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Generalized Cauchy problems for
hyperbolic functional differential systems

by ELZBIETA PUZNIAKOWSKA-GALUCH (Gdarisk)

Abstract. A generalized Cauchy problem for hyperbolic functional differential sys-
tems is considered. The initial problem is transformed into a system of functional integral
equations. The existence of solutions of this system is proved by using the method of
successive approximations. Differentiability of solutions with respect to initial functions
is proved. It is important that functional differential systems considered in this paper do
not satisfy the Volterra condition.

1. Introduction. For any metric spaces X and Y we denote by C(X,Y)
the class of all continuous functions from X into Y. We will use vectorial
inequalities with the understanding that the same inequalities hold between
their corresponding components. Suppose that £ = [0,a] x R™ and Fy =
[—bo, 0] x R™ where a > 0 and by > 0. Write B = [—bg, 0] x [—b, b] where

b e R}, Ry = [0,00), and Ep; = [—bp,a;] x R” for 0 < a; < a, 1 <
i < k. Set D = [-by — a,a] x [—d,d] for d € R}. For t € [0,a] we write
Dy = [=bo —t,a — t] x [~d,d]; then D,y C D. Given a function z: Fy U E

—RF and a point (t,z) € E, we consider the functions Z(tz): B — R* and
Zjta): Dy — R* defined by 2(4,2)(T,y) = 2(t + 7,2 +y) for (7,y) € B and
2 (T,y) = 2(t + 7,2+ y) for (1,y) € Dy.

Put 2 = E x C(B,RF) x C(D,RF) and suppose that F: 2 — RF, F =
(F1,..., Fy), is a given function of the variables (¢, z,v,w), v = (v1,...,vk),
w = (wi,...,wg). We denote by My, the set of all k& x n matrices with
real elements. If X € My, then X7 is the transpose matrix. We use the
symbol “o” to denote scalar product in R™. Suppose that f: E — Mgxn,
[ = fijli=1,..k, j=1,..m> ®0: [0,a] = R, ¢: E = R", ¢ = (p1,...,¢n),
Yo: [0,a] 5 R, ¢p: E—R" ) = (1,...,0,) and k;: Eos —» R, i=1,...,k,
are given functions. The requirements on ¢y and v are that 0 <¢g(t) <t and
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0 < 9p(t) < a for t € [0,a]. Write p(t,z) = (po(t), p(t,x)) and ¢(t,x) =
(1o(t),9(t,z)) for (t,z) € E. For the above f: E — My, we put fi] =
(fity ooy fin), 1 <i < k.

Let us denote by z = (z1,...,2,) an unknown function of the variables
(t,z). We consider the system of functional differential equations

(11) atzi(ta I) + f[z] (ta SU) o azzi(t) LE) = Fi(tv Ly Zp(t,a) Z'g[)[t,x})a i=1,...,k,
with the initial conditions
(1.2) zi(t,x) = ki(t,x) on Ep;,i=1,...,k,

where Zo(t,x) = #(po(t),p(t,x)) Zl/’[tvx} =z Tﬁo(t)ﬂ/;(t@)] and 8xzi = (8xlzi, cee ,8xnzi).
System with initial conditions is called a generalized Cauchy prob-
lem. We consider classical solutions of , .

The following problems are considered in this paper. We prove that under
natural assumptions on given functions there exists exactly one solution to
(1.1)), and the solution is defined on Ey U E. Let us denote by X the
class of all functions k = (k1,...,Kk), kit Eoi — R, 1 < i < k, such that
there exists exactly one solution =[x| of problem (L.I), (L.2). We give a
construction of the space X and we prove that under natural assumptions
on f,F and ¢,1) the operator 5: X — C(Ey U E,RF) has the following
property: for each k € X the Fréchet derivative 0=1[k] exists. Moreover, if
k,X € X and z, = 05]k|x then z, is the solution of an integral functional
equation generated by , and this equation is linear.

There is a wide literature on first order partial functional differential
problems; we wish to mention here just some existence results. There are
various concepts of solution to initial value or mixed problems for functional
differential equations. Continuous functions satisfying integral systems ob-
tained by integrating original equations along bicharacteristics were consid-
ered in [I], |[I6]. Generalized solutions in the Carathéodory sense were in-
vestigated in [5], [I5]. Results on the existence of solutions are obtained
in those papers by using the method of bicharacteristics. Classical solu-
tions in the functional setting were studied in [2], [7], [I3], [14]. Cinquini
Cibrario solutions of nonlinear differential functional equations were first
treated in [3]. This class of solutions lies between classical solutions and so-
lutions in the Carathéodory sense and both inclusions are strict. Existence
results for mixed problems for nonlinear equations can be found in [4]. They
are obtained by a linearization procedure and by constructing functional in-
tegral systems for unknown functions and for their derivatives with respect
to spatial variables. Sufficient conditions for the existence of classical solu-
tions defined on the Haar pyramid are given in [12], [9]. Classical solutions
and differentiability with respect to initial data for Volterra type of equa-
tions were studied in [II]. Existence and uniqueness of solutions on the Haar
pyramid were investigated in [10].
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All the above results have the following property: solutions of initial or
mixed problems exist locally with respect to the variable ¢. The aim of this
paper is to prove a theorem on the existence of solutions of the problem and a
theorem on the differentiability of solutions with respect to initial functions.
Theorems on the continuous dependence of solutions on initial or initial
boundary conditions are given in [8, Chapters 4 and 5]. In this paper we
start investigations of the differentiability with respect to initial functions for
partial functional differential equations. The monograph [6] contains results
on differentiability with respect to initial functions of solutions for ordinary
functional differential equations.

