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Existence of mild solutions for fractional evolution equations
with nonlocal initial conditions

by Pengyu Chen, Yongxiang Li and Qiang Li (Lanzhou)

Abstract. This paper discusses the existence of mild solutions for a class of semilin-
ear fractional evolution equations with nonlocal initial conditions in an arbitrary Banach
space. We assume that the linear part generates an equicontinuous semigroup, and the
nonlinear part satisfies noncompactness measure conditions and appropriate growth con-
ditions. An example to illustrate the applications of the abstract result is also given.

1. Introduction. In this paper, we discuss the nonlocal Cauchy prob-
lem

cDqu(t) +Au(t) = f(t, u(t)), t ∈ J = [0, 1],(1.1)

u(0) =

p∑
k=1

cku(tk) + u0,(1.2)

where cDq is the Caputo fractional derivative of order 0 < q < 1, −A :
D(A) ⊂ E → E is the infinitesimal generator of a uniformly bounded
equicontinuous C0-semigroup T (t) (t ≥ 0) on E, f : J × E → E is given
function satisfying some assumptions, u0 is an element of the Banach space
E, 0 < t1 < · · · < tp < 1, p ∈ N, ck are real numbers, ck 6= 0, k = 1, . . . , p.

Since it has been demonstrated that differential equations involving frac-
tional derivatives in time yield more realistic descriptions of many phenom-
ena in nature than those of integer order in time, the study of fractional
differential equations has become an object of extensive study during recent
years (see [1], [8], [11], [14], [17]–[19], [25], [26], [29], [30] and the references
therein).

On the other hand, nonlocal initial conditions can be applied in physics
with better effect than the classical initial condition u(0) = u0. For example,
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in [10], Deng used the nonlocal condition (1.2) to describe the diffusion
phenomenon of a small amount of gas in a transparent tube. In this case,
condition (1.2) allows additional measurements at tk, k = 1, . . . , p, which is
more precise than the measurement just at t = 0. In [7], Byszewski pointed
out that if ck 6= 0, k = 1, . . . , p, then the results can be applied in kinematics
to determine the location evolution t 7→ u(t) of a physical object for which
we do not know the positions u(0), u(t1), . . . , u(tp), but we know that the
nonlocal condition (1.2) holds. The importance of nonlocal conditions have
also been discussed in [3]–[6], [15], [21]–[23], [27], [28].

In some articles, fractional evolution equations with nonlocal initial con-
ditions were treated under the hypothesis that the semigroup T (t) (t ≥ 0)
generated by −A is compact, i.e., the operator T (t) is compact for any
t > 0 (see Zhou and Jiao [29] and [30], Wang et al. [26] and Diagana et al.
[11]). In applications, these results are very convenient for partial differential
equations with compact resolvent. However, to the best of our knowledge,
no works yet exist for fractional nonlocal problems with noncompact semi-
group. In this paper, we are interested in the case where −A generates a
uniformly bounded equicontinuous semigroup. Under suitable noncompact-
ness measure conditions and growth conditions on the nonlinear term f ,
we prove the existence of mild solutions for the fractional nonlocal problem
(1.1)–(1.2).

2. Preliminaries. Let E be a Banach space with norm ‖ ·‖. We denote
by C(J,E) the Banach space of all continuous E-valued functions on the
interval J with the norm ‖u‖C = maxt∈J ‖u(t)‖ and by L1(J,E) the Banach
space of all E-valued Bochner integrable functions defined on J with the
norm ‖u‖1 =

	1
0 ‖u(t)‖ dt.

Definition 2.1 ([18]). The fractional integral of order q > 0 with lower
limit 0 for a function f is defined as

Iqf(t) =
1

Γ (q)

t�

0

(t− s)q−1f(s) ds, t > 0,

where Γ (·) is the Euler gamma function.

Definition 2.2 ([18]). The Caputo fractional derivative of order q > 0
with the lower limit 0 for a function f is defined as

Dqf(t) =
1

Γ (n− q)

t�

0

(t− s)n−q−1f (n)(s) ds, t > 0, 0 ≤ n− 1 < q < n.

If f is an abstract function with values in E, then the integrals appearing
in Definitions 2.1 and 2.2 are taken in Bochner’s sense.
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For u ∈ E, define two operators T (t) (t ≥ 0) and S(t) (t ≥ 0) by

T (t)u =

∞�

0

hq(s)T (tqs)u ds, S(t)u = q

∞�

0

shq(s)T (tqs)u ds,

where

hq(s) =
1

πq

∞∑
n=1

(−s)n−1Γ (nq + 1)

n!
sin(nπq), s ∈ (0,∞),

is a function of Wright type defined on (0,∞) which satisfies

hq(s) ≥ 0, s ∈ (0,∞),

∞�

0

hq(s) ds = 1,

and
∞�

0

svhq(s) ds =
Γ (1 + v)

1 + qv
, v ∈ [0, 1].

