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Generalized Cauchy problems for
hyperbolic functional differential systems

by Elżbieta Puźniakowska-Gałuch (Gdańsk)

Abstract. A generalized Cauchy problem for hyperbolic functional differential sys-
tems is considered. The initial problem is transformed into a system of functional integral
equations. The existence of solutions of this system is proved by using the method of
successive approximations. Differentiability of solutions with respect to initial functions
is proved. It is important that functional differential systems considered in this paper do
not satisfy the Volterra condition.

1. Introduction. For any metric spaces X and Y we denote by C(X,Y )
the class of all continuous functions from X into Y . We will use vectorial
inequalities with the understanding that the same inequalities hold between
their corresponding components. Suppose that E = [0, a] × Rn and E0 =
[−b0, 0] × Rn where a > 0 and b0 ≥ 0. Write B = [−b0, 0] × [−b, b] where
b ∈ Rn+, R+ = [0,∞), and E0.i = [−b0, ai] × Rn for 0 ≤ ai < a, 1 ≤
i ≤ k. Set D = [−b0 − a, a] × [−d, d] for d ∈ Rn+. For t ∈ [0, a] we write
D[t] = [−b0 − t, a − t] × [−d, d]; then D[t] ⊂ D. Given a function z : E0 ∪ E
→Rk and a point (t, x) ∈ E, we consider the functions z(t,x) : B → Rk and
z[t,x] : D[t] → Rk defined by z(t,x)(τ, y) = z(t + τ, x + y) for (τ, y) ∈ B and
z[t,x](τ, y) = z(t+ τ, x+ y) for (τ, y) ∈ D[t].

Put Ω = E × C(B,Rk)× C(D,Rk) and suppose that F : Ω → Rk, F =
(F1, . . . , Fk), is a given function of the variables (t, x, v, w), v = (v1, . . . , vk),
w = (w1, . . . , wk). We denote by Mk×n the set of all k × n matrices with
real elements. If X ∈ Mk×n then XT is the transpose matrix. We use the
symbol “◦” to denote scalar product in Rn. Suppose that f : E → Mk×n,
f = [fij ]i=1,...,k, j=1,...,n, ϕ0 : [0, a] → R, ϕ̃ : E → Rn, ϕ̃ = (ϕ1, . . . , ϕn),
ψ0 : [0, a]→ R, ψ̃ : E → Rn, ψ̃ = (ψ1, . . . , ψn) and κi : E0.i → R, i = 1, . . . , k,
are given functions. The requirements on ϕ0 and ψ0 are that 0≤ϕ0(t)≤ t and
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0 ≤ ψ0(t) ≤ a for t ∈ [0, a]. Write ϕ(t, x) = (ϕ0(t), ϕ̃(t, x)) and ψ(t, x) =

(ψ0(t), ψ̃(t, x)) for (t, x) ∈ E. For the above f : E → Mk×n we put f[i] =
(fi1, . . . , fin), 1 ≤ i ≤ k.

Let us denote by z = (z1, . . . , zk) an unknown function of the variables
(t, x). We consider the system of functional differential equations
(1.1) ∂tzi(t, x) + f[i](t, x) ◦ ∂xzi(t, x) = Fi(t, x, zϕ(t,x), zψ[t,x]), i = 1, . . . , k,

with the initial conditions
(1.2) zi(t, x) = κi(t, x) on E0.i, i = 1, . . . , k,

where zϕ(t,x) = z(ϕ0(t),ϕ̃(t,x)), zψ[t,x] = z[ψ0(t),ψ̃(t,x)]
and∂xzi = (∂x1zi, . . . , ∂xnzi).

System (1.1) with initial conditions (1.2) is called a generalized Cauchy prob-
lem. We consider classical solutions of (1.1), (1.2).

The following problems are considered in this paper. We prove that under
natural assumptions on given functions there exists exactly one solution to
(1.1), (1.2) and the solution is defined on E0 ∪ E. Let us denote by X the
class of all functions κ = (κ1, . . . , κk), κi : E0.i → R, 1 ≤ i ≤ k, such that
there exists exactly one solution Ξ[κ] of problem (1.1), (1.2). We give a
construction of the space X and we prove that under natural assumptions
on f, F and ϕ,ψ the operator Ξ : X → C(E0 ∪ E,Rk) has the following
property: for each κ ∈ X the Fréchet derivative ∂Ξ[κ] exists. Moreover, if
κ, χ ∈ X and z∗ = ∂Ξ[κ]χ then z∗ is the solution of an integral functional
equation generated by (1.1), (1.2) and this equation is linear.

There is a wide literature on first order partial functional differential
problems; we wish to mention here just some existence results. There are
various concepts of solution to initial value or mixed problems for functional
differential equations. Continuous functions satisfying integral systems ob-
tained by integrating original equations along bicharacteristics were consid-
ered in [1], [16]. Generalized solutions in the Carathéodory sense were in-
vestigated in [5], [15]. Results on the existence of solutions are obtained
in those papers by using the method of bicharacteristics. Classical solu-
tions in the functional setting were studied in [2], [7], [13], [14]. Cinquini
Cibrario solutions of nonlinear differential functional equations were first
treated in [3]. This class of solutions lies between classical solutions and so-
lutions in the Carathéodory sense and both inclusions are strict. Existence
results for mixed problems for nonlinear equations can be found in [4]. They
are obtained by a linearization procedure and by constructing functional in-
tegral systems for unknown functions and for their derivatives with respect
to spatial variables. Sufficient conditions for the existence of classical solu-
tions defined on the Haar pyramid are given in [12], [9]. Classical solutions
and differentiability with respect to initial data for Volterra type of equa-
tions were studied in [11]. Existence and uniqueness of solutions on the Haar
pyramid were investigated in [10].
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All the above results have the following property: solutions of initial or
mixed problems exist locally with respect to the variable t. The aim of this
paper is to prove a theorem on the existence of solutions of the problem and a
theorem on the differentiability of solutions with respect to initial functions.
Theorems on the continuous dependence of solutions on initial or initial
boundary conditions are given in [8, Chapters 4 and 5]. In this paper we
start investigations of the differentiability with respect to initial functions for
partial functional differential equations. The monograph [6] contains results
on differentiability with respect to initial functions of solutions for ordinary
functional differential equations.

Until now there have been no results on existence and differentiability
of solutions with respect to initial functions for partial functional differ-
ential systems with arguments of both Volterra and Fredholm type in an
unbounded domain.

Suppose that G : E ×C(E0 ∪E,Rk)→ Rk, G = (G1, . . . , Gk), is a given
function. Let us consider the system of functional differential equations

(1.3) ∂tzi(t, x) + f[i](t, x) ◦ ∂xzi(t, x) = Gi(t, x, z), i = 1, . . . , k,

where z is the functional variable. It is clear that (1.1) is a particular case
of (1.3).

We will say that G satisfies the Volterra condition if for each (t, x) ∈ E
and for z, z̃ ∈ C(E0∪E,Rk) such that z(τ, y) = z̃(τ, y) for (τ, y) ∈ (E0 ∪ E)∩
([−b0, t]×Rn) we have G(t, x, z) = G(t, x, z̃). The Volterra condition means
that the value of G at (t, x, z) ∈ E×C(E0∪E,Rk) depends on (t, x) and on
restrictions of z to the set (E0 ∪E) ∩ ([−b0, t]×Rn) only. Note that system
(1.1) fails to satisfy the Volterra condition.