Until now there have been no results on existence and differentiability
of solutions with respect to initial functions for partial functional differ-
ential systems with arguments of both Volterra and Fredholm type in an
unbounded domain.

Suppose that G: E x C(EqgU E,RF) — R* G = (G4, ...,Gy), is a given
function. Let us consider the system of functional differential equations

(13) 8tzz(tax)+f[z](t7x)oamzl(t’x) :Gz(t,ZE,Z), i = 1>7k7
where z is the functional variable. It is clear that (|1.1)) is a particular case

of (L.3).

We will say that G satisfies the Volterra condition if for each (t,z) € E
and for z, 7 € C(EyUE, RF) such that z(7,y) = Z(r,y) for (1,9) € (Eo U E)N
([=bo,t] x R™) we have G(t,z, z) = G(t,x, Z). The Volterra condition means
that the value of G at (¢,z,2) € E x C(EyU E,RF) depends on (, ) and on
restrictions of z to the set (Eog U E) N ([—bo, t] x R™) only. Note that system
fails to satisfy the Volterra condition.

Note that functional differential equations or systems considered in [I]-
5], [7]-8], [11]-[16] satisfy the Volterra condition. Until now there have been
no results on functional differential equations of the form which do not
satisfy the Volterra condition.

With the above motivation we consider the initial value problem ,
2.

We give examples of functional differential systems which can be obtained
from ([L.1)) by specifying the function F.

EXAMPLE 1.1. Suppose that G: E x RF x R¥ = RF, G = (G1,...,Gy),
is a given function and F' is defined by

(1.4) F(t,z,v,w) = G(t,z,v(0,04,),w(0,0)) on 2

where Of,) = (0,...,0) € R™. Then (I.1)) reduces to the system of differential
equations with deviated variables

(15)  Ovzi(t, @) + fi(t, ) 0 Bpzi(t, ) = Gi(t,x, 2((t, ), (Y[t 2])).
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EXAMPLE 1.2. Suppose that ¢(t,z) = (¢t,z) and Y[t,z] = [t,z] for
(t,z) € E, and for the above G put

(1.6) F(t,z,v,w) = G(t,:n, S v(T, s) dsdr, S w(T, s)ds dT) on 2.
B D[]

Then (1.1)) reduces to the differential integral system

= G’(t, x, S Z(4,2) (T, 5) ds dr, S 2j4,2)(T, 5) ds d7'>,
B D[]

fori=1,... k.

It is clear that more complicated examples of differential systems with
deviated variables and differential integral systems can be obtained from

(1.1) by specializing the operator F. Note that systems (1.5) and (1.7) do
not satisfy the Volterra condition.

2. Sequences of successive approximations. Write E, = [—by, t] X
R™ for 0 <t < a. For t € [0,a] and z € C(Ey U E,RF), v € C(FEyU E,R"),
u € C(EgU E, Mgxy) we define the seminorms || 2|, gry = max{||2(7,z) || :
(o) € B, lolgrn — max(lo(ro)l : (r.2) € Eb, [ullogen ~
max{||u(7, x)|kxn : (7,2) € E}. We denote by C'L(B, R) the class of contin-
uous linear operators from C(B,R) taking values in R. In a similar way we
define the space CL(D,R). The norms in CL(B,R) and CL(D,R) generated
by the maximum norms in C'(B,R) and C(D,R) will be denoted by || - || 5«
and || - || p« respectively. For V = [Vij]ﬁjzl where V;; € CL(B,R), and V =
[Vij]ﬁj:l where V;; € CL(D,R), we denote ||V ||gxk:s = max{Z;?:l | VijllB« :
1< <k}, [Vilksrse = max{3 5y [Vijllpe : 1< <k}

ASSUMPTION H|[p,1)]. The functions ¢q, ¢ : [0,a] =R, and @, ¢h: E—R"™
are continuous and

1) 0 < po(t) <tand 0 <yg(t) <afortel0,a,
2) the derivatives 0,¢ = [ (pi];szl, O = [8%%]%:1 exist and
ax@ e C(E~7 Man)a ax¢ 6 C(Ea Man)7
3) there are @, Q € R4 such that on F we have
Ham(ﬁ(ta x)”nxn < Qa Haz'l;(ta x)”nxn < Q7
Haﬂﬂ(ﬁ(tv .%') - 8$()5(t7£)||n><n S QH:C - 5:”7
10:3(t, ) — D2 (t, T) [lnxn < Qlz — Z.
AssuMPTION H[k]. The functions k;: Fp; — R, 1 < i < k, are con-
tinuous and bounded, the derivatives Oyk; = (O, Ki, - - -, 0, Ki) exist, and
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Ogki € C(Epi,R"), 1 < i < k. There is C' > 0 such that ||0yk;(t,z)|| < C on
EO.i for 1 < ) < k.

Let us denote by X the class of all kK = (k1,...,Kk), ki Eoi — R,
1 < i < k, satisfying Assumption H|[k].

For x € X, x = (x1,---,xx), we define ||xil|g,, = sup{|xi(t,2) :
(t.2) € Bos} i = 1,....k, and |xllx = max{fxlle, : 1< i< k) and
102X\ e = max{d "7, |0z, Xill By + 1 <4 < k}. Given k € X, we denote
by C,(EoUE, R¥) the set of all z € C(EqUE,RF) such that z(t,x) = k;(t,z)
on Ep;, 1 < i < k. For the above k, we denote by Cay, (Eo U E,R"),
1 < <k, the class of all v € C(Ey U E,R") such that v(t,z) = 0zki(t, )
on Ey;. Let Cyi(FoU E, Mix,) denote the set of all w € C(EgU E, Mixy),
w = [Wijli=1,..k, j=1,...n, Such that wy € Cau,(Eo U E,R™) where wy;) =
(wil,...,wm), 1 S ) S k.