Let M = supt∈[0,∞) ‖T (t)‖L(E), where L(E) stands for the Banach space
of all bounded linear operators on E. The following lemma follows from the
results in [12] and [13].

Lemma 2.3. The operators T (t) (t ≥ 0) and S(t) (t ≥ 0) have the
following properties:

(1) For any fixed t ≥ 0, T (t) and S(t) are bounded linear operators, i.e.,
for any u ∈ E,

‖T (t)u‖ ≤M‖u‖, ‖S(t)u‖ ≤ qM

Γ (1 + q)
‖u‖.

(2) For every u ∈ E, t 7→ T (t)u and t 7→ S(t)u are continuous functions
from [0,∞) into E.

(3) T (t) (t ≥ 0) and S(t) (t ≥ 0) are strongly continuous, which means
that for all u ∈ E and 0 ≤ t′ < t′′ ≤ 1, we have

‖T (t′′)u− T (t′)u‖ → 0 and ‖S(t′′)u− S(t′)u‖ → 0 as t′′ → t′.

Throughout this paper, we assume that
p∑

k=1

|ck| <
1

M
.(2.1)

Thus, ‖
∑p

k=1 ckT (tk)‖ ≤ M
∑p

k=1 |ck| < 1. By the operator spectral theo-
rem, we know that the operator

B :=
(
I −

p∑
k=1

ckT (tk)
)−1

(2.2)
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exists, is bounded and D(B) = E. Furthermore, by Neumann’s formula, B
can be expressed as

B =
∞∑
n=0

( p∑
k=1

ckT (tk)
)n
.(2.3)

Therefore

‖B‖ ≤
∞∑
n=0

∥∥∥ p∑
k=1

ckT (tk)
∥∥∥n =

1

1− ‖
∑p

k=1 ckT (tk)‖
(2.4)

≤ 1

1−M
∑p

k=1 |ck|
.

Definition 2.4. A function u ∈ C(J,E) is said to be a mild solution of
the problem (1.1)–(1.2) if it satisfies

u(t) = T (t)Bu0 +

p∑
k=1

ckT (t)B
tk�

0

(tk − s)q−1S(tk − s)f(s, u(s)) ds(2.5)

+

t�

0

(t− s)q−1S(t− s)f(s, u(s)) ds.

Since no confusion can occur, we denote by α(·) the Kuratowski measure
of noncompactness on both E and C(J,E). For the details of the definition
and properties of the measure of noncompactness, we refer to the mono-
graphs [2] and [9].

The following lemmas will be used in the proofs of our main results.

Lemma 2.5 ([2]). Let E be a Banach space, and D ⊂ C(J,E) be bounded
and equicontinuous set. Then α(D(t)) is continuous on J , and

α(D) = max
t∈J

α(D(t)) = α(D(J)).

Lemma 2.6 ([16]). Let E be a Banach space, and D = {un} ⊂ C(J,E)
be a bounded and countable set. Then α(D(t)) is Lebesgue integrable on J ,
and

α
({ �

J

un(t) dt
∣∣∣ n ∈ N

})
≤ 2

�

J

α(D(t)) dt.

Lemma 2.7 ([20]). Let E be a Banach space, and D ⊂ E be bounded.
Then there exists a countable set D0 ⊂ D such that α(D) ≤ 2α(D0).

Proof. We give the proof for the convenience of the reader. Without loss
of generality, we assume that α(D) > 0. Let rn = (1 − 1/2n)α(D); then

0 < rn < α(D). Choose x
(n)
1 ∈ D; then D \ B(x

(n)
1 , rn/2) 6= ∅: indeed,

if D ⊂ B(x
(n)
1 , rn/2), then by the definition of noncompactness measure,

α(D) ≤ rn, which is a contradiction.
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Choose x
(n)
2 ∈ D \ B(x

(n)
1 , rn/2); then similarly, D \

(
B(x

(n)
1 , rn/2) ∪

B(x
(n)
2 , rn/2)

)
6= ∅. Therefore, we can choose x

(n)
3 ∈ D \ (B(x

(n)
1 , rn/2) ∪

B(x
(n)
2 , rn/2)). Continuing, we obtain a sequence {x(n)k | k = 1, 2, . . .} such

that x
(n)
k+1 ∈ D \

⋃k
i=1B(x

(n)
i , rn/2), k = 1, 2, . . . . Let Dn = {x(n)k | k =

1, 2, . . .}. Combining this with the definition of noncompactness measure,
we find that α(Dn) ≥ rn/2. Let D0 =

⋃∞
n=1Dn; then D0 is a countable

set. Since α(D0) ≥ α(Dn) ≥ rn/2 → α(D)/2 (n → ∞), we conclude that
α(D) ≤ 2α(D0).

