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Existence of solutions for impulsive fractional partial neutral
integro-differential inclusions with state-dependent delay in

Banach spaces

by Zuomao Yan and Hongwu Zhang (Zhangye)

Abstract. We study the existence of mild solutions for a class of impulsive fractional
partial neutral integro-differential inclusions with state-dependent delay. We assume that
the undelayed part generates an α-resolvent operator and transform it into an integral
equation. Sufficient conditions for the existence of solutions are derived by means of the
fixed point theorem for discontinuous multi-valued operators due to Dhage and properties
of the α-resolvent operator. An example is given to illustrate the theory.

1. Introduction. The theory of impulsive differential or integro-differen-
tial systems has become an active area of investigation due to their appli-
cations in fields such as mechanics, electrical engineering, medicine, biology,
ecology and so on. One can refer to [BH], [HC], [LB] and the references
therein. Several authors have established results on the existence of mild
solutions for these equations (see [AA], [HG], [HL], [Y1] and references
therein). Nonlinear fractional differential or integro-differential equations
has recently been an object of increasing interest because of their wide ap-
plicability in nonlinear oscillations of earthquakes and other physical phe-
nomena; see the monographs of Kilbas et al. [KS], Miller and Ross [MR],
Podlubny [PO] and the papers [BO], [GN], [MS]. The existence of solutions
for fractional semilinear differential or integro-differential equations has been
extensively studied by many authors (see [E1], [E2], [Y2], [ZJ] and the ref-
erences therein). On the other hand, functional differential equations with
state-dependent delay can be met in various applications. Some recent ap-
plications can be found in [AA], [BE], [CN], [HG], [RB], [S]. The problem of
the existence of solutions for fractional functional differential equations with
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state-dependent delay in Banach spaces has attracted considerable interest
among researchers [AS], [DN], [SA].

The existence, uniqueness and other quantitative and qualitative prop-
erties of solutions to various impulsive semilinear fractional differential and
integrodifferential equations have been extensively studied in Banach spaces.
For example, Mophou [M] obtained the existence and uniqueness of mild so-
lutions for semilinear impulsive fractional differential equations. Shu et al.
[SL] investigated the existence and uniqueness of mild solutions for a class of
impulsive fractional partial semilinear differential equations and corrected
some errors in [M]. Chauhan et al. [CD] extended the results of [SL] to impul-
sive fractional order semilinear evolution equations with nonlocal conditions.
Balachandran et al. [BK1], [BK2] discussed some fractional-order impulsive
integrodifferential equations. The existence of solutions of fractional differ-
ential equation of Sobolev type with impulse effect in Banach spaces was
also considered in [BK2]. Debbouche and Baleanu [DB] proved the control-
lability of a class of fractional evolution nonlocal impulsive quasilinear delay
integro-differential systems. Further, Dabas et al. [DC] dealt with the exis-
tence and uniqueness of mild solution for semilinear fractional-order func-
tional evolution differential equations with infinite delay.

However, many systems arising from realistic models can be described
as partial fractional differential or integro-differential inclusions (see [AM],
[Y3] and references therein), so it is natural to extend the concept of mild
solution for impulsive fractional evolution equations to impulsive systems
represented by fractional differential or integro-differential inclusions.

In this paper, we consider a class of impulsive fractional partial neutral
integro-differential inclusions with state-dependent delay in Banach spaces
of the form

(1.1) cDαN(xt) ∈ AN(xt) +

t�

0

Q(t− s)N(xs) ds+ F (t, xρ(t,xt)),

t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,

(1.2) x0 = ϕ ∈ B, x′(0) = 0,

(1.3) ∆x(tk) = Ik(xtk), k = 1, . . . ,m,

where the unknown x(·) takes values in the Banach space X with norm ‖ ·‖,
cDα is the Caputo fractional derivative of order α ∈ (1, 2), A and (Q(t))t≥0

are closed linear operators defined on a common domain which is dense in
(X, ‖·‖), and Dα

t ξ(t) represents the Caputo derivative of order α > 0 defined
by

Dα
t ξ(t) =

t�

0

gn−α(t− s) d
n

dsn
ξ(s) ds,
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where n is the smallest integer greater than or equal to α and gβ(t) :=
tβ−1/Γ (β), t > 0, β ≥ 0. The time history xt : (−∞, 0]→ X given by xt(θ) =
x(t+ θ) belongs to some abstract phase space B defined axiomatically; and
F : J × B → P(X) is a bounded closed convex-valued multi-valued map,
P(X) is the family of all nonempty subsets of X, G : J × B → X, N(ψ) =
ψ(0) + G(t, ψ) for ψ ∈ B, and Ik : B → X (k = 1, . . . ,m), ρ : J × B →
(−∞, b], are functions subject to some additional conditions. Moreover, let
0 < t1 < · · · < tm < b be given points, and ∆x(tk) := x(t+k ) − x(t−k ),
where x(t−k ) and x(t+k ) represent the right and left limits of x(t) at t = tk,
respectively.

To the best of our knowledge, there is no work reported on the existence
of mild solutions for impulsive fractional partial neutral integro-differential
inclusions with state-dependent delay of the form (1.1)–(1.3), and the aim
of this paper is to close this gap. Motivated by the previously mentioned
papers, we will study this interesting problem. Sufficient conditions for the
existence are given by means of a fixed point theorem for multi-valued map-
ping due to Dhage [D] with the α-resolvent operator combined with ap-
proximation techniques. In particular, the results of [M], [SL], [CD], [BK1],
[BK2], [DB], [DC] are generalized to the fractional multi-valued setting and
to the case of infinite delay.

2. Preliminaries. Let (X, ‖ · ‖) be a Banach space. C(J,X) is the
Banach space of all continuous functions from J into X with the norm
‖x‖∞ = sup{‖x(t)‖ : t ∈ J} and L(X) denotes the Banach space of bounded
linear operators from X to X. A measurable function x : J → X is Bochner
integrable if and only if ‖x‖ is Lebesgue integrable. For properties of the
Bochner integral see Yosida [YO]. L1(J,X) denotes the Banach space of
measurable functions x : J → X which are Bochner integrable, normed

by ‖x‖L1 =
	b
0 ‖x(t)‖ dt for all x ∈ L1(J,X). Furthermore, for appropriate

functions K : [0,∞) → X the notation K̂ denotes the Laplace transform
of K. The notation Br(x,X) stands for the closed ball with center at x and
radius r > 0 in X.

P(X) denotes the family of nonempty subsets of X. Let us introduce the
following notations:

Pcl(X)={x ∈ P(X) : x is closed}, Pbd(X)={x ∈ P(X) : x is bounded},

Pcv(X)={x ∈ P(X) : x is convex}, Pcp(X)={x ∈ P(X) : x is compact}.

Consider Hd : P(X)× P(X)→ R+ ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,
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where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pbd,cl(X), Hd)
is a metric space and (Pcl(X), Hd) is a generalized metric space.

A multi-valued map Φ : X → P(X) is convex (resp. closed) valued if
G(X) is convex (resp. closed) for all x ∈ X; and Φ is bounded on bounded
sets if Φ(B) =

⋃
x∈B Φ(x) is bounded in X for any bounded set B of X,

that is, supx∈B sup{‖y‖ : y ∈ Φ(x)} <∞.
Φ is called upper semicontinuous (u.s.c., for short) on X if for any x ∈ X,

the set Φ(x) is a nonempty closed subset of X, and if for each open set B
of X containing Φ(x), there exists an open neighborhood N of x such that
Φ(N) ⊆ B.

Φ is said to be completely continuous if Φ(D) is relatively compact for
every bounded subset D of X. If the multi-valued map Φ is completely
continuous with nonempty compact values, then Φ is u.s.c. if and only if Φ
has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ Φ(xn) imply y∗ ∈ Φ(x∗).

A multi-valued map Φ : J → Pbd,cl,cv(X) is said to be measurable if
for each x ∈ X, the function Y : J → R+ defined by Y (t) = d(x, Φ(t)) =
inf{d(x, z) : z ∈ Φ(t)} is measurable.