Suppose that Assumptions Hy[f, F], H][p, 1] are satisfied and k € X. Let
us denote by g; (-, ¢, ) the solution of the Cauchy problem

(2.1) 1'(r) = flg(m.n(7)), n) =z,
where (t,7) € E. The function gj;(-,t, ) is the ith characteristic of .
For P = (t,z,v,w) € 2 and 0 = (V1,...,0,) € C(B,R") we write
Oy, Fi(P)0 = (0,, Fi(P)v1,...,0,, Fi(P)vy), i,v =1,...,k. In a similar way
we define the expression 0y, F;(P)w, 1 < i,v < k, where w = (w01,...,w,) €
C(D,R™). For the above 0, w and ¢ = (q1,...,q,) € R"™ the functions
voq: B—Rand wogq: D — R are given by v o q = 91q1 + -+ + Upqn and
woq=wiq1+ -+ Wpqp. Set

P; [Z] (7—7 L, $) = (Ta 94 (7—7 L, iL'), Zcp(T,gm (Tt,x)) s Zw[ﬂg[i] (—r,tﬂ;)}), 1<i<k.

Suppose that z € C,(FEgUE,R¥). Let us denote by F|z] = (Fi[z], ..., Filz])
the function defined by
t
Filz](t,x) = wi(aq, gy (ai, t, ) + S Fi(Blz](r,t,x))dr  on E\ Eqy.,
Filz] = ki(t,z) on Ey,,

for i =1,..., k. We consider the functional integral equation
(2.2) z = Flz].

AssUMPTION H|[f, F]. The functions f: E — Mgy, and F: 2 — RF
are continuous and

1) the derivatives 0, fj,) = [8wjfm]:~fj:1 exist and 0, fj,) € C(E, Mpxn)

for 1 < pu <k,

2) the derivatives 0, F = [0y, Fi]i=1,....k, j=1,..,n €Xist and are continuous
on {2,
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3) for P = (t,z,v,w) the Fréchet derivatives 0,F(P) = [0u,; Fi(P)]F;_,
and 0, F(P) = [8iji(P)]§7j:1 exist, and 0, Fi(P) € CL(B,R) and
Ow,; Fi(P) € CL(D,R) fori,j =1,...,k, P € {2,

4) there are g, 3, 0,7 € C([0,a],R;) such that for P € {2 we have

102 f (£, 2)[kxn < a0(t),  [02F (P)llkxn < do(t),
HavF(P)Hkxk;* < ,B(t), HawF(P)Hkxk;* < V(t),
5) there are Ly, Ly, L, € C([0,a],Ry) such that the expressions
||8xF(t,:v,v,w) - amF(taiaﬁaw)Hka
|0, F(t, x,v,w) — OuF(t,Z,0,0)]|kxkix
|0wE (t, z,v,w) — OWF(t,Z,0, )| kxksx
are bounded by Ly (t)||z — Z|| + Ly (t)[|v — || g + L (t)|w — || ppy for
(t,x),(t,%) € E, v,0 € C(B,R¥), w,w € C(D[t],RF).
AssuMPTION Ha]. The following relations hold:

1) S’y(T)eSi Bls)ds gr 1,
0

2) Q S 7(T)eSZ(ao(S)JrQB(S)) ds gr < 1.
0

The proof of the existence of the classical solution to (2.2]) is based on
the following method of successive approximations. Suppose that k € X
and Assumptions H|[f, F], H[p, 1] are satisfied. We consider the sequences
{20}, {u™} where 2(™): Ey U E — RF, (™) = (zgm), . ,z](gm)), ul™)
E() UFE — Man, U(m) - [ug‘n)]i:L...,k,j:l,...,nv ug}n) = (uz(;n)’ © 7u1(21))7 1 <
1 < k, defined in the following way. We put first
(2.3) zgo)(t, x) = Kki(t, x) on Ey;, zi(o) (t,z) = Ki(a;, ) on E\ Ey,
(2.4) ug}))(t, x) = Opki(t,z) on Ey;, u[(g) (t,z) = Ozki(a;,x) onE\ Ep;,
where i = 1,..., k. Suppose that z2(™: EyUE — R¥ and «(™: EyU E —

My «p, are known functions. Then u&nﬂ) is a solution of the equation
(2.5) v = (Gg]n) [v]

where v = (vy,...,v,) and

(2.6) GV l(t x) = Opris(t,2)  on Ey,

and

t
27) Gt w) = = §v(r, g5 (7.£,2))0s fiy (7, gpy (7 1, 0)) dr+ T (1, 2)

aq
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on E'\ Ey;. The functions r™. g \ Eo; — R" 1 <i <k, are given by

(7]
t

(2.8) F[(Jn) (t, .I') = aq;lﬁi(ai, g[l] (ai, t, x)) + S 8zFZ (Pz [Z(m)](’i', t, x)) dr

a;

kE ot
+ Z S a’Uu F; (B[z(m)} (7—7 t, 1')) (uf,zr]z))tp(f,g[i] (T,t,x))ax(ﬁ('rv 9] (7_7 t, .%')) dr

k t
+ Z S 8qui (R[Z(m)](T, t, .73)) (uf:]l))w[ng[i] (T,t,m)}8x¢(77 9[4] (7—7 t, l’)) dr.