Lemma 2.8 ([9]). Let E be a Banach space, D ⊂ E be a bounded closed
and convex subset, and Q : D → D be condensing. Then Q has a fixed point
in D.

Lemma 2.9. For σ ∈ (0, 1] and 0 < a ≤ b, we have

|aσ − bσ| ≤ (b− a)σ.

For any R > 0, let

ΩR = {u ∈ C(J,E) | ‖u(t)‖ ≤ R, t ∈ J};
then ΩR is a bounded closed and convex set in C(J,E).

3. Main result. To state the main result, we introduce the following
hypotheses:

(H1) f : J×E → E is such that f(·, u) is measurable for all u ∈ E, f(t, ·)
is continuous for each t ∈ J , and there exist a constant q1 ∈ [0, q)
and a function m ∈ L1/q1(J,R+) such that ‖f(t, u)‖ ≤ m(t) for all
u ∈ E and t ∈ J .

(H2) There exists a constant L > 0 with

L <
Γ (1 + q)(1−M

∑p
k=1 |ck|)

4M
such that for any bounded D ⊂ E,

α(f(t,D)) ≤ L(α(D)) for any t ∈ J .

Theorem 3.1. If the hypotheses (H1) and (H2) are satisfied, then the
problem (1.1)–(1.2) has a mild solution.

Proof. We consider the operator F on C(J,E) defined by

(Fu)(t) = T (t)Bu0 +

p∑
k=1

ckT (t)B
tk�

0

(tk − s)q−1S(tk − s)f(s, u(s)) ds(3.1)

+

t�

0

(t− s)q−1S(t− s)f(s, u(s)) ds, t ∈ J.
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By direct calculation, we find that F is well defined. From Definition 2.4, it
is easy to see that the fixed points of F are the mild solutions of problem
(1.1)–(1.2). In the following, we will prove that F has a fixed point by
applying Sadovskĭı’s famous fixed point theorem.

First, we prove that F is continuous on C(J,E). To this end, let {un}∞n=1

⊂ C(J,E) be a sequence such that limn→∞ un = u in C(J,E). By the
continuity of f with respect to the second variable, for each s ∈ J we have
limn→∞ f(s, un(s)) = f(s, u(s)). Therefore,

(3.2) sup
s∈J
‖f(s, un(s))− f(s, u(s))‖ → 0 as n→∞.

On the other hand, for t ∈ J , we have

‖(Fun)(t)− (Fu)(t)‖

≤
M
∑p

k=1 |ck|
1−M

∑p
k=1 |ck|

qM

Γ (1 + q)

tk�

0

(tk − s)q−1‖f(s, un(s))− f(s, u(s))‖ ds

+
qM

Γ (1 + q)

t�

0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ ds

≤ M

Γ (1 + q)(1−M
∑p

k=1 |ck|)
sup
s∈J
‖f(s, un(s))− f(s, u(s))‖,

which implies that

‖(Fun)− (Fu)‖C ≤
M

Γ (1+q)(1−M
∑p

k=1 |ck|)
sup
s∈J
‖f(s, un(s))−f(s, u(s))‖.

From (3.2), we infer that

‖(Fun)− (Fu)‖C → 0 as n→∞.
That is, F is continuous on C(J,E).

Next, we prove that there exists a positive constant R0 such that F (ΩR0)
⊂ ΩR0 . In fact, choose

R0 =
M

1−M
∑p

k=1 |ck|

[
‖u0‖+

qN

Γ (1 + q)

(
1− q1
q − q1

)1−q1]
,

where N = ‖m‖L1/q1 [0,1]. For any u ∈ ΩR0 , we have

‖(Fu)(t)‖ ≤M‖B‖ · ‖u0‖+M

p∑
k=1

|ck|

× ‖B‖ qM

Γ (1 + q)

tk�

0

(tk − s)q−1‖f(s, u(s))‖ ds

+
qM

Γ (1 + q)

t�

0

(t− s)q−1‖f(s, u(s))‖ ds
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≤ M‖u0‖
1−M

∑p
k=1 |ck|

+
M
∑p

k=1 |ck|
1−M

∑p
k=1 |ck|

× qM

Γ (1 + q)

( tk�
0

(tk − s)
q−1
1−q1 ds

)1−q1
‖m‖L1/q1 [0,tk]

+
qM

Γ (1 + q)

( t�
0

(t− s)
q−1
1−q1 ds

)1−q1
‖m‖L1/q1 [0,t]

≤ M

1−M
∑p

k=1 |ck|

[
‖u0‖+

qN

Γ (1 + q)

(
1− q1
q − q1

)1−q1]
= R0.