Φ has a fixed point if there is x ∈ X such that x ∈ Φ(x).
For more details on multi-valued maps we refer the reader to the books

of Deimling [DE], and Hu and Papageorgiou [HP].
In this paper, we assume that the phase space (B, ‖ ·‖B) is a seminormed

linear space of functions mapping (−∞, 0] into X, and satisfying the follow-
ing fundamental axioms due to Hale and Kato (see, e.g., [HK]):

(A) If x : (−∞, σ+b]→ X, b > 0, is such that x|[σ,σ+b] ∈ C([σ, σ+b], X)
and xσ ∈ B, then for every t ∈ [σ, σ + b]:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H̃‖xt‖B;
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H̃ ≥ 0 is a constant; K,M : [0,∞)→ [1,∞), K is continuous
and M locally bounded; H̃,K,M are independent of x(·).

(B) For x(·) in (A), t 7→ xt is continuous from [σ, σ + b] into B.
(C) The space B is complete.

To describe appropriately our problems we say that a function x : [µ, τ ]
→ X is a normalized piecewise continuous function on [µ, τ ] if x is piecewise
continuous and left continuous on (µ, τ ]. We denote by PC([µ, τ ], X) the
space of normalized piecewise continuous functions from [µ, τ ] into X. In
particular, we introduce the space PC of all functions x : [0, b] → X such
that x is continuous at t 6= tk, x(tk) = x(t−k ) and x(t+k ) exists for k =
1, . . . ,m. In this paper, we always assume that PC is endowed with the
norm ‖x‖PC = supt∈[0,b] ‖x(t)‖. Then (PC, ‖ · ‖PC) is a Banach space.
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To simplify the notations, we put t0 = 0, tm+1 = b and for x ∈ PC, we
denote by x̂k ∈ C([tk, tk+1], X), k = 0, 1, . . . ,m, the function given by

x̂k(t) :=

{
x(t) for t ∈ (tk, tk+1],

x(t+k ) for t = tk.

Moreover, for B ⊆ PC we set B̂k = {x̂k : x ∈ B}, k = 0, 1, . . . ,m.

Let us recall the following definitions and facts.

Definition 2.1 ([SA]). A one-parameter family of bounded linear op-
erators (Rα(t))t≥0 on X is called an α-resolvent operator for

cDαx(t) = Ax(t) +

t�

0

Q(t− s)x(s) ds,(2.1)

x0 = ϕ ∈ X, x′(0) = 0,(2.2)

if the following conditions hold:

(a) Rα(·) : [0,∞) → L(X) is strongly continuous and Rα(0)x = x for
all x ∈ X and α ∈ (1, 2).

(b) For x ∈ D(A), Rα(·)x ∈ C([0,∞), [D(A)]) ∩ C1((0,∞), X), we have

Dα
t Rα(t)x = ARα(t)x+

t�

0

Q(t− s)Rα(s)x ds,

Dα
t Rα(t)x = Rα(t)Ax+

t�

0

Rα(t− s)Q(s)x ds,

for every t ≥ 0.

In this work we will consider the following conditions:

(P1) A : D(A) ⊆ X → X is a closed linear operator with [D(A)] dense
in X. Let α ∈ (1, 2). For some φ0 ∈ (0, π/2], for each φ < φ0 there
is a positive constant C0 = C0(φ) such that

Σ0,αϑ := {λ ∈ C : λ 6= 0, |arg(λ)| < αϑ} ⊂ p(A),

where ϑ = φ+ π/2 and ‖R(λ,A)‖ ≤ C0/|λ| for all λ ∈ Σ0,αϑ.
(P2) For all t ≥ 0, Q(t) : D(Q(t)) ⊆ X → X is a closed linear operator,

D(A) ⊆ D(Q(t)), and Q(·)x is strongly measurable on (0,∞) for

each x ∈ D(A). There exists b(·) ∈ L1
loc(R+) such that b̂(λ) exists

for Re(λ) > 0 and ‖Q(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and x ∈ D(A).

Moreover, the operator valued function Q̂ : Σ0,π/2 → L([D(A)], X)

has an analytical extension (still denoted by Q̂) to Σ0,ϑ such that

‖Q̂(λ)x‖ ≤ ‖Q̂(λ)‖ ‖x‖1 for all x ∈ D(A), and ‖Q̂(λ)‖ = O(1/|λ|)
as |λ| → ∞.
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(P3) There exists a subspace D ⊆ D(A) dense in [D(A)] and a posi-

tive constant C̃ such that A(D) ⊆ D(A), Q̂(λ)(D) ⊆ D(A), and

‖AQ̂(λ)x‖ ≤ C̃‖x‖, for every x ∈ D and all λ ∈ Σ0,ϑ.

For r > 0 and θ ∈ (π/2, ϑ), we set

Σr,θ = {λ ∈ C : |λ| > r, |arg(λ)| < θ},

and we consider the paths

Γ 1
r,θ = {teiθ : t ≥ r}, Γ 2

r,θ = {teiξ : |ξ| ≤ θ}, Γ 3
r,θ = {te−iθ : t ≥ r},

with Γr,θ =
⋃3
i=1 Γ

i
r,θ oriented counterclockwise. In addition,

ρα(Gα) = {λ ∈ C : Gα(λ) := λα−1(λαI −A− Q̂(λ))−1 ∈ L(X)}.

We now define an operator family (Rα(t))t≥0 by

Rα(t) :=

{
(2πi)−1

	
Γr,θ

eλtGα(λ) dλ, t > 0,

I, t = 0.

Lemma 2.2 ([SA]). Assume that conditions (P1)–(P3) hold. Then there
exists a unique α-resolvent operator for problem (2.1)–(2.2).

Lemma 2.3 ([SA]). The function Rα : [0,∞) → L(X) is strongly con-
tinuous and Rα : (0,∞)→ L(X) is uniformly continuous.

Definition 2.4 ([SA]). For α ∈ (1, 2), we define a family (Sα(t))t≥0 by

Sα(t)x :=

t�

0

gα−1(t− s)Rα(s) ds for each t ≥ 0.

Lemma 2.5 ([SA]). If Rα(·) is exponentially bounded in L(X), then so
is Sα(·).

Lemma 2.6 ([SA]). If Rα(·) is exponentially bounded in L([D(A)]), then
so is Sα(·).

Lemma 2.7 ([SA]). If R(λα0 , A) is compact for some λα0 ∈ ρ(A), then so
are Rα(t) and Sα(t), for all t > 0.

Definition 2.8. A function x : (−∞, b] → X is called a mild solution
of the problem (1.1)–(1.3) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ J , ∆x(tk) =
Ik(xtk), k = 1, . . . ,m, the restriction of x to (tk, tk+1] (k = 0, 1, . . . ,m) is
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continuous, and

x(t) ∈



Rα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt)

+
	t
0 Sα(t− s)F (s, xρ(s,xs)) ds, t ∈ [0, t1],

Rα(t− t1)[x(t−1 ) + I1(xt1)−G(t1, xt+1
)]

+G(t, xt) +
	t
t1
Sα(t− s)F (s, xρ(s,xs)) ds, t ∈ (t1, t2],

...

Rα(t− tm)[x(t−m) + Im(xtm)−G(tm, xt+m)]

+G(t, xt) +
	t
tm
Sα(t− s)F (s, xρ(s,xs)) ds, t ∈ (tm, b].

Lemma 2.9. A set B ⊆ PC is relatively compact in PC if, and only if,
the set B̂k is relatively compact in C([tk, tk+1], X) for every k = 0, 1, . . . ,m.

Lemma 2.10 (Dhage’s fixed point theorem [D]). Let X be a Banach
space, and Φ1 : X → Pcl,cv,bd(X) and Φ2 : X → Pcp,cv(X) be two multi-
valued operators such that

(a) Φ1 is a contraction, and
(b) Φ2 is completely continuous.