Note that functional differential equations or systems considered in [1]–
[5], [7]–[8], [11]–[16] satisfy the Volterra condition. Until now there have been
no results on functional differential equations of the form (1.3) which do not
satisfy the Volterra condition.

With the above motivation we consider the initial value problem (1.1),
(1.2).

We give examples of functional differential systems which can be obtained
from (1.1) by specifying the function F .

Example 1.1. Suppose that G : E × Rk × Rk → Rk, G = (G1, . . . , Gk),
is a given function and F is defined by

(1.4) F (t, x, v, w) = G
(
t, x, v(0, 0[n]), w(0, 0[n])

)
on Ω

where 0[n] = (0, . . . , 0) ∈ Rn. Then (1.1) reduces to the system of differential
equations with deviated variables

(1.5) ∂tzi(t, x) + f[i](t, x) ◦ ∂xzi(t, x) = Gi
(
t, x, z(ϕ(t, x)), z(ψ[t, x])

)
.
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Example 1.2. Suppose that ϕ(t, x) = (t, x) and ψ[t, x] = [t, x] for
(t, x) ∈ E, and for the above G put

(1.6) F (t, x, v, w) = G
(
t, x,

�

B

v(τ, s) ds dτ,
�

D[t]

w(τ, s) ds dτ
)

on Ω.

Then (1.1) reduces to the differential integral system

(1.7) ∂tzi(t, x) + f[i](t, x) ◦ ∂xzi(t, x)

= G
(
t, x,

�

B

z(t,x)(τ, s) ds dτ,
�

D[t]

z[t,x](τ, s) ds dτ
)
,

for i = 1, . . . , k.

It is clear that more complicated examples of differential systems with
deviated variables and differential integral systems can be obtained from
(1.1) by specializing the operator F . Note that systems (1.5) and (1.7) do
not satisfy the Volterra condition.

2. Sequences of successive approximations. Write Et = [−b0, t] ×
Rn for 0 ≤ t ≤ a. For t ∈ [0, a] and z ∈ C(E0 ∪ E,Rk), v ∈ C(E0 ∪ E,Rn),
u ∈ C(E0∪E,Mk×n) we define the seminorms ‖z‖(t,Rk) = max{‖z(τ, x)‖∞ :
(τ, x) ∈ Et}, ‖v‖(t,Rn) = max{‖v(τ, x)‖ : (τ, x) ∈ Et}, ‖u‖(t,Mk×n) =
max{‖u(τ, x)‖k×n : (τ, x) ∈ Et}. We denote by CL(B,R) the class of contin-
uous linear operators from C(B,R) taking values in R. In a similar way we
define the space CL(D,R). The norms in CL(B,R) and CL(D,R) generated
by the maximum norms in C(B,R) and C(D,R) will be denoted by ‖ · ‖B?
and ‖ · ‖D? respectively. For V = [Vij ]

k
i,j=1 where Vij ∈ CL(B,R), and Ṽ =

[Ṽij ]
k
i,j=1 where Ṽij ∈ CL(D,R), we denote ‖V ‖k×k;∗ = max{

∑k
j=1 ‖Vij‖B? :

1 ≤ i ≤ k}, ‖Ṽ ‖k×k;∗ = max{
∑k

j=1 ‖Ṽij‖D? : 1 ≤ i ≤ k}.

Assumption H[ϕ,ψ]. The functions ϕ0, ψ0 : [0, a]→R, and ϕ̃, ψ̃ : E→Rn
are continuous and

1) 0 ≤ ϕ0(t) ≤ t and 0 ≤ ψ0(t) ≤ a for t ∈ [0, a],
2) the derivatives ∂xϕ̃ = [∂xjϕi]

n
i,j=1, ∂xψ̃ = [∂xjψi]

n
i,j=1 exist and

∂xϕ̃ ∈ C(E,Mn×n), ∂xψ̃ ∈ C(E,Mn×n),
3) there are Q̃, Q̄ ∈ R+ such that on E we have

‖∂xϕ̃(t, x)‖n×n ≤ Q̃, ‖∂xψ̃(t, x)‖n×n ≤ Q̄,
‖∂xϕ̃(t, x)− ∂xϕ̃(t, x̄)‖n×n ≤ Q̃‖x− x̄‖,
‖∂xψ̃(t, x)− ∂xψ̃(t, x̄)‖n×n ≤ Q̄‖x− x̄‖.

Assumption H[κ]. The functions κi : E0.i → R, 1 ≤ i ≤ k, are con-
tinuous and bounded, the derivatives ∂xκi = (∂x1κi, . . . , ∂xnκi) exist, and
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∂xκi ∈ C(E0.i,Rn), 1 ≤ i ≤ k. There is C > 0 such that ‖∂xκi(t, x)‖ ≤ C on
E0.i for 1 ≤ i ≤ k.

Let us denote by X the class of all κ = (κ1, . . . , κk), κi : E0.i → R,
1 ≤ i ≤ k, satisfying Assumption H[κ].

For χ ∈ X, χ = (χ1, . . . , χk), we define ‖χi‖E0.i = sup{|χi(t, x)| :
(t, x) ∈ E0.i}, i = 1, . . . , k, and ‖χ‖X = max{‖χi‖E0.i : 1 ≤ i ≤ k} and
‖∂xχ‖Xk×n = max{

∑n
j=1 ‖∂xjχi‖E0.i : 1 ≤ i ≤ k}. Given κ ∈ X, we denote

by Cκ(E0∪E,Rk) the set of all z ∈ C(E0∪E,Rk) such that zi(t, x) = κi(t, x)
on E0.i, 1 ≤ i ≤ k. For the above κ, we denote by C∂κi(E0 ∪ E,Rn),
1 ≤ i ≤ k, the class of all v ∈ C(E0 ∪ E,Rn) such that v(t, x) = ∂xκi(t, x)
on E0.i. Let C∂κ(E0 ∪E,Mk×n) denote the set of all w ∈ C(E0 ∪E,Mk×n),
w = [wij ]i=1,...,k, j=1,...,n, such that w[i] ∈ C∂κi(E0 ∪ E,Rn) where w[i] =
(wi1, . . . , win), 1 ≤ i ≤ k.

Suppose that Assumptions H0[f, F ], H[ϕ,ψ] are satisfied and κ ∈ X. Let
us denote by g[i]( ·, t, x) the solution of the Cauchy problem

(2.1) η′(τ) = f[i](τ, η(τ)), η(t) = x,

where (t, x) ∈ E. The function g[i]( · , t, x) is the ith characteristic of (1.1).
For P = (t, x, v, w) ∈ Ω and ṽ = (ṽ1, . . . , ṽn) ∈ C(B,Rn) we write

∂vνFi(P )ṽ = (∂vνFi(P )ṽ1, . . . , ∂vνFi(P )ṽn), i, ν = 1, . . . , k. In a similar way
we define the expression ∂wνFi(P )w̃, 1 ≤ i, ν ≤ k, where w̃ = (w̃1, . . . , w̃n) ∈
C(D,Rn). For the above ṽ, w̃ and q = (q1, . . . , qn) ∈ Rn the functions
ṽ ◦ q : B → R and w̃ ◦ q : D → R are given by ṽ ◦ q = ṽ1q1 + · · ·+ ṽnqn and
w̃ ◦ q = w̃1q1 + · · ·+ w̃nqn. Set

Pi[z](τ, t, x) = (τ, g[i](τ, t, x), zϕ(τ,g[i](τ,t,x)), zψ[τ,g[i](τ,t,x)]), 1 ≤ i ≤ k.