The function (“[(;T))go(r,y) 0:p(1,y): B — R", y = g;)(7,t,2), is defined by

= <Z( z(/rjn))cp(f,y) am Pj (T, y), s Z(u£7))¢(7,y) al‘n“pj (T, y)) :
j=1 j=1
Analogously we define (Um))w[r,y] 920 (7, y): Dbo()] — R™. The function
2(m+1) ig given by
(2.9) ) = Fm),
REMARK 2.1. Equations (2.5)) are obtained in the following way. Suppose
that 2(™): EyUE — Rk and u'™: EgUE — M}y, are known functions. We

consider system (|1.1) with 20 instead of Zo(t,z)s Zoplt,z] Tespectively:

e(t) “Y[tz]
(2.10)  Owzi(t, o) + fiy)(t, 2) 0 Op2i(t, ) = Fi(t, > z(() ) 1(11[t)x]) =1,...,k.
We now introduce an additional unknown function v = 9,z where u =

[Wijli=1,... kj=1,..n U] = (Uil, -, Uin), 1 <7 < k. From (2.10) we get the
differential equations for up:

Opupy (t, @) + g (8, @) Ox fiay (8, @) + fiy (¢, @) [Opugy (¢, )]
—8F(tmz() (m))

pltz) “plt,a]
+ Z‘%F (6 2y 240) P2 ™)) Do (L, )
v= 1
+ ZawyF (tz, 200 2 ) 0™ gDt x), P=1,. K,

and (t,x) = Ozki(t,x) on Ep;, i = 1,..., k. If we assume that 0y z(m) =

ug}n) (see Lemma i then by integrating the above system along the char-

acteristics, we obtain ([2.5]).
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3. Successive approximations for integral functional equations.
We begin by proving important properties of the sequences {z(™}, {u(™}.

LEMMA 3.1. If Assumptions H|[f, F] and H[p,v] are satisfied and k €
X, then for m > 0 we have:

(Im) the functions 2™ and u™ are defined on Ey U E, and
(M € C(Ey U E,R¥), ug]n) € Cpy, (Eo U E,R™) for 1 <i <k,
(I1,,) the derivatives szgm) exist and 8x2§m) (t,x)= [(] )(t x) on EgUE,
i=1,... k.
Proof. We will prove (I,,) and (I1,,) by induction. From ({2.3)), (2.4) we
see that (Iy) and (IIy) are satisfied. Suppose that 2™ € C.(Ey U E,RF),

U ™) ¢ Cor,(EoUE,R™), 1 <14 < k, are given and m > 0. We now prove that

uw™t) . By UE — M.y, exists and u[(gLH) € Coy, (EoUE,R™) for 1 <i < k.

For v, € Cy,,(Ep UE,R"), 1 <i <k, we put

t
[lv—17|] = maX{HU — 0| (,rn) €XP [—2 S ap(T) dT} ra; <t < a}.
Then we have

IG{ [l (¢, ) — G @ (¢ o) < [lo— 3] § €Yo 20 % dr

2 S;Z ao(T)dr

< v —1o[le for (t,z) € E\ Ey.,

and consequently
m m)r~ 1 T T
16 )t 2) = Gt @)l emy < 5llo = D)o 20

This gives HG ™) [v] — Gg]n)ﬂ\] < i[lv=19]], 1 < i < k. From the Banach
fixed point theorem there is exactly one u[(] mtl), : EUE — R™ and uﬁnﬂ) €
Cow,(Eo U E,R") for 1 <i < k.

Suppose that z(™*+1) is given by . Now we prove (I1,+1). Write
Ai(t,x,y) = z§m+1)(t, y) — z§m+1)(t, x)— ug?’ﬂ)(t, x)o(y—=x), 1<i<k.
We prove that there exists K > 0 such that
B1) Atz y)| < Kle—yl*, (L), (ty) € B\ Eos 1 <i <k

It follows from f that for 1 < i < k we have

At 2,y) = Fil <m>]<t,y> - il 2) - GV )¢ 2) 0 (y - @),
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Write Q") (s, 7,1, 2, y) = (1=8) B[z (1, t,2)+sPi[™)(r,t,y) .0 < 5 < 1,
gi(t,t,2,y) = gy (7, t,y) — g (7, t, ) and
Awi(t,z,y) = Kiai, gy (@i, t,y)) — Kilai, g (@i, t, x))

- a:c"ii(aiag[i](ahta JI)) © gi(aiatwru y)7
k t1
Apitzy) = 3 V00 F@Q™ (s, 7.t 2,1)) — 8y, F(P™](7, 8, 2))]

v=1a;0
(m)

' [(Zlgm))SO(T:g[i](T’try)) - (ZI/ )(,O(T,g[i](T,t,x))] dS dT
kE t1
+ 3§ V00 F(Q (5,7t 2,9)) — 0, F(P ) (7,1, 2))]
i 0
' [(zl(/m))SD(T,g[i] (mty)) — (Zlgm))cp(T,g[i] (T,t,x))] dsdr

t1
+ VBB Q™ (s, 7.t 2, ) — 0. Fi(Pil2™)(r, 1, 2))]
0

L o gi(1,t,z,y)dsdr
Avi(t,z,y) =Y | O, (B2 (7,6, 2)){ (20 gy (i)
v=1a;
(Zum )go(T,g[i] (m,t,x)) (u[(;?)><p(7—,g[i] (T,t,x))ax95(7—7 g4 (Ta t, fL‘)) ©gi (Tv iz, y)} dr,
k
Aw.i (t7 L, y) = Z § awu‘FZ(‘PZ[Z(m) (7—7 t, m)]){(zl(/m))w[ﬂg[i] (Tt,y)]
v=1a;

(m)