Then either

(i) the operator inclusion x ∈ Φ1x+ Φ1x has a solution, or
(ii) the set G = {x ∈ X : x ∈ λΦ1x+ λΦ2x} is unbounded for ∈ (0, 1).

3. Main results. In this section we shall present and prove our main
results. Assume that ρ : J × B → (−∞, b] is continuous. In addition, we
make the following hypotheses:

(H1) The operator families Rα(t) and Sα(t) are compact for all t > 0,
and there exist constants M and δ such that ‖Rα(t)‖L(X) ≤Meδt

and ‖Sα(t)‖L(X) ≤Meδt for every t ∈ J.
(H2) The function t 7→ ϕt is continuous from R(ρ−) = {(s, ψ) ∈ J ×B :

ρ(s, ψ) ≤ 0} into B and there exists a continuous and bounded
function Jϕ : R(ρ−) → (0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for
each t ∈ R(ρ−).

(H3) The multi-valued map F : J × B → Pbd,cl,cv(X) is such that for
each t ∈ J, the function F (t, ·) : B → Pbd,cl,cv(X) is u.s.c. and
for each ψ ∈ B, the function F (·, ψ) is measurable; for each fixed
ψ ∈ B, the set

SF,ψ = {f ∈ L1(J,X) : f(t) ∈ F (t, ψ) for a.e. t ∈ J}

is nonempty.
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(H4) There exist a continuous function m : J → [0,∞) and a continuous
nondecreasing function Θ : [0,∞)→ (0,∞) such that

‖F (t, ψ)‖ = sup{‖f‖ : f ∈ F (t, ψ)}
≤ m(t)Θ(‖ψ‖B), t ∈ J, ψ ∈ B,

with
∞�

1

1

s+Θ(s)
ds =∞.

(H5) The function G : J×B → X is continuous and there exists a L > 0
such that

‖G(t, ψ1)−G(t, ψ2)‖
≤ L[|t1 − t2|+ ‖ψ1 − ψ2‖B], t1, t2 ∈ J, ψ1, ψ2 ∈ B,

‖G(t, ψ)‖ ≤ L(‖ψ‖B + 1), t ∈ J, ψ ∈ B.
(H6) The functions Ik : B → X are continuous and there exist constants

ck such that

0 ≤ lim sup
‖ψ‖B→∞

‖Ik(ψ)‖
‖ψ‖B

≤ ck, ψ ∈ B, k = 1, . . . ,m.

Lemma 3.1 ([HG]). Let x : (−∞, b] → X be such that x0 = ϕ and
x|[0,b] ∈ PC(J,X). Then

‖xs‖B ≤ (Mb + Jϕ0 )‖ϕ‖B
+Kb sup{‖x(θ)‖ : θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Jϕ0 = supt∈R(ρ−) J
ϕ(t), Mb = supt∈JM(t), and Kb = supt∈J K(t).

Lemma 3.2 ([LO]). Let J be a compact interval and X be a Banach
space. Let F be a multi-valued map satisfying (H3) and let P be a continuous
linear operator from L1(J,X) to C(J,X). Then the operator

P ◦ SF : C(J,X)→ Pcp,cv(X), x 7→ (P ◦ SF )(x) := P (SF,x),

has a closed graph in C(J,X)× C(J,X).

Theorem 3.3. If the assumptions (H1)–(H6) are satisfied with ρ(t, ψ)
≤ t for every (t, ψ) ∈ J×B, then the problem (1.1)–(1.3) has a mild solution
on J, provided that

(3.1) max
1≤k≤m

{M∗N∗[1 +KbM(ck + L)] +KbLM} < 1,

where M = M max{1, eδb}, N∗ = max{1, e−δb}.

Proof. Consider the space BPC = {x : (−∞, b] → X : x0 = 0, x|J ∈
PC(J,X)} endowed with the uniform convergence topology and define a
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multi-valued map Φ : BPC → P(BPC) by letting Φx be the set of h ∈ BPC
such that

h(t) =



0, t ∈ (−∞, 0],

Rα(t)[ϕ(0)−G(0, ϕ)] +G(t, x̄t)

+
	t
0 Sα(t− s)f(s) ds, t ∈ [0, t1],

Rα(t− t1)[x̄(t−1 ) + I1(x̄t1)−G(t1, x̄t+1
)]

+G(t, x̄t) +
	t
t1
Sα(t− s)f(s) ds, t ∈ (t1, t2],

...

Rα(t− tm)[x̄(t−m) + Im(x̄tm)−G(tm, x̄t+m)]

+G(t, x̄t) +
	t
tm
Sα(t− s)f(s) ds, t ∈ (tm, b],

where f ∈ SF,x̄ρ = {f ∈ L1(J,X) : f(t) ∈ F (t, x̄ρ(s,x̄t)) a.e. t ∈ J}, and
x̄ : (−∞, 0]→ X is such that x̄0 = ϕ and x̄ = x on J. We aim to show that
Φ has a fixed point, which is a solution of (1.1)–(1.3).

Let {σn : n ∈ N} be a decreasing sequence in (0, t1) ⊂ (0, b) such that
limn→∞ σn = 0. We consider the following problem:

(3.2) cDαÑ(xt) ∈ AÑ(xt) +

t�

0

Q(t− s)Ñ(xs) ds+ F (t, xρ(t,xt)),

t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,

(3.3) x0 = ϕ ∈ B, x′(0) = 0,

(3.4) ∆x(tk) = Rα(σn)Ik(xtk), k = 1, . . . ,m,

where Ñ(xt) = ϕ(0) +Rα(σn)G(t, xt). We shall show that this problem has
a mild solution xn ∈ BPC.

For fixed n ∈ N, define a multi-valued map Φn : BPC → P(BPC) by
letting Φnx be the set of hn ∈ BPC such that

hn(t) =



0, t ∈ (−∞, 0],

Rα(t)[ϕ(0)−Rα(σn)G(0, ϕ)] +Rα(σn)G(t, x̄t)

+
	t
0 Sα(t− s)f(s) ds, t ∈ [0, t1],

Rα(t− t1)
[
x̄(t−1 ) +Rα(σn)I1(x̄t1)−Rα(σn)G(t1, x̄t+1

)
]

+Rα(σn)G(t, x̄t) +
	t
t1
Sα(t− s)f(s) ds, t ∈ (t1, t2],

...

Rα(t− tm)
[
x̄(t−m) +Rα(σn)Im(x̄tm)−Rα(σn)G(tm, x̄t+m)

]
+Rα(σn)G(t, x̄t) +

	t
tm
Sα(t− s)f(s) ds, t ∈ (tm, b],

where f ∈ SF,x̄ρ . It is easy to see that each fixed point of Φn is a mild
solution of the Cauchy problem (3.2)–(3.4).
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Let ϕ̄ : (−∞, 0) → X be the extension of (−∞, 0] such that ϕ̄(θ) =
ϕ(0) = 0 on J and Jϕ0 = sup{Jϕ(s) : s ∈ R(ρ−)}. Now, we consider the
multi-valued operators Φ1

n and Φ2
n defined by

(Φ1
nx)(t) =



0, t∈(−∞, 0],

−Rα(t)Rα(σn)G(0, ϕ) +Rα(σn)G(t, x̄t), t∈ [0, t1],

−Rα(t− t1)Rα(σn)G(t1, x̄t+1
) +Rα(σn)G(t, x̄t), t∈(t1, t2],

...

−Rα(t− tm)Rα(σn)G(tm, x̄t+m) +Rα(σn)G(t, x̄t), t∈(tm, b],

and

(Φ2
nx)(t) =



0, t ∈ (−∞, 0],

Rα(t)ϕ(0) +
	t
0 Sα(t− s)f(s) ds, t ∈ [0, t1],

Rα(t− t1)[x̄(t−1 ) +Rα(σn)I1(x̄t1)]

+
	t
t1
Sα(t− s)f(s) ds, t ∈ (t1, t2],

...

Rα(t− tm)[x̄(t−m) +Rα(σn)Im(x̄tm)]

+
	t
tm
Sα(t− s)f(s) ds, t ∈ (tm, b].