Suppose that z ∈ Cκ(E0∪E,Rk). Let us denote by F [z] = (F1[z], . . . ,Fk[z])
the function defined by

Fi[z](t, x) = κi(ai, g[i](ai, t, x)) +

t�

ai

Fi(Pi[z](τ, t, x)) dτ on E \ E0.i,

Fi[z] = κi(t, x) on E0.i,

for i = 1, . . . , k. We consider the functional integral equation

(2.2) z = F [z].

Assumption H[f, F ]. The functions f : E → Mk×n and F : Ω → Rk
are continuous and

1) the derivatives ∂xf[µ] = [∂xjfµi]
n
i,j=1 exist and ∂xf[µ] ∈ C(E,Mn×n)

for 1 ≤ µ ≤ k,
2) the derivatives ∂xF = [∂xjFi]i=1,...,k, j=1,...,n exist and are continuous

on Ω,
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3) for P = (t, x, v, w) the Fréchet derivatives ∂vF (P ) = [∂wjFi(P )]ki,j=1

and ∂wF (P ) = [∂wjFi(P )]ki,j=1 exist, and ∂vjFi(P ) ∈ CL(B,R) and
∂wjFi(P ) ∈ CL(D,R) for i, j = 1, . . . , k, P ∈ Ω,

4) there are α0, β, δ0, γ ∈ C([0, a],R+) such that for P ∈ Ω we have

‖∂xf(t, x)‖k×n ≤ α0(t), ‖∂xF (P )‖k×n ≤ δ0(t),
‖∂vF (P )‖k×k;∗ ≤ β(t), ‖∂wF (P )‖k×k;∗ ≤ γ(t),

5) there are Lx, Lv, Lx ∈ C([0, a],R+) such that the expressions

‖∂xF (t, x, v, w)− ∂xF (t, x̃, ṽ, w̃)‖k×n,
‖∂vF (t, x, v, w)− ∂vF (t, x̃, ṽ, w̃)‖k×k;∗,
‖∂wF (t, x, v, w)− ∂wF (t, x̃, ṽ, w̃)‖k×k;∗,

are bounded by Lx(t)‖x− x̃‖+Lv(t)‖v− ṽ‖B +Lw(t)‖w− w̃‖D[t] for
(t, x), (t, x̃) ∈ E, v, ṽ ∈ C(B,Rk), w, w̃ ∈ C(D[t],Rk).

Assumption H[a]. The following relations hold:

1)
a�

0

γ(τ)e
	a
τ β(s) ds dτ < 1,

2) Q̄
a�

0

γ(τ)e
	a
τ (α0(s)+Q̃β(s)) ds dτ < 1.

The proof of the existence of the classical solution to (2.2) is based on
the following method of successive approximations. Suppose that κ ∈ X
and Assumptions H[f, F ], H[ϕ,ψ] are satisfied. We consider the sequences
{z(m)}, {u(m)} where z(m) : E0 ∪ E → Rk, z(m) = (z

(m)
1 , . . . , z

(m)
k ), u(m) :

E0 ∪ E → Mk×n, u(m) = [u
(m)
ij ]i=1,...,k, j=1,...,n, u

(m)
[i] = (u

(m)
i1 , . . . , u

(m)
in ), 1 ≤

i ≤ k, defined in the following way. We put first

z
(0)
i (t, x) = κi(t, x) on E0.i, z

(0)
i (t, x) = κi(ai, x) onE \E0.i,(2.3)

u
(0)
[i] (t, x) = ∂xκi(t, x) on E0.i, u

(0)
[i] (t, x) = ∂xκi(ai, x) onE \E0.i,(2.4)

where i = 1, . . . , k. Suppose that z(m) : E0 ∪ E → Rk and u(m) : E0 ∪ E →
Mk×n are known functions. Then u(m+1)

[i] is a solution of the equation

(2.5) v = G(m)
[i] [v]

where v = (v1, . . . , vn) and

(2.6) G(m)
[i] [v](t, x) = ∂xκi(t, x) on E0.i

and

(2.7) G(m)
[i] [v](t, x) = −

t�

ai

v
(
τ, g[i](τ, t, x)

)
∂xf[i]

(
τ, g[i](τ, t, x)

)
dτ+Γ

(m)
[i] (t, x)
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on E \ E0.i. The functions Γ (m)
[i] : E \ E0.i → Rn, 1 ≤ i ≤ k, are given by

(2.8) Γ
(m)
[i] (t, x) = ∂xκi(ai, g[i](ai, t, x)) +

t�

ai

∂xFi
(
Pi[z

(m)](τ, t, x)
)
dτ

+

k∑
ν=1

t�

ai

∂vνFi
(
Pi[z

(m)](τ, t, x)
)
(u

(m)
[ν] )ϕ(τ,g[i](τ,t,x))∂xϕ̃(τ, g[i](τ, t, x)) dτ

+
k∑
ν=1

t�

ai

∂wνFi
(
Pi[z

(m)](τ, t, x)
)
(u

(m)
[ν] )ψ[τ,g[i](τ,t,x)]∂xψ̃(τ, g[i](τ, t, x)) dτ.

The function (u
(m)
[ν] )ϕ(τ,y) ∂xϕ̃(τ, y) : B → Rn, y = g[i](τ, t, x), is defined by

(u
(m)
[ν] )ϕ(τ,y) ∂xϕ̃(τ, y)

=
( n∑
j=1

(u
(m)
νj )ϕ(τ,y) ∂x1ϕj(τ, y), . . . ,

n∑
j=1

(u
(m)
νj )ϕ(τ,y) ∂xnϕj(τ, y)

)
.

Analogously we define (u
(m)
[ν] )ψ[τ,y] ∂xψ̃(τ, y) : D[ψ0(τ)] → Rn. The function

z(m+1) is given by

(2.9) z(m+1) = F [z(m)].

Remark 2.1. Equations (2.5) are obtained in the following way. Suppose
that z(m) : E0∪E → Rk and u(m) : E0∪E →Mk×n are known functions. We
consider system (1.1) with z(m)

ϕ(t,x), z
(m)
ψ[t,x] instead of zϕ(t,x), zψ[t,x] respectively:

(2.10) ∂tzi(t, x) + f[i](t, x) ◦∂xzi(t, x) = Fi(t, x, z
(m)
ϕ(t,x), z

(m)
ψ[t,x]), i = 1, . . . , k.