- (Zl/ )’l/l[T,g[i] (mt,x)] — (u[l,] )w[T,g[i] (T,t,z)]aaﬂ[](ﬂ i (7—7 t, x)) ©gi (T, t,x, y)} dT,

(3.2)  Awit,z,y) = Ouki(ai, gy (ais t, @) o [gi(ai, t, 2, y) — (y — )]

~+

+ Vo F(RZ"(r t,2)) o [gilr, b2, y) — (y — )] dr

+ S uf;]rl+1) (7—7 g[z} (7-7 t? x))azf[z] (7—7 g[z} (7-7 t7 l‘)) dr o (y - ZL‘)
Zn t

+ Z S 8UVF1(PI [z(m)](T? t’ x)) : (u[(:al))‘p(Tvg[z] (Tvtax))
v=1a,

’ 8IQ5(T7 g[i](Ta t,l‘)) o [gi(Tvtvrvy) - (y - :C)] dr

n t
+ Z S aqui(Pi[z(m)](Tat7m)) ’ (u[(;?))MT,g[i](Tvt»m)]

v=1a;

’ 8ﬂc¢(7—7 9] (T7ta l’)) © [gi(’r?tvxa y) - (y - iL‘)] dr.
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By applying the Hadamard mean value theorem to the expressions
Fi(Pi[Z(m)](Tvt7y)) - E(H[Z(m)](T,t, SC)) we get Ai(tvxay) = A’i-i(ta'r7y) +
Api(t,z,y) + Api(t,z,y) + Api(t,xz,y) + Awi(t,z,y) for 1 < i < k. Since
1) (- t, ) satisfy we have

t

-
Substituting the above relations in (3.2]) and changing the order of integrals,
where necessary, we get

t

A*z(t7 €T, y) = S ug]n—i_l) (Ta 91i] (Tv t, x))al’f[l] (Ta 9[i] (7-7 t, l’)) © gi(Tv l,x, y) dr
aj
t

+ S [f[z} (Tag[i] (T7t7 'r)) - f[z] (7—7 g[i](77t7y))] © Ui(Tvtvx) dr

a;
where

Ui(7-> ta 33')

T

= axﬁi(aiag[i](aiata l’)) + S 8IF1(PZ[Z(m)](£7t>$)) dg

a;

— UEZTIH)(&QM(&J, )0z i) (€, 979 (&5, ) d

a;

+
] =
e

N
Il
—

B, Fi(P[2 (€ 1 2)) (uf) e g e i) O P(Es 913y (€5 1, 3))

(]~
——— 3

+ 3§ 0 F(PLNE 4 2) () e g (.0 DD (T, 919 (7,1, ) dE.

N
Il
—
o

We see at once that the characteristics satisfy the relations gy (7, €, gp;) (€, £, ©))
= gpij (7, t,z) for (t,x) € E and 7, & €[a;, t]. We thus get u%’”l)(ﬂ g(t,t,x)) =
Ui(r,t,x) for (t,x) € E and 7 € [a;,t], and consequently A;(t,z,y) =
Awi(t,z,y) + Api(t,z,y) + Api(t, z,y) + Aw.i(t, z,y) + Api(t, z,y) where

t

Afl(t7x7y) = S uEiT]nJrl)(Tvg[i] (T,t,(l))) ° [f[z](Tv 9[q] (Tata iE)) - f[z](Tv 9[4] (Tata y))

a;

- (g[l] (T,t,ﬂ?) — 90 (T7t7y))a$f[l] (T,g(’f,t,l'))] dr.
For (t,y) € E we see that there is K > 0 such that
4t 2,9l < Kllz —yl*, () € B, 1<i <k,
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(m+1)
7
completes the proof. m

(t,x) exists and 8pzM Y = ug]nJrl), 1 <i<k. This

7

Consequently, 0,z

4. Integral inequalities. In [10]-[9] initial value problems for partial
functional differential equations are replaced by integral functional equa-
tions, and sequences of successive approximations for problems thus obtained
are investigated by using theorems on linear integral inequalities of Volterra
type.

In the present paper we consider functional differential equations which
do not satisfy the Volterra condition. It follows that we need a new com-
parison result for integral inequalities. More precisely, we consider integral
inequalities generated by the equation

(4.1) y(t) =n+\Co(r)dr + | B(r)y(r)dr +y(a) | C(7) dr
0 0 0

where B,C,Cy: [0,a] — Ry and n € R,.
LEMMA 4.1. Suppose that A, B,C,Cy € C([0,a],R), and n € R4
(I) There exists exactly one solution of the integral equation (4.1)) if

a

(4.2) SC(S)SSZ Bmdr gg < 1.
0
(1) if
(4.3) [ C(s)el:ADFBEN T g5 <
0
and §: [0,a] — Ry is a solution of the integral equation
t t t
(44)  y(t) =n+\Co(r)dr + \[A(7) + B(r)ly(r) dr + y(a) | C(7) dr,
0 0 0

and @ € C([0,a],Ry) where & is a solution of the integral inequality

(4.5) y(t) < n+\Colr)dr + | A(r)y(r) dr
0 0
+ | B(n)i(r)dr +5(a) | C () dr,
0 0
then

(4.6) G(t) <§t)  forte0,al.
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Proof. (I) Set

t t
g(t) = nesg B(r)dr 4 S C’O(s)eSZ B(ndr gs + C, S C’(s)egz‘ Bdr gs, t e (0,d],
0 0

where

Cy = [nexg B(rydr 4 S Co(s)els B dr ds} [1 — S C(s)els B dr ds} 1.
0 0
It follows that ¥ is the unique solution of the Cauchy problem corresponding
to (4.1). This completes the proof of the first part of the lemma.