It is clear that Φn = Φ1
n + Φ2

n. The problem of finding mild solutions of
(1.1)–(1.3) is reduced to finding solutions of the operator inclusion x ∈
Φ1
n(x) + Φ2

n(x). We shall show that Φ1
n and Φ2

n satisfy the conditions of
Lemma 2.10.

Step 1. Φ1
n is a contraction on BPC.

Let t ∈ [0, t1] and v∗, v∗∗ ∈ BPC. From (H5) and Lemma 3.1, we have

‖(Φ1
nv
∗)(t)− (Φ2

nv
∗∗)(t)‖

≤ ‖Rα(σn)[G(t, v∗t)−G(t, v∗∗t)]‖ ≤ LMeδσn‖v∗t − v∗∗t‖B
≤ LMeδσnKb sup{‖v∗(τ)− v∗∗(τ)‖ : 0 ≤ τ ≤ t}
≤ LMeδσnKb sup

s∈[0,b]
‖v∗(s)− v∗∗(s)‖

= LMeδσnKb sup
s∈[0,b]

‖v∗(s)− v∗∗(s)‖ (since v̄ = v on J)

= LMeδσnKb‖v∗ − v∗∗‖PC .
Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

‖(Φ1
nv
∗)(t)− (Φ1

nv
∗∗)(t)‖

= ‖Rα(t− tk)[Rα(σn)(−G(tk, v∗t+k
) +G(tk, v∗∗t+k

))]‖

+ ‖Rα(σn)[G(t, v∗t)−G(t, v∗∗t)]‖
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≤Meδ(t−tk)LMeδσn‖v∗t+k − v
∗∗
t+k
‖B + LMeδσn‖v∗t − v∗∗t‖B

≤M∗N∗LMeδσnKb sup{‖v∗(τ)− v∗∗(τ)‖ : 0 ≤ τ ≤ b}
+ LMeδσnKb sup{‖v∗(τ)− v∗∗(τ)‖ : 0 ≤ τ ≤ t}
≤ (M∗N∗ + 1)LMeδσnKb sup

s∈[0,b]
‖v∗(s)− v∗∗(s)‖

= (M∗N∗ + 1)LMeδσnKb sup
s∈[0,b]

‖v∗(s)− v∗∗(s)‖ (since v̄ = v on J)

= (M∗N∗ + 1)LMeδσnKb‖v∗ − v∗∗‖PC ,

where M∗ = M max{1, eδb} and N∗ = max{1, e−δb}. Thus, for all t ∈ [0, b],

‖(Φ1
nv
∗)(t)− (Φ1

nv
∗∗)(t)‖ ≤ (M∗N∗ + 1)LMeδσnKb‖v∗ − v∗∗‖PC .

Since limn→∞ σn = 0, it follows that

‖(Φ1
nv
∗)(t)− (Φ1

nv
∗∗)(t)‖ ≤ L0‖v∗ − v∗∗‖PC .

Taking supremum over t gives

‖Φ1
nv
∗ − Φ1

nv
∗∗‖PC ≤ L0‖v∗ − v∗∗‖PC ,

where L0 = (M∗N∗ + 1)LMKb. By (3.1), we see that L0 < 1. Hence, Φ1
n is

a contraction on BPC.
Step 2. Φ2

n has compact, convex values and it is completely continuous.

(1) Φ2
nx is convex for each x ∈ BPC.

In fact, if h̃1
n, h̃

2
n belong to Φ2

nx, then there exist f1, f2 ∈ SF,x̄ρ such that

h̃in(t) = Rα(t)ϕ(0) +

t�

0

Sα(t− s)fi(s) ds, t ∈ [0, t1], i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ [0, t1] we have

(λh̃1
n + (1− λ)h̃2

n)(t) = Rα(t)ϕ(0) +

t�

0

Sα(t− s)[λf1(s) + (1− λ)f2(s)] ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

h̃in(t) = Rα(t− tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)] +

t�

tk

Sα(t− s)fi(s) ds, i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ (tk, tk+1], k = 1, . . . ,m, we have

(λh̃1
n + (1− λ)h̃2

n)(t) = Rα(t− tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)]

+

t�

tk

Sα(t− s)[λf1(s) + (1− λ)f2(s)] ds.
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Since SF,x̄ρ is convex (as F has convex values) we have (λh̃1
n + (1 − λ)h̃2

n)
∈ Φ2

nx.

(2) Φ2
n maps bounded sets into bounded sets in BPC.

Indeed, it is enough to show that there exists a positive constant L such
that for each h̃n ∈ Φ2

nx with x ∈ Br(0,BPC) = {x ∈ BPC : ‖x‖PC ≤ r},
one has ‖h̃n‖PC ≤ L. If h̃n ∈ Φ2

nx, then there exists f ∈ SF,x̄ρ such that, for
each t ∈ [0, t1],

(3.5) h̃n(t) = Rα(t)ϕ(0) +

t�

0

Sα(t− s)f(s) ds.

If x ∈ Br(0,BPC), from Lemma 3.1 it follows that

‖x̄ρ(s,x̄s)‖B ≤ (Mb + Jϕ0 )‖ϕ‖B +Kbr := r∗.

By (H1), (H4), from (3.5) we have, for t ∈ [0, t1],

‖h̃n(t)‖ ≤ ‖Rα(t)ϕ(0)‖+
www t�

0

Sα(t− s)f(s) ds
www

≤MeδtH̃‖ϕ‖B +Meδt
t�

0

e−δsm(s)Θ(‖x̄ρ(s,x̄s)‖B) ds

≤M∗H̃‖ϕ‖B +M∗Θ(r∗)

t1�

0

e−δsm(s) ds =: L0.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

(3.6) h̃n(t) = Rα(t− tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)] +

t�

0

Sα(t− s)f(s) ds.

However, on the other hand, from the condition (H6), we conclude that there
exist positive constants εk (k = 1, . . . ,m), γ1 such that, for all ‖ψ‖B > γ1,

‖Ik(ψ)‖ ≤ (ck + εk)‖ψ‖B,

max
1≤k≤m

{M∗N∗[1 +KbM(ck + εk + L)] +KbLM} < 1.(3.7)

Let

F1 = {ψ : ‖ψ‖B ≤ γ1}, F2 = {ψ : ‖ψ‖B > γ1},

C1 = max{‖Ik(ψ)‖ : x ∈ F1}.

Then

(3.8) ‖Ik(ψ)‖ ≤ C1 + (ck + εk)‖ψ‖B.
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By (H1), (H4), (3.8), from (3.6) we have for t ∈ (tk, tk+1], k = 1, . . . ,m,

‖h̃n(t)‖ ≤ ‖Rα(t− tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)]‖+
www t�

tk

Sα(t− s)f(s) ds
www

≤Meδ(t−tk){‖x̄(t−k )‖+Meδσn [C1 + (ck + εk)‖x̄tk‖B]}

+Meδt
t�

tk

e−δsm(s)Θ(‖x̄ρ(s,x̄s)‖B) ds

≤M∗N∗{r +Meδσn [C1 + (ck + εk)r
∗]}

+M∗Θ(r∗)

tk+1�

tk

e−δsm(s) ds := Lk.

Take L = max0≤k≤m{Lk}. Then for each h̃n ∈ Φ2
nx, we have ‖h̃n‖PC ≤ L.

(3) Φ2
n maps bounded sets into equicontinuous sets of BPC.

Let 0 < τ1 < τ2 ≤ t1. For each x ∈ Br(0,BPC) and h̃n ∈ Φ2
nx, there

exists f ∈ SF,x̄ρ such that

(3.9) h̃n(t) = Rα(t)ϕ(0) +

t�

0

Sα(t− s)f(s) ds.