We now introduce an additional unknown function u = ∂xz where u =
[uij ]i=1,...,k j=1,...,n, u[i] = (ui1, . . . , uin), 1 ≤ i ≤ k. From (2.10) we get the
differential equations for u[i]:

∂tu[i](t, x) + u[i](t, x) ∂xf[i](t, x) + f[i](t, x)[∂xu[i](t, x)]T

= ∂xFi
(
t, x, z

(m)
ϕ(t,x), z

(m)
ψ[t,x]

)
+

k∑
ν=1

∂vνFi
(
t, x, z

(m)
ϕ(t,x), z

(m)
ψ[t,x]

)
(∂xz

(m)
i )ϕ(t,x)∂xϕ̃(t, x)

+
k∑
ν=1

∂wνFi
(
t, x, z

(m)
ϕ(t,x), z

(m)
ψ[t,x]

)
(∂xz

(m)
i )ψ[t,x]∂xψ̃(t, x), i = 1, . . . , k,

and u[i](t, x) = ∂xκi(t, x) on E0.i, i = 1, . . . , k. If we assume that ∂xz
(m)
i =

u
(m)
[i] (see Lemma 3.1) then by integrating the above system along the char-

acteristics, we obtain (2.5).



40 E. Puźniakowska-Gałuch

3. Successive approximations for integral functional equations.
We begin by proving important properties of the sequences {z(m)}, {u(m)}.

Lemma 3.1. If Assumptions H[f, F ] and H[ϕ,ψ] are satisfied and κ ∈
X, then for m ≥ 0 we have:

(Im) the functions z(m) and u(m) are defined on E0 ∪ E, and
z(m) ∈ Cκ(E0 ∪ E,Rk), u(m)

[i] ∈ C∂κi(E0 ∪ E,Rn) for 1 ≤ i ≤ k,

(IIm) the derivatives ∂xz
(m)
i exist and ∂xz

(m)
i (t,x) =u

(m)
[i] (t, x) on E0∪E,

i = 1, . . . , k.

Proof. We will prove (Im) and (IIm) by induction. From (2.3), (2.4) we
see that (I0) and (II0) are satisfied. Suppose that z(m) ∈ Cκ(E0 ∪ E,Rk),
u
(m)
[i] ∈ C∂κi(E0∪E,Rn), 1 ≤ i ≤ k, are given and m ≥ 0. We now prove that

u(m+1) : E0∪E →Mk×n exists and u(m+1)
[i] ∈ C∂κi(E0∪E,Rn) for 1 ≤ i ≤ k.

For v, ṽ ∈ C∂κi(E0 ∪ E,Rn), 1 ≤ i ≤ k, we put

[|v − ṽ|] = max
{
‖v − ṽ‖(t,Rn) exp

[
−2

t�

ai

α0(τ) dτ
]

: ai ≤ t ≤ a
}
.

Then we have

‖G(m)
[i] [v](t, x)−G(m)

[i] [ṽ](t, x)‖≤ [|v − ṽ|]
t�

ai

e
2
	τ
ai
α0(s) ds dτ

≤ 1
2 [|v − ṽ|]e2

	t
ai
α0(τ) dτ for (t, x)∈E \ E0.i,

and consequently

‖G(m)
[i] [v](t, x)−G(m)

[i] [ṽ](t, x)‖(t,Rn) ≤
1

2
[|v − ṽ|]e2

	t
ai
α0(τ) dτ .

This gives [|G(m)
[i] [v] − G(m)

[i] [ṽ]|] ≤ 1
2 [|v − ṽ|], 1 ≤ i ≤ k. From the Banach

fixed point theorem there is exactly one u(m+1)
[i] : E0 ∪E → Rn and u(m+1)

[i] ∈
C∂κi(E0 ∪ E,Rn) for 1 ≤ i ≤ k.

Suppose that z(m+1) is given by (2.9). Now we prove (IIm+1). Write

Λi(t, x, y) = z
(m+1)
i (t, y)− z(m+1)

i (t, x)− u(m+1)
[i] (t, x) ◦ (y− x), 1 ≤ i ≤ k.

We prove that there exists K > 0 such that

(3.1) |Λi(t, x, y)| ≤ K‖x− y‖2, (t, x), (t, y) ∈ E \ E0.i, 1 ≤ i ≤ k.

It follows from (2.6)–(2.9) that for 1 ≤ i ≤ k we have

Λi(t, x, y) = Fi[z(m)](t, y)−Fi[z(m)](t, x)−G(m)
[i] [u(m+1)](t, x) ◦ (y − x).
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WriteQ(m)
i (s, τ, t, x, y) = (1−s)Pi[z(m)](τ, t, x)+sPi[z

(m)](τ, t, y) , 0 ≤ s ≤ 1,
gi(τ, t, x, y) = g[i](τ, t, y)− g[i](τ, t, x) and

Λκ.i(t, x, y) = κi(ai, g[i](ai, t, y))− κi(ai, g[i](ai, t, x))

− ∂xκi(ai, g[i](ai, t, x)) ◦ gi(ai, t, x, y),

ΛF.i(t, x, y) =
k∑
ν=1

t�

ai

1�

0

[
∂vνFi(Q

(m)
i (s, τ, t, x, y))− ∂vνFi(Pi[z(m)](τ, t, x))

]
·
[
(z(m)
ν )ϕ(τ,g[i](τ,t,y)) − (z(m)

ν )ϕ(τ,g[i](τ,t,x))
]
ds dτ

+

k∑
ν=1

t�

ai

1�

0

[
∂vνFi(Q

(m)
i (s, τ, t, x, y))− ∂vνFi(Pi[z(m)](τ, t, x))

]
·
[
(z(m)
ν )ϕ(τ,g[i](τ,t,y)) − (z(m)

ν )ϕ(τ,g[i](τ,t,x))
]
ds dτ

+

t�

ai

1�

0

[
∂xFi(Q

(m)
i (s, τ, t, x, y))− ∂xFi(Pi[z(m)](τ, t, x))

]
◦ gi(τ, t, x, y) ds dτ

Λv.i(t, x, y) =
k∑
ν=1

t�

ai

∂vνFi(Pi[z
(m)(τ, t, x)])

{
(z(m)
ν )ϕ(τ,g[i](τ,t,y))

− (z(m)
ν )ϕ(τ,g[i](τ,t,x))− (u

(m)
[ν] )ϕ(τ,g[i](τ,t,x))∂xϕ̃(τ, g[i](τ, t, x))◦gi(τ, t, x, y)

}
dτ,

Λw.i(t, x, y) =
k∑
ν=1

t�

ai

∂wνFi(Pi[z
(m)(τ, t, x)])

{
(z(m)
ν )ψ[τ,g[i](τ,t,y)]

− (z(m)
ν )ψ[τ,g[i](τ,t,x)]− (u

(m)
[ν] )ψ[τ,g[i](τ,t,x)]∂xψ̃(τ, g[i](τ, t, x))◦gi(τ, t, x, y)

}
dτ,

and
(3.2) Λ∗.i(t, x, y) = ∂xκi(ai, g[i](ai, t, x)) ◦ [gi(ai, t, x, y)− (y − x)]

+

t�

ai

∂xFi(Pi[z
(m)](τ, t, x)) ◦ [gi(τ, t, x, y)− (y − x)] dτ

+

t�

ai

u
(m+1)
[i] (τ, g[i](τ, t, x))∂xf[i](τ, g[i](τ, t, x)) dτ ◦ (y − x)

+
n∑
ν=1

t�

ai

∂vνFi(Pi[z
(m)](τ, t, x)) · (u(m)

[ν] )ϕ(τ,g[i](τ,t,x))

· ∂xϕ̃(τ, g[i](τ, t, x)) ◦ [gi(τ, t, x, y)− (y − x)] dτ

+

n∑
ν=1

t�

ai

∂wνFi(Pi[z
(m)](τ, t, x)) · (u(m)

[ν] )ψ[τ,g[i](τ,t,x)]

· ∂xψ̃(τ, g[i](τ, t, x)) ◦ [gi(τ, t, x, y)− (y − x)] dτ.
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By applying the Hadamard mean value theorem to the expressions
Fi(Pi[z

(m)](τ, t, y)) − Fi(Pi[z(m)](τ, t, x)) we get Λi(t, x, y) = Λκ.i(t, x, y) +
ΛF.i(t, x, y) + Λv.i(t, x, y) + Λw.i(t, x, y) + Λ∗.i(t, x, y) for 1 ≤ i ≤ k. Since
g[i]( ·, t, x) satisfy (2.1) we have

gi(τ, t, x, y) = y − x+

t�

τ

[
f[i](ξ, g[i](ξ, t, x))− f[i](ξ, g[i](ξ, t, y))

]
dξ.