(IT) It follows from that there exists exactly one solution g: [0, a] —
R, of ([4.4). Write yc(t) = &(t) — @e(t), t € [0,a], where € > 0 and @, is the
solution of the integral equation w(t) = € + Sg A(T)w(T) dr. We will show
that ye(t) < y(t) for t € [0,al. It is clear that y.(0) < §(0). Suppose that
there is ¢ € (0, a] such that y.(t) < g(t) for ¢t € [0,7) and

(47) ye(®) = 5(0).
Then

t
ve(®) = §() = g(f) — we(®) — (1) < VA7) = §(7)] dr — we(t) < —e,
0
which contradicts (4.7). Therefore y.(t) < g(t) for t € [0, a]. Letting € tend
to zero, we obtain (4.6[). m
Now we prove a lemma on integral inequalities of Fredholm type.

LEMMA 4.2. Suppose that A,B,C € C([0,a],Ry), A is nondecreasing
and condition (4.2) holds, and the function & € C([0,a],R4) is the solution
of the integral inequality

(4.8) y(t) < A(t) + 5 B(r)y(r) dr + y(a) S C(r)dr.
Then 0 O

(4.9) B(t) < A(t)elo BOT 4 A(q) A, § C(s)els B dr g
where 0

(4.10) A, = el B dr [1 - §C(T)6533(S> ds dr] -

0
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Proof. Write W(t) = i B(r)&(r)dr + @(a) {, C(r) dr. Then ¥'(t) <
B(t)[¥(t) + A(t)] + C(t)@(a) for t € (0,a] and
d
dt

This gives ¥(t) < A(t)[ebo BT — 1] 4+ &(a) |

w(t)e o PO < = BEOI AW B(t) + C(1)a(a)).

g C(T)extf B(s)ds g7 and

t
(1) () < AWHEOI 4 5(a) [O(r)els B ar.
0

It follows from (£.2) that @(a) < A, A(a). The last inequality and ({.11)

imply (4.9). =

5. Existence of solutions. First we will give an estimate for the se-
quence {u™?} for m > 0.

LEMMA 5.1. Suppose that Assumptions H[f, F], H[k], H[p, ] and H|a]
are satisfied. Then

(5.1) Ju

where A is the solution to the integral equation

(), te€l0,a], m=0,

t

S dT-i—S o(T)y(T)dr
0 0

+Q\ B(r)y(r) dr + y(a)Q | v(r) dr.
0 0

Proof. For m = 0 the inequality comes directly from Assumption H[x].
Suppose that ||u H trny < A(t) for t € [0,a], 1 <4 < k. From Assumption
H[f,F] we have

t
m+1 ma1
HU[Z] ! )|’(th”) < SO‘O(T)HU[(i] ’ )||(T,R")d7 +C

0
t

+ [ oo(r) dr + Q\ B(r)A(r) dr + A(@)Q | ~(r) dr
0

0 0

It follows from Lemmathat Hum )H(tRn) < A(t) fort € [0,a],1 <i < k.
The proof of (5.1)) is completed by induction. =

Now we formulate a theorem on the existence of solutions of (1.1f), (1.2]).

THEOREM 5.2. If Assumptions H|f, F], H|p,v], H[a], H[z))] are sat-
isfied and k € X then there is a classical solution z: EyU E — R¥ of (1.1)),
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(1.2). If & € X and Z is a classical solution of equation (1.1)) with the initial
condition z;(t,x) = Ri(t,x) on Ey;, 1 <i <k, then

t
t ~
(5.2) 12 = 2l gy < BP9 (14 Afy(r)dr) In — Rllx
0

and
t

< ¢Jo(ao(n)+QB(7) r( +QA\y(r)d )

0

(5.3)

(1908 = Dol + I = Fllx [ () r)
0

fort €[0,a] and C(t) = (1+ A()Q + A(a)Q) (Ls(£)C(t) + Lu(t)C(a)), and
A, A are given in Lemma .

Proof. The proof will be divided into four steps.

(I) We first prove that the sequence {z(™} is uniformly convergent on
Ep U E. From Assumptions H[x] and H[f, F'| we deduce that there is
Y € C([0,a],Ry) such that [|2(®) — .F[Z(O)]H(t,Rk) < Sé ~0(7) dr. Define the

0)

sequence {w®} as follows: w(® is a solution of the Cauchy problem

W'(t) = Bt)w(t) + wla)y(t) +0(t), w(0)=0.
For given w™) we have
t t
W D(t) = | B(r)w™ (7) dr + W™ S'y
0 0
Then for m > 0 we have 0 < w(™t(t) < wm™)(
lim,, 00 w™ () = 0 uniformly on [0, a).

Now we will prove that {z(™)} is a Cauchy sequence in Cy(Eo U E,RF).
More precisely, we will show by induction on m that for every m,p > 0 we
have ||z(m+P) — z(m)H(thk) < w™(t) for t € [0, al.

Suppose that m = 0. Then

120 = 2O gy < IF20) = 2O s rey < wO(2),  t€0,a].

t) for t € [0,a] and

Now take p > 0 and assume that ||2(P) — Z(O)H(LRI»@) <wO(t) for t € [0, al.
Then
t
127 = 2O gy < [F1P] = FLON gy + Y 0(r) dr
0
t t t

< | BwO(r) dr+w® (@) { 4(7) dr +|r0(r) dr=w® (1),
0 0 0
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Suppose that for a fixed m > 0 we have ||2(m+?) — () le,rr) < w(m (1)
for all p > 0 and t € [0, a]. Then

||2(mH1FP) _ p(m))

(t,R¥)
t

B — 20| gy dr (|27 — 2| gy Yy (7) dr
0

IA

B(r)w™ (1) dr + w™ (a) | 4(r) dr = ™V (2).
0

IN

O e &+ O e

By induction we find that {z(™} is a Cauchy sequence in Cy(Ey U E,RF).
Therefore there is zZ € Cyy(Eo U E,R¥) such that lim,, e 2M(t, ) = Z(t, x)
uniformly on FyU E.