Then

‖h̃n(τ2)− h̃n(τ1)‖

≤ ‖[Rα(τ2)−Rα(τ1)]ϕ(0)‖+
wwwτ1−ε�

0

[Sα(τ2 − s)− Sα(τ1 − s)]f(s) ds
www

+
www τ1�

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s) ds

www+
wwwτ2�
τ1

Sα(τ2 − s)f(s) ds
www

≤ ‖[Rα(τ2)−Rα(τ1)]ϕ(0)‖

+Θ(r∗)

τ1−ε�

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖m(s) ds

+ 2M∗Θ(r∗)

τ1�

τ1−ε
e−δsm(s) ds+Meδτ2Θ(r∗)

τ2�

τ1

e−δsm(s) ds.

Similarly, for any τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, . . . ,m, we have

(3.10) h̃n(t) = Rα(t− tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)] +

t�

tk

Sα(t− s)f(s) ds.
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Then

‖h̃n(τ2)− h̃n(τ1)‖
≤ ‖[Rα(τ2)−Rα(τ1)][x̄(t−k ) +Rα(σn)Ik(x̄tk)]‖

+
wwwτ1−ε�

tk

[Sα(τ2 − s)− Sα(τ1 − s)]f(s) ds
www

+
www τ1�

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s) ds

www+
wwwτ2�
τ1

Sα(τ2 − s)f(s) ds
www

≤ ‖[Rα(τ2)−Rα(τ1)][x̄(t−k ) +Rα(σn)Ik(x̄tk)]‖

+Θ(r∗)

τ1−ε�

tk

‖Sα(τ2 − s)− Sα(τ1 − s)‖m(s) ds

+ 2M∗Θ(r∗)

τ1�

τ1−ε
e−δsm(s) ds+Meδτ2Θ(r∗)

τ2�

τ1

e−δsm(s) ds.

The right-hand side of the above inequality is independent of x ∈ Br(0,BPC)
and tends to zero as τ2 → τ1, with ε sufficiently small, since the compactness
of Rα(t), Sα(t) for t > 0 implies the continuity in the uniform operator
topology and the set {Rα(σn)Ik(x̄tk) : x ∈ Br(0,BPC), k = 1, . . . ,m} is
relatively compact in X.

It remains to prove that the functions Φ2
nx, x ∈ Br(0,BPC), are equicon-

tinuous at t = 0. Indeed, this is true since Rα(σn) is a compact operator.
Thus, the set {Φ2

nx : x ∈ Br(0,BPC)} is equicontinuous.

(4) Φ2
n is a compact multi-valued map.

From the above claims, we see that the family Φ2
nBr(0,BPC) is uniformly

bounded and equicontinuous. Therefore, it suffices to show by the Arzelà–
Ascoli theorem that Φ2

n maps Br(0,BPC) into a relatively compact set in X.

To this end, we decompose Φ2
n as Φ2

n = Γ 1
n + Γ 2

n , where the map Γ 1
n :

Br(0,BPC) → P(BPC) is defined by letting Γ 1
nx be the set of γ̃1

n ∈ BPC
such that

γ̃1
n(t) =



	t
0 Sα(t− s)f(s) ds, t ∈ [0, t1],
	t
t1
Sα(t− s)f(s) ds, t ∈ (t1, t2],

...	t
tm
Sα(t− s)f(s) ds, t ∈ (tm, b],

and the map Γ 2
n : Br(0,BPC) → P(BPC) is defined by letting Γ 2

nx be the
set of γ̃2

n ∈ BPC such that
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γ̃2
n(t) =


Rα(t)ϕ(0), t ∈ [0, t1],

Rα(t− t1)[x̄(t−1 ) +Rα(σn)I1(x̄t1)], t ∈ (t1, t2],
...

Rα(t− tm)[x̄(t−m) +Rα(σn)Im(x̄tm)], t ∈ (tm, b].

We now prove that Γ1(Br(0,BPC))(t)={γ̃1
n(t) : γ̃1

n(t)∈Γ 1
n(Br(0,BPC))}

is relatively compact for every t ∈ [0, b]. Let 0 < t ≤ s ≤ t1 be fixed, and let
ε be a real number satisfying 0 < ε < t. For x ∈ Br(0,BPC), we define

γ̃1,ε
n (t) =

t−ε�

0

Sα(t− s)f(s) ds,

where f ∈ SF,x̄ρ . Using the compactness of Sα(t) for t > 0, we deduce that

the set Uε(t) = {γ̃1,ε
n (t) : x ∈ Br(0,BPC)} is relatively compact in X for

every ε, 0 < ε < t. Moreover, for every x ∈ Br(0,BPC) we have

‖γ̃1
n(t)− γ̃1,ε

n (t)‖ ≤
www t�

t−ε
Sα(t− s)f(s) ds

www
≤M∗Θ(r∗)

t�

t−ε
e−δsm(s) ds.

Similarly, for any t ∈ (tk, tk+1] with k = 1, . . . ,m, let tk < t ≤ s ≤ tk+1 be
fixed, and let ε be a real number satisfying 0 < ε < t. For x ∈ Br(0,BPC),
we define

γ̃1,ε
n (t) =

t−ε�

tk

Sα(t− s)f(s) ds,

where f ∈ SF,x̄ρ . Using the compactness of Sα(t) for t > 0, we deduce that

the set Uε(t) = {γ̃1,ε
n (t) : x ∈ Br(0,BPC)} is relatively compact in X for all

0 < ε < t. Moreover, for every x ∈ Br(0,BPC) we have

‖γ̃1
n(t)− γ̃1,ε

n (t)‖ ≤
www t�

t−ε
Sα(t− s)f(s) ds

www
≤M∗Θ(r∗)

t�

t−ε
e−δsm(s) ds.

The right-hand side tends to zero as ε→ 0. Since there are relatively com-
pact sets arbitrarily close to the set U(t) = {γ̃1

n(t) : x ∈ Br(0,BPC)}, the
Arzelà–Ascoli theorem shows that Γ 2

n is a compact multi-valued map.

Next, we show that

Γ 2
n(Br(0,BPC))(t) = {γ̃2

n(t) : γ̃2
n(t) ∈ Γ2(Br(0,BPC))}
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is relatively compact for every t ∈ [0, b]. For all t ∈ [0, t1], since γ̃2
n(t) =

Rα(t)ϕ(0), by (H1), it follows that {γ̃2
n(t) : t ∈ [0, t1], x ∈ Br(0,BPC)} is

a compact subset of X. On the other hand, for t ∈ (tk, tk+1], k = 1, . . . ,m,
and x ∈ Br(0,BPC), there exists r′ > 0 such that

[̂̃γ2
n]k(t)

∈


Rα(t− tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)], t∈(tk, tk+1), x∈Br′(0,BPC),
Rα(tk+1 − tk)[x̄(t−k ) +Rα(σn)Ik(x̄tk)], t = tk+1, x ∈ Br′(0,BPC),
x̄(t−k ) +Rα(σn)Ik(x̄tk), t = tk, x ∈ Br′(0,BPC),

where Br′(0,BPC) is a closed ball of radius r′. From (3.8), Ik(x̄tk) is bounded
in X. By the compactness of (Rα(t))t>0, the sets {Rα(σn)Ik(x̄tk) : x ∈
Br′(0,BPC), k = 1, . . . ,m} are relatively compact in X. Also, it follows that

[̂̃γ2
n]k(t) is relatively compact in X, for all t ∈ [tk, tk+1], k = 1, . . . ,m. By

Lemma 2.9, we infer that Γ 2
n(Br(0,BPC)) is relatively compact. Moreover,

using the continuity of the operator Rα(t), for all t ∈ [0, b], we conclude that
the operator Γ 2

n is also a compact multi-valued map.

(5) Φ2
n has a closed graph.

Let x(j) → x∗, h̃
(j)
n ∈ Φ2

nx
(j), x(j) ∈ Br(0,BPC) and h̃

(j)
n → h̃∗n. From

Axiom (A), it is easy to see that (x(j))s → x∗s uniformly for s ∈ (−∞, b]
as j → ∞. We prove that h̃∗n ∈ Φ2

nx
∗. Now h̃

(j)
n ∈ Φ2

nx
(j) means that there

exists f (j) ∈ S
F,x(j)ρ

such that, for each t ∈ [0, t1],

h̃(j)
n (t) = Rα(t)ϕ(0) +

t�

0

Sα(t− s)f (j)(s) ds, t ∈ [0, t1].