Therefore, F (ΩR0) ⊂ ΩR0 .

Now, we demonstrate that F (ΩR0) is equicontinuous. For any u ∈ ΩR0

and 0 ≤ t1 < t2 ≤ 1, we get

(Fu)(t2)− (Fu)(t1) = T (t2)Bu0 − T (t1)Bu0

+

p∑
k=1

ck(T (t2)− T (t1))B
tk�

0

(tk − s)q−1S(tk − s)f(s, u(s)) ds

+

t2�

t1

(t2 − s)q−1S(t2 − s)f(s, u(s)) ds

+

t1�

0

((t2 − s)q−1 − (t1 − s)q−1)S(t2 − s)f(s, u(s)) ds

+

t1�

0

(t1 − s)q−1(S(t2 − s)− S(t1 − s))f(s, u(s)) ds

=: I1 + I2 + I3 + I4 + I5.

It is obvious that

‖(Fu)(t2)− (Fu)(t1)‖ ≤
5∑
i=1

‖Ii‖.

Now, we only need to check ‖Ii‖ → 0 independently of u ∈ ΩR0 when
t2 → t1, i = 1, . . . , 5.

By Lemma 2.3(3), ‖I1‖ → 0 as t2 → t1.

By Lemma 2.3, (2.4), the Hölder inequality, and the equicontinuity of
the semigroup T (t) (t ≥ 0), we have

‖I2‖ ≤
qM

∑p
k=1 |ck| · ‖B‖
Γ (1 + q)

tk�

0

(tk − s)q−1m(s) ds ‖T (t2)− T (t1)‖
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≤
qMN

∑p
k=1 |ck| · ‖B‖

Γ (1 + q)

(
1− q1
q − q1

)1−q1
‖T (t2)− T (t1)‖

→ 0 as t2 → t1.

For I3, by Lemma 2.3 and the Hölder inequality,

‖I3‖ ≤
qMN(t2 − t1)q−q1

Γ (1 + q)

(
1− q1
q − q1

)1−q1
→ 0 as t2 → t1.

For I4, by elementary computation, using Lemmas 2.3 and 2.9 and the
Hölder inequality,

‖I4‖ ≤
qM

Γ (1 + q)

t1�

0

(
(t1 − s)q−1 − (t2 − s)q−1

)
m(s) ds ≤ qM

Γ (1 + q)

×
( t1�

0

(
(t1 − s)q−1 − (t2 − s)q−1

) 1
1−q1 ds

)1−q1
‖m‖L1/q1 [0,t1]

≤ qMN

Γ (1 + q)

( t1�
0

(
(t1 − s)

q−1
1−q1 − (t2 − s)

q−1
1−q1

)
ds
)1−q1

≤ qMN

Γ (1 + q)

(
1− q1
q − q1

)1−q1(
t
q−q1
1−q1
1 − t

q−q1
1−q1
2 + (t2 − t1)

q−q1
1−q1

)1−q1
≤ qMN

Γ (1 + q)

(
1− q1
q − q1

)1−q1
(2(t2 − t1))q−q1

→ 0 as t2 → t1.

For t1 = 0, 0 < t2 ≤ 1, it is easy to see that ‖I5‖ = 0. For t1 > 0 and
ε > 0 small enough, by the equicontinuity of the semigroup T (t) (t ≥ 0) we
have

‖I5‖ ≤
t1−ε�

0

(t1 − s)q−1‖S(t2 − s)− S(t1 − s)‖ · ‖f(s, u(s))‖ ds

+

t1�

t1−ε
(t1 − s)q−1‖S(t2 − s)− S(t1 − s)‖ · ‖f(s, u(s))‖ ds

≤ sup
s∈[0,t1−ε]

‖S(t2 − s)− S(t1 − s)‖
t1−ε�

0

(t1 − s)q−1m(s) ds

+
2qM

Γ (1 + q)

t1�

t1−ε
(t1 − s)q−1m(s) ds
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≤ sup
s∈[0,t1−ε]

‖S(t2 − s)− S(t1 − s)‖ ·N
(
t
q−q1
1−q1
1 − ε

q−q1
1−q1

)1−q1
×
(

1− q1
q − q1

)1−q1
+

2qMN

Γ (1 + q)

(
1− q1
q − q1

)1−q1
εq−q1

→ 0 as t2 → t1.

