorem 1.1 in the great majority of cases because the
homogeneity condition (a2) is canceled.

Remark 4.1. By Remark 1 in [22], if (a2) is satisfied, then the following
inequalities hold for any 1 ≤ c <∞ and (t, u, v) ∈ (0, 1)× (0,∞)× (0,∞):

cλ1f(t, u, v) ≤ f(t, cu, v) ≤ cµ1f(t, u, v),

cλ2f(t, u, v) ≤ f(t, u, cv) ≤ cµ2f(t, u, v).

Remark 4.2. If (a2) is satisfied, then

f(t, q(t), p(t)) ≤
[
q(t)

ξ(t)

]µ1[p(t)
ζ(t)

]µ2
f(t, ξ(t), ζ(t)).

This can be derived from Remark 4.1 and the simple facts that ξ(t) ≤ q(t)
and ζ(t) ≤ p(t) for any 0 ≤ t ≤ 1.

Remark 4.3. If (a2) holds and

1�

0

f(t, ξ(t), ζ(t)) dt

ξµ1(t)ζµ2(t)
<∞,

then (H) is satisfied. Indeed, let 0 < r1 < r2. By Remarks 4.1 and 4.2, for
0 < t < 1,

max{f(t, u, v) : ηr1q(t) ≤ u ≤ 1
8r2, r1p(t) ≤ v ≤ r2}

≤ max

{(
u

ηr1q(t)

)µ1( v

r1p(t)

)µ2
f(t, ηr1q(t), r1p(t)) :

ηr1q(t) ≤ u ≤ 1
8r2,

r1p(t) ≤ v ≤ r2

}

≤ max

{
ηλ1
(

u

ηr1q(t)

)µ1( v

r1p(t)

)µ2
f(t, r1q(t), r1p(t)) :

ηr1q(t) ≤ u ≤ 1
8r2,

r1p(t) ≤ v ≤ r2

}

= ηλ1
(

r2
8ηr1q(t)

)µ1( r2
r1p(t)

)µ2
f(t, r1q(t), r1p(t))
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≤ ηλ1
(

r2
8ηr1q(t)

)µ1( r2
r1p(t)

)µ2
max{rλ11 , rµ11 }max{rλ21 , rµ21 }f(t, q(t), p(t))

≤ ηλ1
(

r2
8ηr1ξ(t)

)µ1( r2
r1ζ(t)

)µ2
max{rλ11 , rµ11 }max{rλ21 , rµ21 }f(t, ξ(t), ζ(t)).

Hence the function

jr2r1 (t)

= ηλ1
(

r2
8ηr1ξ(t)

)µ1( r2
r1ζ(t)

)µ2
max{rλ11 , rµ11 }max{rλ21 , rµ21 }f(t, ξ(t), ζ(t))

satisfies the assumption (H).

Proposition 4.4. Theorem 1.1 is a special case of Theorem 3.3 if

(1) f(t, ξ(t), 1) 6≡ 0 is replaced by f(t, 1, 1) 6≡ 0.

(2) 0 <
	1
0 f(t, ξ(t), ζ(t)) dt <∞ is replaced by

	1
0
f(t,ξ(t),ζ(t))
ξµ1 (t)ζµ2 (t) dt <∞.

Proof. By Remark 4.3, the assumption (H) holds.

For r ≥ 1/η > 1, one has

max{f(t, u, v) : ηrq(t) ≤ u ≤ 1
8r, rp(t) ≤ v ≤ r}

≤ max

{(
u

ηrq(t)

)µ1( v

rp(t)

)µ2
f(t, ηrq(t), rp(t)) :

ηrq(t) ≤ u ≤ 1
8r,

rp(t) ≤ v ≤ r

}

=

(
1

8η

)µ1 f(t, ηrq(t), rp(t))

qµ1(t)pµ2(t)
≤ rµ1+µ2

8µ1ηµ1−λ1
f(t, q(t), p(t))

qµ1(t)pµ2(t)

≤ rµ1+µ2

8µ1ηµ1−λ1
f(t, ξ(t), ζ(t))

ξµ1(t)ζµ2(t)
.