We must prove that there exists f∗ ∈ SF,x∗ρ such that, for each t ∈ J,

h̃∗n(t) = Rα(t)ϕ(0) +

t�

0

Sα(t− s)f∗(s) ds, t ∈ [0, t1].

Now, for every t ∈ [0, t1], we haveww(h̃(j)
n (t)−Rα(t)ϕ(0))−

(
h̃∗n(t)−Rα(t)ϕ(0)

)ww
PC → 0 as j →∞.

Consider the continuous linear operator Ψ : L1([0, t1], X)→ C([0, t1], X),

Ψ(f)(t) =

t�

0

Sα(t− s)f(s) ds.

From Lemma 3.2, it follows that Ψ ◦ SF is a closed graph operator. Also,
from the definition of Ψ , for every t ∈ [0, t1],

h̃(j)
n (t)−Rα(t)ϕ(0) ∈ Ψ(S

F,x(j)ρ
).
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Since x(j) → x∗, for some f∗ ∈ SF,x∗ρ and all t ∈ [0, t1] we have

h̃∗n(t)−Rα(t)ϕ(0) =

t�

0

Sα(t− s)f∗(s) ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m,

h̃(j)
n (t) = Rα(t− tk)[x(j)(t−k ) +Rα(σn)Ik(x(j)

tk)]

+

t�

tk

Sα(t− s)f (j)(s) ds, t ∈ (tk, tk+1].

We must prove that there exists f∗ ∈ SF,x∗ρ such that, for each t ∈ (tk, tk+1],

h̃∗n(t) = Rα(t− tk)[x∗(t−k ) +Rα(σn)Ik(x∗tk)]

+

t�

tk

Sα(t− s)f∗(s) ds, t ∈ (tk, tk+1].

Now, for every t ∈ (tk, tk+1], k = 1, . . . ,m, we haveww(h̃(j)
n (t)−Rα(t− tk)[x(j)(t−k ) +Rα(σn)Ik(x(j)

tk)]
)

−
(
h̃∗(t)−Rα(t− tk)[x∗(t−k ) + Ik(x∗tk)]

)ww
PC → 0

as j →∞. Consider the continuous linear operator

Ψ : L1((tk, tk+1], X)→ C((tk, tk+1], X), k = 1, . . . ,m,

Ψ(f)(t) =

t�

tk

Sα(t− s)f(s) ds.

By Lemma 3.2, Ψ ◦ SF is a closed graph operator. Also, from the definition
of Ψ , for every t ∈ (tk, tk+1], k = 1, . . . ,m,

h̃(j)
n (t)−Rα(t− tk)[x(j)(t−k ) +Rα(σn)Ik(x(j)

tk)] ∈ Ψ(S
F,x(j)ρ

).

Since x(j) → x∗, for some f∗ ∈ SF,x∗ρ and all t ∈ (tk, tk+1] we have

h̃∗n(t)−Rα(t− tk)[x∗(t−k ) +Rα(σn)Ik(x∗tk)] =

t�

tk

Sα(t− s)f∗(s) ds.

Therefore, Φ2
n is a completely continuous multi-valued map, u.s.c. with con-

vex closed, compact values.

Step 3. The set

G = {x ∈ BPC : x ∈ λΦ1
nx+ λΦ2

nx for some λ ∈ (0, 1)}
is bounded on J.
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Let x ∈ BPC. Then there exists an f ∈ SF,x̄ρ such that

x(t) =



λRα(t)[ϕ(0)−Rα(σn)G(0, ϕ)] + λRα(σn)G(t, x̄t)

+λ
	t
0 Sα(t− s)f(s) ds, t ∈ [0, t1],

λRα(t− t1)[x̄(t−1 ) +Rα(σn)I1(x̄t1)−Rα(σn)G(t1, x̄t+1
)]

+λRα(σn)G(t, x̄t) + λ
	t
t1
Sα(t− s)f(s) ds, t ∈ (t1, t2],

...

λRα(t− tm)[x̄(t−m) +Rα(σn)Im(x̄tm)−Rα(σn)G(tm, x̄t+m)]

+λRα(σn)G(t, x̄t) + λ
	t
tm
Sα(t− s)f(s) ds, t ∈ (tm, b],

for some λ ∈ (0, 1). Then, by (H1), (H4) and (H5), from the above equation,
for t ∈ [0, t1] we have

‖x(t)‖ ≤Meδt[H̃‖ϕ‖B + LMeδσn(‖ϕ‖B + 1)] + LMeδσn(‖x̄t‖B + 1)

+Meδt
t�

0

e−δsm(s)Θ(‖x̄ρ(s,x̄s)‖B) ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m,

‖x(t)‖ ≤ Meδ(t−tk)
{
‖x̄(t−k )‖+Meδσn [C1 + (ck + εk)‖x̄tk‖B]

+ LMeδσn(‖x̄t+k ‖B + 1)
}

+ LMeδσn(‖x̄t‖B + 1) +Meδt
t�

tk

e−δsm(s)Θ(‖x̄ρ(s,x̄s)‖B) ds.

Then, for all t ∈ [0, b],

‖x(t)‖ ≤ M̃eδt +MeδtN∗
[
‖x̄(t−k )‖+Meδσn(ck + εk)‖x̄tk‖B

+ LMeδσn‖x̄t+k ‖B
]

+ LMeδσn‖x̄t‖B +Meδt
t�

0

e−δsm(s)Θ(‖x̄ρ(s,x̄s)‖B) ds,

where

M̃ = max
{
M [H̃‖ϕ‖B + LMeδσn(‖ϕ‖B + 1)] + LMeδσn ,

MN∗[MeδσnC1 + LMeδσn ] + LMeδσn
}
.

Since limn→∞ σn = 0, it follows that

‖x(t)‖ ≤ M̃eδt +MeδtN∗[‖x̄(t−k )‖+M(ck + εk)‖x̄tk‖B + LM‖x̄t+k ‖B]

+ LM‖x̄t‖B +Meδt
t�

0

e−δsm(s)Θ(‖x̄ρ(s,x̄s)‖B) ds.
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By Lemma 3.1, ρ(t, x̄t) ≤ t, t ∈ [0, b], and

‖x̄ρ(s,x̄s)‖B ≤ (Mb + Jϕ0 )‖ϕ‖B +Kb‖x‖t,

where ‖x‖t = sup0≤s≤t ‖x(s)‖. If v(t) = (Mb + Jϕ0 )‖ϕ‖B +Kb‖x‖t, then

v(t) ≤ (Mb + Jϕ0 )‖ϕ‖B +KbM̃eδt +MeδtN∗v(t)

+KbMeδtN∗[M(ck + εk)v(t) + LMv(t)]

+KbLMv(t) +KbMeδt
t�

0

e−δsm(s)Θ(v(s)) ds.

Since L̃ = max1≤k≤m{M∗N∗[1+KbM(ck+εk+L)]+KbLM} < 1, we obtain

e−δtv(t) ≤ 1

1− L̃

[
N∗(Mb + Jϕ0 )‖ϕ‖B +KbM̃ +KbM

t�

0

e−δsm(s)Θ(v(s)) ds
]
.

Denoting by w(t) the right-hand side of the above inequality, we have

v(t) ≤ eδtw(t) for all t ∈ J,

and

w(0) =
1

1− L̃
[N∗(Mb + Jϕ0 )‖ϕ‖B +KbM̃ ],

w′(t) =
1

1− L̃
KbMe−δtm(t)Θ(v(t))

≤ 1

1− L̃
KbMe−δtm(t)Θ(eδtw(t)), t ∈ J.

Then for each t ∈ J we have

(eδtw(t))′ = δeδtw(t) + w′(t)eδt

≤ δeδtw(t) +
1

1− L̃
KbMm(t)Θ(eδtw(t))

≤ max

{
δ,

1

1− L̃
KbMm(t)

}
[eδtw(t) +Θ(eδtw(t))], t ∈ J.