Substituting the above relations in (3.2) and changing the order of integrals,
where necessary, we get

Λ∗.i(t, x, y) =

t�

ai

u
(m+1)
[i] (τ, g[i](τ, t, x))∂xf[i](τ, g[i](τ, t, x)) ◦ gi(τ, t, x, y) dτ

+

t�

ai

[
f[i](τ, g[i](τ, t, x))− f[i](τ, g[i](τ, t, y))

]
◦ Ui(τ, t, x) dτ

where

Ui(τ, t, x)

= ∂xκi(ai, g[i](ai, t, x)) +

τ�

ai

∂xFi(Pi[z
(m)](ξ, t, x)) dξ

−
τ�

ai

u
(m+1)
[i] (ξ, g[i](ξ, t, x))∂xf[i](ξ, g[i](ξ, t, x)) dξ

+

k∑
ν=1

τ�

ai

∂vνFi(Pi[z
(m)](ξ, t, x))(u

(m)
[i] )ϕ(ξ,g[i](ξ,t,x))∂xϕ̃(ξ, g[i](ξ, t, x)) dξ

+

k∑
ν=1

τ�

ai

∂wνFi(Pi[z
(m)](ξ, t, x))(u

(m)
[i] )ψ[ξ,g[i](ξ,t,x)]∂xψ̃(τ, g[i](τ, t, x)) dξ.

We see at once that the characteristics satisfy the relations g[i](τ, ξ, g[i](ξ, t, x))

= g[i](τ, t, x) for (t, x)∈E and τ, ξ∈ [ai, t]. We thus get u(m+1)
[i] (τ, g(τ, t, x)) =

Ui(τ, t, x) for (t, x) ∈ E and τ ∈ [ai, t], and consequently Λi(t, x, y) =
Λκ.i(t, x, y) + ΛF.i(t, x, y) + Λv.i(t, x, y) + Λw.i(t, x, y) + Λf.i(t, x, y) where

Λf.i(t, x, y) =

t�

ai

u
(m+1)
[i] (τ, g[i](τ, t, x)) ◦

[
f[i](τ, g[i](τ, t, x))− f[i](τ, g[i](τ, t, y))

− (g[i](τ, t, x)− g[i](τ, t, y))∂xf[i](τ, g(τ, t, x))
]
dτ.

For (t, y) ∈ E we see that there is K > 0 such that

‖Λi(t, x, y)‖ ≤ K‖x− y‖2, (t, x) ∈ E, 1 ≤ i ≤ k.
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Consequently, ∂xz
(m+1)
i (t, x) exists and ∂xz

(m+1)
i = u

(m+1)
[i] , 1 ≤ i ≤ k. This

completes the proof.

4. Integral inequalities. In [10]–[9] initial value problems for partial
functional differential equations are replaced by integral functional equa-
tions, and sequences of successive approximations for problems thus obtained
are investigated by using theorems on linear integral inequalities of Volterra
type.

In the present paper we consider functional differential equations which
do not satisfy the Volterra condition. It follows that we need a new com-
parison result for integral inequalities. More precisely, we consider integral
inequalities generated by the equation

(4.1) y(t) = η +

t�

0

C0(τ) dτ +

t�

0

B(τ)y(τ) dτ + y(a)

t�

0

C(τ) dτ

where B,C,C0 : [0, a]→ R+ and η ∈ R+.

Lemma 4.1. Suppose that A,B,C,C0 ∈ C([0, a],R+), and η ∈ R+.

(I) There exists exactly one solution of the integral equation (4.1) if

(4.2)
a�

0

C(s)e
	a
s B(τ) dτ ds < 1.

(II) If

(4.3)
a�

0

C(s)e
	a
s (A(τ)+B(τ)) dτ ds < 1,

and ỹ : [0, a]→ R+ is a solution of the integral equation

y(t) = η +

t�

0

C0(τ) dτ +

t�

0

[A(τ) +B(τ)]y(τ) dτ + y(a)

t�

0

C(τ) dτ,(4.4)

and ω̃ ∈ C([0, a],R+) where ω̃ is a solution of the integral inequality

y(t) ≤ η +

t�

0

C0(τ) dτ +

t�

0

A(τ)y(τ) dτ(4.5)

+

t�

0

B(τ)ỹ(τ) dτ + ỹ(a)

t�

0

C(τ) dτ,

then

(4.6) ω̃(t) ≤ ỹ(t) for t ∈ [0, a].
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Proof. (I) Set

ȳ(t) = ηe
	t
0B(τ) dτ +

t�

0

C0(s)e
	t
sB(τ) dτ ds+ C?

t�

0

C(s)e
	t
sB(τ) dτ ds, t ∈ (0, a],

where

C? =
[
ηe

	a
0 B(τ) dτ +

a�

0

C0(s)e
	a
s B(τ) dτ ds

][
1−

a�

0

C(s)e
	a
s B(τ) dτ ds

]−1
.

It follows that ȳ is the unique solution of the Cauchy problem corresponding
to (4.1). This completes the proof of the first part of the lemma.

(II) It follows from (4.3) that there exists exactly one solution ỹ : [0, a]→
R+ of (4.4). Write yε(t) = ω̃(t)− ω̃ε(t), t ∈ [0, a], where ε > 0 and ω̃ε is the
solution of the integral equation ω(t) = ε +

	t
0A(τ)ω(τ) dτ . We will show

that yε(t) < ỹ(t) for t ∈ [0, a]. It is clear that yε(0) < ỹ(0). Suppose that
there is t̃ ∈ (0, a] such that yε(t) < ỹ(t) for t ∈ [0, t̃) and

(4.7) yε(t̃) = ỹ(t̃).

Then

yε(t̃)− ỹ(t̃) = ȳ(t̃)− ωε(t̃)− ỹ(t̃) ≤
t̃�

0

A(τ)[ȳ(τ)− ỹ(τ)] dτ − ωε(t̃) ≤ −ε,

which contradicts (4.7). Therefore yε(t) < ỹ(t) for t ∈ [0, a]. Letting ε tend
to zero, we obtain (4.6).

Now we prove a lemma on integral inequalities of Fredholm type.