(IT) Now we will prove that {u(™} is a Cauchy sequence in Cy (EoUE,RF).
Set (™ (t) = [14A(a)(Q+ Q)] [Lu()w™ () + Ly ()™ (a)], m > 0, {(t) =
A@)ao(t)+QB(0)+Qr(B)] +do(t), €(t) = max{¢® (¢), E(t)} where t € [0, .
Consider the sequence {@(™} defined in the following way. The function &(®)
is the solution of the integral equation

y(t) = lao(r) + QB()y(r) dr + Qu(a) | 4(r) dr + | {(7) dr.
0 0 0

For a given @™ we can compute @™+ as the solution of the integral
equation

y(t) = Vao(m)y(r) dr + Q| B(r)a™ () dr

+Qu™ (a) [ (r) dr +§ ¢ (r) dr.
0 0

It follows from Assumption H|a] and Lemma [4.1] that 0 < o™+ (t) <
@™ (t) for t € [0,a], m > 0, and lim,, o @ () = 0 uniformly on [0, a].
We claim that
(5.4) ™) — ™ g <@™(E), e [0,
where m,p > 0. We prove (5.4]) by induction on m.
We first prove that
t
655) [0 1wy, < § () dr <O, te (o0,
0

where p > 0. It is clear that (5.5)) is satisfied for p = 0. Assuming that (5.5|)
holds for p, we will prove it for p + 1. It follows from Assumptions H[f, F],



48 E. Puzniakowska-Galuch

Hla) that the function 7(t) = [Ju®*+!) — u(0)|](t7Man), t € [0, a], is a solution
of the integral inequality
t t
y(t) < Vao(ry(r) dr + Q| B(r)a O (r) dr
0 0
t t
+ Q2 0(a) {4 (r) dr + | C(r) dr.
0 0
Then 7(t) < @O(t) for t € [0,a] and by induction the proof of is
complete.
Suppose that estimate is satisfied for a fixed m > 0 and for all
p > 0. We prove that

(56) Hu(TrH-p-i-l) - u(m-‘rl)H(t,Man) < CD(erl) (t)7 te [07 a]a D > 0.

Set (t) = [JulmtPt) —qy(m+1) l(¢,05,,) for t € [0, a]. It follows from Assump-
tion H[f, F] that § is a solution of the integral inequality
t t
y(®) < Jao(r)y(r) dr + Q| B(r)a™ (7) dr
0 0
t t
+Qu™(a) \4(r) dr + [ ¢ () dr.
0 0
This gives §(t) < @™+ (t) for t € [0,a] and consequently estimates
are satisfied.

It follows by induction on m that the proof of is complete. This im-
plies that {u(™} is a Cauchy sequence in Cp,(EgUE, Mgy,). Therefore there
is u € Cyy(Ey U E, Myyy,) such that lim,, u(m™) (t,z) = u(t,x) uniformly
on FyUFE.

It follows from Lemmathat 0:Zi; 1 < i <k, exist on E and 0,2 = 4.
Furthermore, we have

(5.7) zZ(t,x) = F[Z|(t,x), (t,xz)€ E.
For a given (t,x) € E let us put y = gp;(0,¢,2), 1 < i < k. It follows that
95 (1, t,2) = g} (7,0, y). We conclude from (5.7) that

t

= i(0,9) + | (7, 9 (7, 0,9): Z(rgpy (000 Zblmg(ro)) 47

0
The relations y = g;;)(0,¢,z) and = = gj;(£,0,y) are equivalent. By differen-
tiating (5.8) with respect to ¢t and by putting again z = 9] (t,0,y) we infer
that z satisfies ((1.1) on E.
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(ITI) Now we will prove inequality (5.2)). First we will investigate ||z —
Z||(t,rr)- From Assumption H[ f, F'] we have

t
12 = Zll ey < 15 = Ellx + {BT)IIZ = 2l (rey dr
0
t
+ 12 = Zll @) | (7) dr.
0
From Lemma we have (5.2)).
(IV) Write 0,z = v and 0,2 = @. From Assumptions H|[ f, F'|, H[a] we
deduce the integral inequality

t

H'LL - ﬂ’”(t,M}an) S S(aO(T) + Qﬁ(T))HU - fLH(T,Man) dr
0
t

+ Qllu = @ll@ sy, V() dr + 10ak — Bafil|x, .,
0
t

+ |5 = &llx § () dr.
0

Using Lemma [4.2] we obtain (5.3)). =

6. Differentiability of solutions with respect to initial functions.
Suppose that Assumptions H|[f, F], H[p, ], H|a] are satisfied and k € X.
Let us denote by Z]k| the solution of the Cauchy problem , . It
follows from Theorem that Z: X — C.(Fy U E,R¥). The next theorem
states that for each x € X the Fréchet derivative 0=[k] of the operator =
exists at k € X. Moreover, if , x € X and z, = 05[]y then z, is a solution
of an integral functional equation generated by .

We will denote by z(-;k) the solution of with initial condition
zi(t,x) = ki(t,x) on Ep;, 1 <i <k.