This implies that

eδtw(t)�

w(0)

du

u+Θ(u)
≤

b�

0

max

{
δ,

1

1− L̃
KbMm(s)

}
ds <∞.

This inequality shows that there is a constant K̃ such that eδtw(t) ≤ K̃,

t ∈ J, and hence ‖x‖PC ≤ 1
Kb
v(t) ≤ 1

Kb
eδtw(t) ≤ 1

Kb
K̃, where K̃ depends

only on M, δ, b and on the functions m(·) and Θ(·). This indicates that G
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is bounded on J. Consequently, by Lemma 2.10, Φ1
n + Φ2

n has a fixed point
x ∈ BPC, which is a mild solution of the problem (3.2)–(3.4). Then

(3.11)

xn(t) =



Rα(t)[ϕ(0)−Rα(σn)G(0, ϕ)]

+Rα(σn)G(t, x̄n,t) +
	t
0 Sα(t− s)fn(s) ds, t ∈ [0, t1],

Rα(t− t1)[x̄n(t−1 ) +Rα(σn)I1(x̄n,t1)−Rα(σn)G(t1, x̄n,t+1
)]

+Rα(σn)G(t, x̄n,t) +
	t
t1
Sα(t− s)fn(s) ds, t ∈ (t1, t2],

...

Rα(t− tm)[x̄n(t−m) +Rα(σn)Im(x̄n,tm)−Rα(σn)G(tm, x̄n,t+m)]

+Rα(σn)G(t, x̄n,t) +
	t
tm
Sα(t− s)fn(s) ds, t ∈ (tm, b],

for t ∈ [0, b], and some fn ∈ SF,x̄n,ρ .
Next we will show that the set {xn : n ∈ N} is relatively compact in

BPC. We consider the decomposition xn = x1
n + x2

n where

x1
n(t) =



−Rα(t)Rα(σn)G(0, ϕ)

+Rα(σn)G(t, x̄n,t) +
	t
0 Sα(t− s)fn(s) ds, t ∈ [0, t1],

−Rα(t− t1)Rα(σn)G(t1, x̄n,t+1
)

+Rα(σn)G(t, x̄n,t) +
	t
t1
Sα(t− s)fn(s) ds, t ∈ (t1, t2],

...

−Rα(t− tm)Rα(σn)G(tm, x̄n,t+m)

+Rα(σn)G(t, x̄n,t) +
	t
tm
Sα(t− s)fn(s) ds, t ∈ (tm, b],

for some fn ∈ SF,x̄n,ρ , and

x2
n(t) =


Rα(t)ϕ(0), t ∈ [0, t1],

Rα(t− t1)[x̄n(t−1 ) +Rα(σn)I1(x̄n,t1)], t ∈ (t1, t2],
...

Rα(t− tm)[x̄n(t−m) +Rα(σn)Im(x̄n,tm)], t ∈ (tm, b].

Step 4. {x1
n(t) : n ∈ N} is relatively compact in BPC.

(1) {x1
n : n ∈ N} is equicontinuous on J.

For ε > 0 and xn ∈ Br(0,BPC), there exists a constant η > 0 such that
for all t ∈ (0, t1] and ξ ∈ (0, η) with t+ ξ ≤ t1, we have
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‖x1
n(t+ ξ)− x1

n(t)‖
≤ ‖[Rα(t+ ξ)−Rα(t)]Rα(σn)G(0, ϕ)‖

+ ‖Rα(σn)[G(t+ ξ, x̄n,t+ξ)−G(t, x̄n,t)]‖

+
wwwt+ξ�

t

Sα(t+ ξ − s)fn(s) ds
www

+
www t�

0

[Sα(t+ ξ − s)− Sα(t− s)]fn(s) ds
www

≤ ‖[Rα(t+ ξ)−Rα(t)]Rα(σn)G(0, ϕ)‖

+MeδσnL[ξ + ‖x̄n,t+ξ − x̄n,t‖B] +M∗Θ(r∗)

t+ξ�

t

e−δsm(s) ds

+Θ(r∗)

t�

0

‖Sα(t+ ξ − s)− Sα(t− s)‖m(s) ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m,

‖x1
n(t+ ξ)− x1

n(t)‖
≤ ‖[Rα(t+ ξ)−Rα(t)]Rα(δn)G(tk, x̄n,t+k

)‖

+MeδσnL[ξ + ‖x̄n,t+ξ − x̄n,t‖B] +M∗Θ(r∗)

t+ξ�

t

e−σsm(s) ds

+Θ(r∗)

t�

tk

‖Sα(t+ ξ − s)− Sα(t− s)‖m(s) ds.

Then, for all t ∈ (0, b], using the compact operator property, we get either

(3.12) ‖[Rα(t+ ξ)−Rα(t)]Rα(δn)G(0, ϕ)‖ < ε/4,

or

(3.13) ‖[Rα(t+ ξ)−Rα(t)]Rα(δn)G(tk, x̄n,t+k
)‖ < ε/4,

and

MeδσnL[ξ + ‖x̄n,t+ξ − x̄n,t‖B] < ε/4,(3.14)

M∗Θ(r∗)

t+ξ�

t

e−δsm(s) ds < ε/4,(3.15)

Θ(r∗)

t�

0

‖Sα(t+ ξ − s)− Sα(t− s)‖m(s) ds < ε/4.(3.16)
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By (3.12)–(3.16) one has ‖x1
n(t+ ξ)−x1

n(t)‖ < ε. Therefore, {x1
n(t) : n ∈ N}

is equicontinuous for t ∈ (0, b]. Clearly {x1
n(0) : n ∈ N} is equicontinuous.

(2) {x1
n(t) : n ∈ N} is relatively compact in X.

Let t ∈ (0, t1], ε > 0, xn ∈ Br(0,BPC). There exists ξ ∈ (0, t) such that

‖x1
n(t)− xξn(t)‖ ≤

t�

t−ξ
‖S(t− s)fn(s)‖ ds ≤M∗Θ(r∗)

t�

t−ξ
e−δsm(s) ds < ε,

where

xξn(t) = −Rα(t)Rα(σn)G(0, ϕ) +Rα(σn)G(t, x̄n,t) +

t−ξ�

0

Sα(t− s)fn(s) ds

for some fn ∈ SF,x̄n,ρ .
Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, ε > 0, xn ∈ Br(0,BPC),

there exists ξ ∈ (0, t) such that

‖x1
n(t)− xξn(t)‖ ≤

t�

t−ξ
‖S(t− s)fn(s)‖ ds ≤M∗Θ(r∗)

t�

t−ξ
e−δsm(s) ds < ε,

where

xξn(t) = −Rα(t− tk)Rα(σn)G(tk, x̄n,t+k
) +Rα(σn)G(t, x̄n,t)

+

t−ξ�

tk

Sα(t− s)fn(s) ds

for some fn ∈ SF,x̄n,ρ . From (H5), we infer that G(tk, x̄n,t+k
) and G(t, x̄n,t)

are bounded in X. By the compactness of Rα(t), Sα(t) for t > 0, we see that

{xξn(t) : n ∈ N} is relatively compact in X. Combining the above shows that
{x1

n(t) : n ∈ N} is relatively compact in X.

Step 5. {x2
n(t) : n ∈ N} is relatively compact in BPC.

(1) {x2
n : n ∈ N} is equicontinuous on J.

Fix ε > 0 and 0 < t < t1. Since Rα(σn) is a compact operator, the
set W1 = {Rα(σn)G(0, ϕ)} is relatively compact in X. From the strong
continuity of (Rα(t))t≥0, we can choose 0 < η < b− t such that

‖(Rα(t+ ξ)−Rα(t))ν‖ < ε, ν ∈W1,

when |ξ| < η. For each xn ∈ Br,
‖x2

n(t+ ξ)− x2
n(t)‖ ≤ ‖[Rα(t+ ξ)−Rα(t)]Rα(δn)G(0, ϕ)‖ < ε.