Lemma 4.2. Suppose that A,B,C ∈ C([0, a],R+), A is nondecreasing
and condition (4.2) holds, and the function ω̃ ∈ C([0, a],R+) is the solution
of the integral inequality

y(t) ≤ A(t) +

t�

0

B(τ)y(τ) dτ + y(a)

t�

0

C(τ) dτ.(4.8)

Then

(4.9) ω̃(t) ≤ A(t)e
	t
0B(τ) dτ +A(a)Λ?

t�

0

C(s)e
	t
sB(τ) dτ ds

where

(4.10) Λ? = e
	a
0 B(τ) dτ

[
1−

a�

0

C(τ)e
	a
τ B(s) ds dτ

]−1
.
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Proof. Write Ψ(t) =
	t
0B(τ)ω̃(τ) dτ + ω̃(a)

	t
0C(τ) dτ . Then Ψ ′(t) ≤

B(t)[Ψ(t) +A(t)] + C(t)ω̃(a) for t ∈ (0, a] and
d

dt
[Ψ(t)e−

	t
0B(τ) dτ ] ≤ e−

	t
0B(τ) dτ [A(t)B(t) + C(t)ω̃(a)].

This gives Ψ(t) ≤ A(t)[e
	t
0B(τ) dτ − 1] + ω̃(a)

	t
0C(τ)e

	t
τ B(s) ds dτ and

(4.11) ω̃(t) ≤ A(t)e
	t
0B(τ) dτ + ω̃(a)

t�

0

C(τ)e
	t
τ B(s) ds dτ.

It follows from (4.2) that ω̃(a) ≤ Λ?A(a). The last inequality and (4.11)
imply (4.9).

5. Existence of solutions. First we will give an estimate for the se-
quence {u(m)} for m ≥ 0.

Lemma 5.1. Suppose that Assumptions H[f, F ], H[κ], H[ϕ,ψ] and H[a]
are satisfied. Then

(5.1) ‖u(m)‖(t,Mk×n) ≤ Λ(t), t ∈ [0, a], m ≥ 0,

where Λ is the solution to the integral equation

y(t) = C +

t�

0

δ0(τ) dτ +

t�

0

α0(τ)y(τ) dτ

+ Q̃

t�

0

β(τ)y(τ) dτ + y(a)Q̄

t�

0

γ(τ) dτ.

Proof. For m = 0 the inequality comes directly from Assumption H[κ].
Suppose that ‖u(m)

[i] ‖(t,Rn) ≤ Λ(t) for t ∈ [0, a], 1 ≤ i ≤ k. From Assumption
H[ f, F ] we have

‖u(m+1)
[i] ‖(t,Rn) ≤

t�

0

α0(τ)‖u(m+1)
[i] ‖(τ,Rn) dτ + C

+

t�

0

δ0(τ) dτ + Q̃

t�

0

β(τ)Λ(τ) dτ + Λ(a)Q̄

t�

0

γ(τ) dτ.

It follows from Lemma 4.1 that ‖u(m+1)
[i] ‖(t,Rn) ≤ Λ(t) for t ∈ [0, a], 1 ≤ i ≤ k.

The proof of (5.1) is completed by induction.

Now we formulate a theorem on the existence of solutions of (1.1), (1.2).

Theorem 5.2. If Assumptions H[f, F ], H[ϕ,ψ], H[a], H[z(0)] are sat-
isfied and κ ∈ X then there is a classical solution z̄ : E0 ∪ E → Rk of (1.1),



46 E. Puźniakowska-Gałuch

(1.2). If κ̃ ∈ X and z̃ is a classical solution of equation (1.1) with the initial
condition zi(t, x) = κ̃i(t, x) on E0.i, 1 ≤ i ≤ k, then

(5.2) ‖z̄ − z̃‖(t,Rk) ≤ e
	t
0 β(τ) dτ

(
1 + Λ̃

t�

0

γ(τ) dτ
)
‖κ− κ̃‖X

and

‖u− ũ‖(t,Mk×n) ≤ e
	t
0(α0(τ)+Q̃β(τ)) dτ

(
1 + Q̄Λ̄

t�

0

γ(τ) dτ
)

(5.3)

·
(
‖∂xκ− ∂xκ̃‖Xk×n + ‖κ− κ̃‖X

a�

0

ζ̄(τ) dτ
)

for t ∈ [0, a] and ζ̄(t) =
(
1 + Λ(t)Q̃ + Λ(a)Q̄

)(
Lv(t)ζ̃(t) + Lw(t)ζ̃(a)

)
, and

Λ̃, Λ̄ are given in Lemma 4.2.

Proof. The proof will be divided into four steps.
(I) We first prove that the sequence {z(m)} is uniformly convergent on

E0 ∪ E. From Assumptions H[κ ] and H[ f, F ] we deduce that there is
γ0 ∈ C([0, a],R+) such that ‖z(0) − F [z(0)]‖(t,Rk) ≤

	t
0 γ0(τ) dτ . Define the

sequence {ω(k)} as follows: ω(0) is a solution of the Cauchy problem

ω′(t) = β(t)ω(t) + ω(a)γ(t) + γ0(t), ω(0) = 0.

For given ω(m) we have

ω(m+1)(t) =

t�

0

β(τ)ω(m)(τ) dτ + ω(m)(a)

t�

0

γ(τ) dτ.

Then for m ≥ 0 we have 0 ≤ ω(m+1)(t) ≤ ω(m)(t) for t ∈ [0, a] and
limm→∞ ω

(m)(t) = 0 uniformly on [0, a].
Now we will prove that {z(m)} is a Cauchy sequence in Cψ(E0 ∪E,Rk).

More precisely, we will show by induction on m that for every m, p ≥ 0 we
have ‖z(m+p) − z(m)‖(t,Rk) ≤ ω(m)(t) for t ∈ [0, a].

Suppose that m = 0. Then

‖z(1) − z(0)‖(t,Rk) ≤ ‖F [z(0)]− z(0)‖(t,Rk) ≤ ω(0)(t), t ∈ [0, a].

Now take p > 0 and assume that ‖z(p)−z(0)‖(t,Rk) ≤ ω(0)(t) for t ∈ [0, a].
Then

‖z(p+1)−z(0)‖(t,Rk)≤ ‖F [z(p)]−F [z(0)]‖(t,Rk) +

t�

0

γ0(τ) dτ

≤
t�

0

β(τ)ω(0)(τ) dτ+ω(0)(a)

t�

0

γ(τ) dτ+

t�

0

γ0(τ) dτ=ω(0)(t).
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Suppose that for a fixed m > 0 we have ‖z(m+p) − z(m)‖(t,Rk) ≤ ω(m)(t)
for all p ≥ 0 and t ∈ [0, a]. Then

‖z(m+1+p) − z(m+1)‖(t,Rk)

≤
t�

0

β(τ)‖z(m+p) − z(m)‖(τ,Rk) dτ + ‖z(m+p) − z(m)‖(a,Rk)
t�

0

γ(τ) dτ

≤
t�

0

β(τ)ω(m)(τ) dτ + ω(m)(a)

t�

0

γ(τ) dτ = ω(m+1)(t).

By induction we find that {z(m)} is a Cauchy sequence in Cψ(E0 ∪ E,Rk).
Therefore there is z̄ ∈ Cψ(E0 ∪E,Rk) such that limm→∞ z

(m)(t, x) = z̄(t, x)
uniformly on E0 ∪ E.