THEOREM 6.1. If Assumptions H[f, F|, Hlp,1] and H[a] are satisfied
then for each k € X the Fréchet derivative 0=[k| exists. Moreover, if k, x € X
and z, = OZ[K|x then z. is a solution of the equation

(6.1) z = A[7]
where Alz] = (A1]z], ..., Ak[z]) and
Ailz](t,z) = xi(t,®)  on Epi, 1 <i <k,
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and

Ailz](t, 2) = xi (0, 9[1](0 t,x))

+ Z S 8UVF’L T t o /i))(zlj)gp(‘r,g[i](‘r,t,x)) dT

v=1a;

+ E S Ow, Fi(Pi[2](7,t, H))(Zv)lp[r,g[i]('r,t,a:)] dr  on E\ Ey;,

v=1a;

Pile)(rt, z, k) = (7, 91 (7,1,2), (2( 5 6)) p(rgpy (mta)) (205 8))plr g (mt)))-
Proof. Write
Qilk, X|(&, 7t x) = (7, gy (7, 1, @),
(L=8)2(+ 5 8)p(r gy (rta)) HE2(- 3 BH8X) p(rguy (rte))s 20 5B+ SX)plr gr (r2)])
Qilk, X)(&, 7. t,2) = (1, gjy (T, t, 2), 2( - K)o (r,gp (14:2))
(1= &)2( 5 K)plrgp(rta)] +E2(C 3K+ 8X)pirgiy (raa)]) s

where 0 < £ <1,1<i<kand

Agi(t,z) = %[zi(t,x;m +sx) —zi(t,x;k)] on E, 1<i<k,
Agi(t,z) = xi(t,x) on Ey;,
where 1 <i <k, s € R, s # 0. For a function z € Cy(Ey U E,R*) we put
Agi[z](t,x) = xi(t,x) on Epg,

5.2 (t, 2) = x3(0, 955 (0, ¢, )

Mk
.M“
O ey O ey =

+ av,,E(Qz [Ha X] (57 7,1, :L')) (ZV)cp(T,g[i] (7,t,x)) d¢dr

N
Il
—_
o

$

+ aqui(Qi[’%? X](& 7,t, x))(zl/)w[ﬂg[i] (m,t,2)] df dr on B \ EO.’ia

M?T
O~

N
Il
—
o

%

where 1 < i < k. We conclude from Assumption H|[ f, F'] that the function
A, satisfies the integral functional equation z = A[z]. It is easily seen that
there exists exactly one solution z, € C, (Ey U E,RF), 2y = (241y. .., 2ek)s
of . We thus get
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8v,/F”i(Qi['%7 X] (57 7,1, $))(Z*.V - AS.V)(p(T,g[i] (7,t,z)) dg dr

(0w, F5(Pi[2] (7, t, 5, k)

Fy(Qilr, X167 1, 2)) | (2 )i gy (o)) AE AT
n tl1
+ 3 1 V0w, F(Qilk, X1 7 1,2)) (2 = Asi)fr gy (rtiay) d drs 1 < i <k,
0

v=1a;

and (z.; — Asi)(t,7) = 0 on Fy,;, 1 <4 < k. It follows from the above
relations and from Assumption H|[f, F'] that there is Ly € C([0,a],R4)
such that

[

< VLo (ll(-5 5 + %) =258l ey + 12055+ 53%) = 2(-58) |0 o)) d

0
¢ t
+ V8012 = Asllrrey d7 + N2 = Asll(arey | 2(T) dr, € [0,4].
0 0
We conclude from Theorem that [|z(+ k+sx)—2( 5 K) (1 rr) < C()|s IIxllx-
Then
t . t
22 = Adllezr) < Isl Ixllx VLo(C(7) + C(a)) dr + § B(T) |2 — Asll (7 vy
0 0

t
+ 112 = Asll o, () dr
0

for ¢t € [0, a]. Hence from Lemma [4.2| there exists L€ C([0,a], Ry) such that
26 — Asll ey < L8] Ixlx- From the above inequality we conclude that
limg_ o As ex1sts and limg_,g Ag(t, x) = 24 (¢, ) uniformly on E. This proves
the theorem. m

REMARK 6.2. It is easy to see that the integral functional equation (6.1))
is generated by the linear differential functional equation
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Ouzilt,x) + Y fig(t,2) 0, 2i(t, @)

i=1

k
= 0 Fi(t, 25 K) ey 23 K)pfta)) (30) ()
v=1

k
+ Z a’wuﬂ (ta €z, Z( ) H)l/)[t,x}7 Z( S H)go[t,x}) (zV)lb[t,:Ch
v=1
and the initial condition z;(t,x) = x;(t,z) on Ey;, 1 <i < k.

REMARK 6.3. Let us consider the system of functional differential equa-
tions

(6.2) Gtzi(t, .T}) + f[z] (t, x) o 8122‘(15, ac) = Fi(t, T, 2(t,2) Z[t,x])7 i=1,...,k,

which is a particular case of . The functional differential problem that
consists of and is a generalized Cauchy problem.

There are the following motivations for investigation of , in-
stead of (6.2, . Differential systems with deviated variables are ob-
tained from (6.2)) in the following way. Suppose that G: E x R¥ x RF — R¥,
G = (G1,...,Gg), is a given function. Write

(6.3) F(t,z,v,w)= G(t,a:,v(go(t,x) — (t,x)),w((t,z) — (t,a:))) on 2.

Then (6.2)) is equivalent to (|1.5)).
Note that for the function (F1, ..., F)) given by (6.3]) Assumption H[f, F

is not satisfied. More precisely the derivatives 0, F' = [0y, Fi]i=1,....k, j=1,..,n
do not exist on f2. It is clear that under natural assumptions on G the
function F' given by satisfies Assumption H|[f, F].

With the above motivation we have considered problem , .
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