For 0 < r ≤ 1, one has

min{f(t, u, v) : ηrq(t) ≤ u ≤ 1
8r, rp(t) ≤ v ≤ r}

≥ min

{(
8u

r

)µ1(v
r

)µ2
f

(
t,

1

8
r, r

)
:
ηrq(t) ≤ u ≤ 1

8r,

rp(t) ≤ v ≤ r

}
= ηµ1qµ1(t)pµ2(t)f

(
t, 18r, r

)
≥ (η/8)µ1rµ1+µ2qµ1(t)pµ2(t)f(t, 1, 1).

Since f(t, 1, 1) 6≡ 0, there exists 0 < t0 < 1 such that f(t0, 1, 1) > 0. Let

0 < σ < 1
2 min{t0, 1− t0}. Then

	1−σ
σ qµ1(t)pµ2(t)f(t, 1, 1) dt > 0.
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Additionally, by (a2), 0 ≤ µ1 + µ2 < 1. It follows that

ϕ∞ = lim inf
r→∞

	1
0 max{f(t, u, v) : ηrq(t) ≤ u ≤ r/8, rp(t) ≤ v ≤ r} dt

r

≤ 1

8µ1ηµ1−λ1

1�

0

f(t, ξ(t), ζ(t))

qµ1(t)pµ2(t)
dt lim

r→∞

1

r1−µ1−µ2
= 0,

ψ0 = lim sup
r→+0

	1−σ
σ min{f(t, u, v) : ηrq(t) ≤ u ≤ 1/8r, rp(t) ≤ v ≤ r} dt

r

≥ (η/8)µ1 lim
r→+0

	1−σ
σ qµ1(t)pµ2(t)f(t, 1, 1) dt

r1−µ1−µ2
=∞.

By Theorem 3.3(d2), (P) has a positive solution u∗ ∈ C3[0, 1] ∩ C4(0, 1).

Remark 4.5. Theorem 1.1 is not a corollary of Theorem 3.3.

For example, consider the problem

u(4)(t) =

√
u(t)

t(1− t)
, 0 < t < 1, u(0) = u(1) = u′′(0) = u′′(1) = 0.

Here f(t, u, v) = f(t, u) =
√
u

t(1−t) and ζ(t) = ξ(t) = t(1− t). So,

1�

0

f(t, ξ(t)) dt =

1�

0

dt√
t(1− t)

<∞.

Obviously, the other conditions of Theorem 1.1 are satisfied. This implies
that the problem has a positive solution u∗ ∈ C3[0, 1].

However, for any r2 > r1 > 0,

1�

0

max

{ √
u

t(1− t)
: ηr1q(t) ≤ u ≤

1

8
r2

}
dt =

√
r2
8

1�

0

dt

t(1− t)
=∞.

This shows that the assumption (H) does not hold. Consequently, the above
existence conclusion cannot be derived from Theorem 3.3.

5. Two examples. Examples 5.1 and 5.2 below illustrate our improve-
ments.

Example 5.1. Let σ = 1/4. Consider the boundary value problemu
(4)(t) =

5

8

(
1 +

1

16
√
u(t)

sin2 1

u(t)

)
eu(t)−u

′′(t), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

In this problem, α = γ = 1, β = δ = 0, η = 1/24, A = 1/4, B = 1/16,
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p(t) = q(t) = min{t, 1− t} and

f(t, u, v) = f(u, v) =
5

8

(
1 +

1

16
√
u

sin2 1

u

)
eu+v.

So, f(u, v) is singular at u = 0 for any v ∈ [0,∞). Obviously, f(u, v) satisfies
the assumption (H).

Direct computations give

ϕ(1) ≤ 5

8

1�

0

max

{(
1 +

1

16
√
u

)
eu+v :

1

24
q(t) ≤ u ≤ 1

8
, q(t) ≤ v ≤ 1

}
dt

≤ 5

8
e9/8

1�

0

[
1 +

√
6

8
√
q(t)

]
dt =

5

8
e9/8[1 +

√
3/2] ≈ 3.5923 < 4 = A−1.

Since min1/4≤t≤3/4 q(t) = 1/4, we obtain

ψ(30) ≥ 5

8

3/4�

1/4

min{ev : 30q(t) ≤ v ≤ 33} dt

≥ 5

16
e7.5 ≈ 565.01 > 512 = 32B−1.