(II)Now we will prove that{u(m)} is a Cauchy sequence inC∂ψ(E0∪E,Rk).
Set ζ(m)(t) = [1+Λ(a)(Q̃+Q̄)] [Lv(t)ω

(m)(t)+Lw(t)ω(m)(a)], m ≥ 0, ζ̄(t) =

Λ(a)[α0(t)+Q̃β(t)+Q̄γ(t)]+δ0(t), ζ̃(t) = max{ζ(0)(t), ζ̄(t)} where t ∈ [0, a].
Consider the sequence {ω̄(m)} defined in the following way. The function ω̄(0)

is the solution of the integral equation

y(t) =

t�

0

[α0(τ) + Q̃β(τ)]y(τ) dτ + Q̄y(a)

t�

0

γ(τ) dτ +

t�

0

ζ̃(τ) dτ.

For a given ω̄(m) we can compute ω̄(m+1) as the solution of the integral
equation

y(t) =

t�

0

α0(τ)y(τ) dτ + Q̃

t�

0

β(τ)ω̄(m)(τ) dτ

+ Q̄ω̄(m)(a)

t�

0

γ(τ) dτ +

t�

0

ζ(m)(τ) dτ.

It follows from Assumption H[a] and Lemma 4.1 that 0 ≤ ω̄(m+1)(t) ≤
ω̄(m)(t) for t ∈ [0, a], m ≥ 0, and limm→∞ ω̄

(m)(t) = 0 uniformly on [0, a].
We claim that

(5.4) ‖u(m+p) − u(m)‖(t,Mk×n) ≤ ω̄
(m)(t), t ∈ [0, a],

where m, p ≥ 0. We prove (5.4) by induction on m.
We first prove that

(5.5) ‖u(p) − u(0)‖(t,Mk×n) ≤
t�

0

β0(τ) dτ ≤ ω̄(0)(t), t ∈ [0, a],

where p ≥ 0. It is clear that (5.5) is satisfied for p = 0. Assuming that (5.5)
holds for p, we will prove it for p+ 1. It follows from Assumptions H[f, F ],
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H[a] that the function ȳ(t) = ‖u(p+1) − u(0)‖(t,Mk×n), t ∈ [0, a], is a solution
of the integral inequality

y(t) ≤
t�

0

α0(τ)y(τ) dτ + Q̃

t�

0

β(τ)ω̄(0)(τ) dτ

+ Q̄ω̄(0)(a)

t�

0

γ(τ) dτ +

t�

0

ζ̄(τ) dτ.

Then ȳ(t) ≤ ω̄(0)(t) for t ∈ [0, a] and by induction the proof of (5.5) is
complete.

Suppose that estimate (5.4) is satisfied for a fixed m ≥ 0 and for all
p ≥ 0. We prove that

(5.6) ‖u(m+p+1) − u(m+1)‖(t,Mk×n) ≤ ω̄
(m+1)(t), t ∈ [0, a], p ≥ 0.

Set ỹ(t) = ‖u(m+p+1)−u(m+1)‖(t,Mk×n) for t ∈ [0, a]. It follows from Assump-
tion H[f, F ] that ỹ is a solution of the integral inequality

y(t) ≤
t�

0

α0(τ)y(τ) dτ + Q̃

t�

0

β(τ)ω̄(m)(τ) dτ

+ Q̄ω̄(m)(a)

t�

0

γ(τ) dτ +

t�

0

ζ(m)(τ) dτ.

This gives ỹ(t) ≤ ω̄(m+1)(t) for t ∈ [0, a] and consequently estimates (5.6)
are satisfied.

It follows by induction on m that the proof of (5.4) is complete. This im-
plies that {u(m)} is a Cauchy sequence in C∂κ(E0∪E,Mk×n). Therefore there
is ū ∈ C∂κ(E0 ∪ E,Mk×n) such that limm→∞ u

(m)(t, x) = ū(t, x) uniformly
on E0 ∪ E.

It follows from Lemma 3.1 that ∂xz̄i, 1 ≤ i ≤ k, exist on E and ∂xz̄i = ū[i].
Furthermore, we have

(5.7) z̄(t, x) = F [z̄](t, x), (t, x) ∈ E.
For a given (t, x) ∈ E let us put y = g[i](0, t, x), 1 ≤ i ≤ k. It follows that
g[i](τ, t, x) = g[i](τ, 0, y). We conclude from (5.7) that

(5.8) z̄i(t, g[i](t, 0, y))

= ψi(0, y) +

t�

0

Fi
(
τ, g[i](τ, 0, y), z̄ϕ(τ,g[i](τ,0,y)), z̄ψ[τ,g[i](τ,0,y)]

)
dτ.

The relations y = g[i](0, t, x) and x = g[i](t, 0, y) are equivalent. By differen-
tiating (5.8) with respect to t and by putting again x = g[i](t, 0, y) we infer
that z̄ satisfies (1.1) on E.
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(III) Now we will prove inequality (5.2). First we will investigate ‖z̄ −
z̃‖(t,Rk). From Assumption H[ f, F ] we have

‖z̄ − z̃‖(t,Rk) ≤ ‖κ− κ̃‖X +

t�

0

β(τ)‖z̄ − z̃‖(τ,Rk) dτ

+ ‖z̄ − z̃‖(a,Rk)
t�

0

γ(τ) dτ.

From Lemma 4.2 we have (5.2).
(IV) Write ∂xz̄ = u and ∂xz̃ = ũ. From Assumptions H[ f, F ], H[ a ] we

deduce the integral inequality

‖u− ũ‖(t,Mk×n) ≤
t�

0

(α0(τ) + Q̃β(τ))‖u− ũ‖(τ,Mk×n) dτ

+ Q̄‖u− ũ‖(a,Mk×n)

t�

0

γ(τ) dτ + ‖∂xκ− ∂xκ̃‖Xk×n

+ ‖κ− κ̃‖X
t�

0

ζ̄(τ) dτ.

Using Lemma 4.2 we obtain (5.3).

6. Differentiability of solutions with respect to initial functions.
Suppose that Assumptions H[f, F ], H[ϕ,ψ], H[a] are satisfied and κ ∈ X.
Let us denote by Ξ[κ] the solution of the Cauchy problem (1.1), (1.2). It
follows from Theorem 5.2 that Ξ : X → Cκ(E0 ∪ E,Rk). The next theorem
states that for each κ ∈ X the Fréchet derivative ∂Ξ[κ] of the operator Ξ
exists at κ ∈ X. Moreover, if κ, χ ∈ X and z∗ = ∂Ξ[κ]χ then z∗ is a solution
of an integral functional equation generated by (1.1).

We will denote by z( · ;κ) the solution of (1.1) with initial condition
zi(t, x) = κi(t, x) on E0.i, 1 ≤ i ≤ k.

Theorem 6.1. If Assumptions H[f, F ], H[ϕ,ψ] and H[a] are satisfied
then for each κ ∈ X the Fréchet derivative ∂Ξ[κ] exists. Moreover, if κ, χ∈X
and z∗ = ∂Ξ[κ]χ then z∗ is a solution of the equation

(6.1) z = Λ[z]

where Λ[z] = (Λ1[z], . . . , Λk[z]) and

Λi[z](t, x) = χi(t, x) on E0.i, 1 ≤ i ≤ k,
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and

Λi[z](t, x) = χi(0, g[i](0, t, x))

+

k∑
ν=1

t�

ai

∂vνFi(Pi[z](τ, t, x, κ))(zν)ϕ(τ,g[i](τ,t,x)) dτ

+

k∑
ν=1

t�

ai

∂wνFi(Pi[z](τ, t, x, κ))(zν)ψ[τ,g[i](τ,t,x)] dτ on E \E0.i,

Pi[z](τ, t, x, κ) = (τ, g[i](τ, t, x), (z( · ;κ))ϕ(τ,g[i](τ,t,x)), (z( · ;κ))ψ[τ,g[i](τ,t,x)]).