As a result, ‖(Fu)(t2) − (Fu)(t1)‖ tends to zero independently of u ∈ ΩR0

as t2 → t1, which means that F (ΩR0) is equicontinuous.

Next we prove that F : ΩR0 → ΩR0 is a condensing operator. For any
D ⊂ ΩR0 , by Lemma 2.7, there exists a countable set D1 = {un} ⊂ D such
that

α(F (D)) ≤ 2α(F (D1)).(3.3)

Since F (D1) ⊂ F (ΩR0) is equicontinuous, by Lemma 2.5, α(F (D1)) =
maxt∈J α(F (D1)(t)). From (3.1), using Lemma 2.6 and assumption (H2),
we obtain

α(F (D1)(t))

= α
({
T (t)Bu0 +

p∑
k=1

ckT (t)B
tk�

0

(tk − s)q−1S(tk − s)f(s, un(s)) ds

+

t�

0

(t− s)q−1S(t− s)f(s, un(s)) ds
})

≤
2
∑p

k=1 |ck| · ‖B‖qM
2

Γ (1 + q)

tk�

0

(tk − s)q−1α({f(s, un(s))}) ds

+
2qM

Γ (1 + q)

t�

0

(t− s)q−1α({f(s, un(s))}) ds

≤
2qM2L

∑p
k=1 |ck|

Γ (1 + q)(1−M
∑p

k=1 |ck|)

tk�

0

(tk − s)q−1α(D1(s)) ds

+
2qML

Γ (1 + q)

t�

0

(t− s)q−1α(D1(s)) ds

≤ 2ML

Γ (1 + q)(1−M
∑p

k=1 |ck|)
α(D).

Therefore, from (3.3) and assumption (H2), we deduce that

α(F (D)) ≤ 4ML

Γ (1 + q)(1−M
∑p

k=1 |ck|)
α(D) < α(D).
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Thus, F : ΩR0 → ΩR0 is a condensing operator. From Lemma 2.8, we infer
that F has at least one fixed point in ΩR0 , which is just a mild solution of
the problem (1.1)–(1.2).

Remark. Analytic semigroups and differentiable semigroups are equi-
continuous semigroups [24]. In the application to partial differential equa-
tions, such as parabolic and strongly damped wave equations, the corre-
sponding solution semigroups are analytic semigroups. Therefore, Theorem
3.1 in this paper has broad applicability.

4.Anexample. LetΩ ⊂ RN (N ≥ 1) be a bounded domain with smooth
boundary ∂Ω,E = L2(Ω). Consider the following fractional parabolic partial
differential equation with nonlocal initial condition:

(4.1)



∂q

∂tq
u(x, t) +A(x,D)u(x, t) = f(x, t, u(x, t)), x ∈ Ω, t ∈ J,

Dαu(x, t) = 0, (x, t) ∈ ∂Ω × J, |α| ≤ m,

u(x, 0) =

p∑
k=1

cku(x, tk) + u0(x), x ∈ Ω,

where ∂q/∂tq is the Caputo fractional partial derivative of order 0 < q < 1,
A(x,D)u =

∑
|α|≤2m aα(x)Dαu is a strongly elliptic operator, the coefficient

function aα(x) is in C2m(Ω), J = [0, 1], 0 < t1 < · · · < tp < 1, ck are real
numbers, ck 6= 0, k = 1, . . . , p, f : Ω × J × R → R is continuous, and
there exist a constant q1 ∈ [0, q) and a function m ∈ L1/q1(J,R+) such that
|f(x, t, u(x, t))| ≤ m(t) for all x ∈ Ω, u ∈ R and t ∈ J ; finally, the partial
derivative f ′u(x, t, u) is continuous on any bounded domain.

We define an operator A by Au = A(x,D)u with domain

D(A) = H2m(Ω) ∩Hm
0 (Ω).

From [24, Theorem 7.2.7], we know that −A generates a uniformly bounded
equicontinuous C0-semigroup T (t) (t≥0) on E. Let f(t, u(t)) = f(t.u(·, t)),
u0 = u0(·). Then the problem (4.1) can be rewritten in the form of (1.1)–
(1.2).

Let
∑p

k=1 |ck| < 1/M , where M = supt∈[0,∞) ‖T (t)‖L(E). From the
properties of f , it is easy to see that the hypotheses (H1) and (H2) are
satisfied. By using Theorem 3.1, the problem (4.1) has a mild solution
u ∈ C([0, 1], L2(Ω)).
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