By Theorem 3.1(b1), the problem has a positive solution u∗ ∈ C3[0, 1]
and 1 ≤ |||u∗||| ≤ 30. Since the function f(u, v) does not satisfy (a2), the
conclusion cannot be derived from Theorem 1.1.

Example 5.2. Consider the fourth-order boundary value problemu
(4)(t) = sin2(u(t)− t(1− t)) + max

{
0,

1√
−u′′(t)

− 1

}
, 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

In this problem α = γ = 1, β = δ = 0, η = 1/24, A = 1/4, B = 1/16,
p(t) = q(t) = min{t, 1− t} and

f(t, u, v) = sin2(u− t(1− t)) + max

{
0,

1√
v
− 1

}
.

So f(t, ξ(t), 1) ≡ 0. Obviously, f(t, u, v) satisfies (H).

Let σ = 1/4. Direct computations give

ϕ∞ = lim inf
r→∞

1

r

1�

0

max{1 + 1/
√
v : rq(t) ≤ v ≤ r} dt

≤ lim
r→∞

1

r

1�

0

[
1 +

1√
rq(t)

]
dt = 0,
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ψ0 ≥ lim sup
r→+0

1

r

3/4�

1/4

min{max{0, 1/
√
v − 1} : rp(t) ≤ v ≤ r} dt

= lim
r→+0

1

r

[
1√
r

3/4�

1/4

dt√
q(t)
− 1

2

]
= lim

r→+0

1

r

[
2(
√

2− 1)√
r

− 1

2

]
=∞.

By Theorem 3.3(d2), the problem has a positive solution u∗ ∈ C3[0, 1].
Since f(t, ξ(t), 1) ≡ 0, the conclusion cannot be derived from Theorem 1.1.

Acknowledgements. This work is supported by the National Natural
Science Foundation of China (11071109).

References

[1] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary
value problems, J. Math. Anal. Appl. 116 (1986), 415–426.

[2] R. P. Agarwal and D. O’Regan, Multiplicity results for singular conjugate, focal and
(n, p) problems, J. Differential Equations 170 (2001), 142–156.

[3] Z. B. Bai and H. Y. Wang, On positive solutions of some nonlinear fourth-order
beam equations, J. Math. Anal. Appl. 270 (2002), 357–368.

[4] Y. J. Cui and Y. M. Zou, Existence and uniqueness theorems for fourth-order sin-
gular boundary value problems, Comput. Math. Appl. 58 (2009), 1449–1456.

[5] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathe-
matics, Academic Press, London, 1977.

[6] P. W. Eloe and J. Henderson, Singular nonlinear (n−k, k) conjugate boundary value
problems, J. Differential Equations 133 (1997), 136–151.

[7] C. P. Gupta, Existence and uniqueness results for the bending of an elastic beam
equation at resonance, J. Math. Anal. Appl. 135 (1988), 208–225.

[8] D. Q. Jiang, H. Z. Liu and X. J. Xu, Nonresonant singular fourth-order boundary
value problems, Appl. Math. Lett. 18 (2005), 69–75.

[9] F. Y. Li, Q. Zhang and Z. P. Ling, Existence and multiplicity of solutions of a kind
of fourth-order boundary value problems, Nonlinear Anal. 62 (2005), 803–816.

[10] Y. X. Li, On the existence of positive solutions for the bending elastic beam equations,
Appl. Math. Comput. 189 (2007), 821–827.

[11] X. N. Lin, D. Q. Jiang and X. Y. Li, Existence and uniqueness of solutions for
singular fourth-order boundary value problems, J. Comput. Appl. Math. 196 (2006),
155–161.

[12] B. Liu, Positive solutions of fourth-order two-point boundary value problems, Appl.
Math. Comput. 148 (2004), 407–420.

[13] Z. Q. Liu, J. S. Ume, D. R. Anderson and M. S. Kang, Twin monotone positive
solutions to a singular nonlinear third-order differential equation, J. Math. Anal.
Appl. 334 (2007), 299–313.
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[17] M. del Pino and R. Manásevich, Existence for a fourth-order boundary value problem
under a two-parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991),
81–86.
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