Proof. Write

Qi[κ, χ](ξ, τ, t, x) =
(
τ, g[i](τ, t, x),

(1−ξ)z( · ;κ)ϕ(τ,g[i](τ,t,x))+ξz( · ;κ+sχ)ϕ(τ,g[i](τ,t,x)), z( · ;κ+sχ)ψ[τ,g[i](τ,t,x)]
)
,

Q̃i[κ, χ](ξ, τ, t, x) =
(
τ, g[i](τ, t, x), z( · ;κ)ϕ(τ,g[i](τ,t,x)),

(1− ξ)z( · ;κ)ψ[τ,g[i](τ,t,x)] + ξz( · ;κ+ sχ)ψ[τ,g[i](τ,t,x)]
)
,

where 0 ≤ ξ ≤ 1, 1 ≤ i ≤ k and

∆s.i(t, x) =
1

s
[zi(t, x;κ+ sχ)− zi(t, x;κ)] on E, 1 ≤ i ≤ k,

∆s.i(t, x) = χi(t, x) on E0.i,

where 1 ≤ i ≤ k, s ∈ R, s 6= 0. For a function z ∈ Cκ(E0 ∪ E,Rk) we put

Λs.i[z](t, x) = χi(t, x) on E0.i,

Λs.i[z](t, x) = χi(0, g[i](0, t, x))

+

k∑
ν=1

t�

ai

1�

0

∂vνFi(Qi[κ, χ](ξ, τ, t, x))(zν)ϕ(τ,g[i](τ,t,x)) dξ dτ

+
k∑
ν=1

t�

ai

1�

0

∂wνFi(Q̃i[κ, χ](ξ, τ, t, x))(zν)ψ[τ,g[i](τ,t,x)] dξ dτ on E \ E0.i,

where 1 ≤ i ≤ k. We conclude from Assumption H[ f, F ] that the function
∆s satisfies the integral functional equation z = Λs[z]. It is easily seen that
there exists exactly one solution z∗ ∈ Cχ(E0 ∪ E,Rk), z∗ = (z∗.1, . . . , z∗.k),
of (6.1). We thus get
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(z∗.i −∆s.i)(t, x) =
n∑
ν=1

t�

ai

1�

0

[
∂vνFi(Pi[z](τ, t, x, κ))

− ∂vνFi(Qi[κ, χ](ξ, τ, t, x))
]
(z∗.ν)ϕ(τ,g[i](τ,t,x)) dξ dτ

+

n∑
ν=1

t�

ai

1�

0

∂vνFi(Qi[κ, χ](ξ, τ, t, x))(z∗.ν −∆s.ν)ϕ(τ,g[i](τ,t,x)) dξ dτ

+
n∑
ν=1

t�

ai

1�

0

[
∂wνFi(Pi[z](τ, t, s, κ))

− ∂wνFi(Q̃i[κ, χ](ξ, τ, t, x))
]
(z∗.ν)ψ[τ,g[i](τ,t,x)] dξ dτ

+

n∑
ν=1

t�

ai

1�

0

∂wνFi(Q̃i[κ, χ](ξ, τ, t, x))(z∗.ν −∆s.ν)ψ[τ,g[i](τ,t,x)] dξ dτ, 1 ≤ i ≤ k,

and (z∗.i − ∆s.i)(t, x) = 0 on E0.i, 1 ≤ i ≤ k. It follows from the above
relations and from Assumption H[ f, F ] that there is L̃0 ∈ C([0, a],R+)
such that

‖z∗ −∆s‖(t,Rk)

≤
t�

0

L̃0(τ)
(
‖z( · ;κ+ sχ)−z( · ;κ)‖(τ,Rk) + ‖z( · ;κ+ sχ)−z( · ;κ)‖(a,Rk)

)
dτ

+

t�

0

β(τ)‖z∗ −∆s‖(τ,Rk) dτ + ‖z∗ −∆s‖(a,Rk)
t�

0

γ(τ) dτ, t ∈ [0, a].

We conclude from Theorem 5.2 that‖z( ·;κ+sχ)−z( ·;κ)‖(t,Rk)≤ ζ̃(t)|s| ‖χ‖X.
Then

‖z∗ −∆s‖(t,Rk) ≤ |s| ‖χ‖X
t�

0

L̃0(ζ̃(τ) + ζ̃(a)) dτ +

t�

0

β(τ)‖z∗ −∆s‖(τ,Rk) dτ

+ ‖z∗ −∆s‖(a,Rk)
t�

0

γ(τ) dτ

for t ∈ [0, a]. Hence from Lemma 4.2 there exists L∈C([0, a],R+) such that
‖z∗ −∆s‖(t,Rk) ≤ L(t)|s| ‖χ‖X . From the above inequality we conclude that
lims→0∆s exists and lims→0∆s(t, x) = z∗(t, x) uniformly on E. This proves
the theorem.

Remark 6.2. It is easy to see that the integral functional equation (6.1)
is generated by the linear differential functional equation
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∂tzi(t, x) +

n∑
i=1

f[i](t, x)∂xizi(t, x)

=
k∑
ν=1

∂vνFi
(
t, x, z( · ;κ)ϕ(t,x), z( · ;κ)ψ[t,x]

)
(zν)ϕ(t,x)

+

k∑
ν=1

∂wνFi
(
t, x, z( · ;κ)ψ[t,x], z( · ;κ)ϕ[t,x]

)
(zν)ψ[t,x],

and the initial condition zi(t, x) = χi(t, x) on E0.i, 1 ≤ i ≤ k.
Remark 6.3. Let us consider the system of functional differential equa-

tions
(6.2) ∂tzi(t, x) + f[i](t, x) ◦ ∂xzi(t, x) = Fi(t, x, z(t,x), z[t,x]), i = 1, . . . , k,

which is a particular case of (1.1). The functional differential problem that
consists of (6.2) and (1.2) is a generalized Cauchy problem.

There are the following motivations for investigation of (1.1), (1.2) in-
stead of (6.2), (1.2). Differential systems with deviated variables are ob-
tained from (6.2) in the following way. Suppose that G : E×Rk ×Rk → Rk,
G = (G1, . . . , Gk), is a given function. Write
(6.3) F (t, x, v, w) = G

(
t, x, v(ϕ(t, x)− (t, x)), w(ψ(t, x)− (t, x))

)
on Ω.

Then (6.2) is equivalent to (1.5).
Note that for the function (F1, . . . , Fk) given by (6.3) AssumptionH[f, F ]

is not satisfied. More precisely the derivatives ∂xF = [∂xjFi]i=1,...,k, j=1,...,n

do not exist on Ω. It is clear that under natural assumptions on G the
function F given by (1.4) satisfies Assumption H[f, F ].

With the above motivation we have considered problem (1.1), (1.2).
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