The same holds for any t ∈ (tk, tk+1], k = 1, . . . ,m, and ε > 0. Since Rα(σn)
is a compact operator, the set W2 = {Rα(σn)Ik(x̄n,tk) : xn ∈ Br(0,BPC)} is
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relatively compact in X. From the strong continuity of (Rα(t))t≥0, for ε > 0
we can choose 0 < η < b− t such that

‖(Rα(t+ ξ)−Rα(t))ν‖ < ε, ν ∈W2,

when |ξ| < η. For each xn ∈ Br, t ∈ (tk, tk+1], k = 1, . . . ,m, we have

‖x2
n(t+ ξ)− x2

n(t)‖ ≤ ‖[Rα(t+ ξ − tk)−Rα(t− tk)]Rα(σn)Ik(x̄n,tk)‖ < ε.

As ξ → 0 and ε sufficiently small, the right-hand side of the above inequality

tends to zero independently of xn, so [x̂2
n]k, k = 1, . . . ,m, are equicontinuous.

(2) {x2
n(t) : n ∈ N} is relatively compact in X.

Let t ∈ (0, t1] and xn ∈ Br(0,BPC). By (H1), {x2
n(t) : t ∈ [0, t1], xn ∈

Br(0,BPC)} is a compact subset of X. Using similar arguments to those in
Step 2, for t ∈ (tk, tk+1], k = 1, . . . ,m, and xn ∈ Br(0,BPC), we find that

[x̂2
n]k(t) ∈



Rα(t− tk)[x̄n(t−k ) +Rα(σn)Ik(x̄n,tk)],

t ∈ (tk, tk+1), xn ∈ Br′(0,BPC),
Rα(tk+1 − tk)[x̄n(t−k ) +Rα(σn)Ik(x̄n,tk)],

t = tk+1, xn ∈ Br′(0,BPC),
x̄n(t−k ) +Rα(σn)Ik(x̄n,tk), t = tk, xn ∈ Br′(0,BPC),

where Br′(0,BPC) is a closed ball of radius r′. One sees that [x̂2
n]k(t), k =

1, . . . ,m, is relatively compact for every t ∈ [tk, tk+1], and {x2
n(t) : n ∈ N}

is relatively compact in X.

Thus, the set {xn : n ∈ N} is relatively compact in BPC. We may suppose
that

xn → x∗ ∈ BPC as n→∞.

Obviously, x∗ ∈ BPC, and taking limits in (3.11) one has

x∗(t) =



Rα(t)[ϕ(0)−G(0, ϕ)]

+G(t, x̄∗,t) +
	t
0 Sα(t− s)f∗(s) ds, t ∈ [0, t1],

Rα(t− t1)[x̄∗(t
−
1 ) + I1(x̄∗,t1)−G(t1, x̄∗,t+1

)]

+G(t, x̄∗,t) +
	t
t1
Sα(t− s)f∗(s) ds, t ∈ (t1, t2],

...

Rα(t− tm)[x̄n(t−m) + Im(x̄∗,tm)−G(tm, x̄∗,t+m)]

+G(t, x̄∗,t) +
	t
tm
Sα(t− s)f∗(s) ds, t ∈ (tm, b],

for t ∈ [0, b], and some f∗ ∈ SF,x̄∗,ρ , which implies that x∗ is a mild solution
of the problem (1.1)–(1.3), and the proof of Theorem 3.3 is complete.
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4. Application. Consider the following impulsive fractional partial
neutral functional integro-differential inclusions:

(4.1) Dα
t

[
z(t, x)−

t�

−∞
b1(s− t)z(s, x) ds

]
∈ ∂2

∂x2

[
z(t, x)−

t�

−∞
b1(s− t)z(s, x) ds

]
+

t�

0

(t− s)σe−µ(t−s) ∂
2

∂x2

[
z(s, x)−

s�

−∞
b1(τ − s)z(τ, x) dτ

]
ds

+

t�

−∞
b2
(
t, s− t, x, z(s− ρ1(t)ρ2(‖z(t)‖), x)

)
,

0 ≤ t ≤ b, 0 ≤ x ≤ π,
(4.2) z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ b,
(4.3) zt(0, x) = 0, 0 ≤ x ≤ π,
(4.4) z(τ, x) = ϕ(τ, x), τ ≤ 0, 0 ≤ x ≤ π,

(4.5) 4z(tk, x) =

tk�

−∞
ηk(s− tk)z(s, x) ds, k = 1, . . . ,m,

where Dα
t is the Caputo fractional partial derivative of order α ∈ (1, 2), and

σ, µ are positive numbers. Let X = L2([0, π]) with the norm ‖ ·‖, and define
the operator A : D(A) ⊆ X → X by Aω = ω′′ with the domain

D(A) := {ω∈X : ω, ω′ are absolutely continuous, ω′′∈X, ω(0)=ω(π)=0}.

Then

Aω =

∞∑
n=1

n2〈ω, ωn〉ωn, ω ∈ D(A),

where ωn(x) =
√

2/π sin(nx), n = 1, 2, . . . , is the orthogonal set of eigenvec-
tors of A. It is well known that A generates a strongly continuous semigroup
T (t), t ≥ 0, which is compact, analytic and self-adjoint in X; moreover, A is
sectorial and (P1) is satisfied. The operator Q(t) : D(A) ⊆ X → X, t ≥ 0,
is given by Q(t)x = tσe−ωtx′′ for x ∈ D(A). Moreover, it is easy to see that
conditions (P2) and (P3) in Section 2 are satisfied with b(t) = tσe−µt and
D = C∞0 ([0, π]), where C∞0 ([0, π]) is the space of infinitely differentiable
functions that vanish at x = 0 and x = π.

In the next applications, B will be the phase space PC0 × L2(h,X)
(see [HG]). Additionally, we will assume that

(i) The functions ρi : [0,∞)→ [0,∞), i = 1, 2, are continuous.
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(ii) The function b1 : R→ R is continuous, and LG=
(	0
−∞

(b1(s))2

h(s) ds
)1/2

<∞.
(iii) The function b2 : R4 → R is continuous and there exist continuous

functions a1, a2 : R→ R such that

|b2(t, s, x, y)| ≤ a1(t)a2(s)|y|, (t, s, x, y) ∈ R4,

with LF =
(	0
−∞

(a2(s))2

h(s) ds
)1/2

<∞.
(iv) The functions ηk : R→ R, k = 1, . . . ,m, are continuous, and Lk =(	0

−∞
(ηk(s))2

h(s) ds
)1/2

<∞ for every k = 1, . . . ,m,

Take ϕ ∈ B with ϕ(s)(s) = ϕ(s, τ). Let N,G : B → X, F : [0, b] × B →
Pbd,cl,cv(X) and ρ : [0, b]× B → R be the operators defined by

N(ψ)(x) = ψ(0, x) +G(ψ)(x), G(ψ)(x) =

0�

−∞
b1(s)ψ(s, x) ds,

F (t, ψ)(x) =

0�

−∞
b2(t, s, x, ψ(s, x)) ds,

ρ(t, ψ) = ρ1(t)ρ2(‖ψ(0)‖), Ik(ψ)(x) =

0�

−∞
ηk(s)ψ(s, x) ds.

Using these definitions, we can represent the system (4.1)–(4.5) in the ab-
stract form (1.1)–(1.3). Moreover, G, Ik are bounded linear operators on B
with ‖G‖ ≤ LG, ‖Ik‖ ≤ Lk, k = 1, . . . ,m. Using (iii), we see that F is contin-
uous and ‖F (t, ψ)‖ ≤ a(t)‖ψ‖B for all (t, ψ) ∈ J ×B, where a(t) = LFa1(t),
t ∈ [0, b]. Further, under suitable conditions on the above-defined functions
the assumptions of Theorem 3.3 are satisfied, and we can conclude that
system (4.1)–(4.5) has at least one mild solution on [0, b].
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[CN] C. Cuevas, G. M. N’Guérékata and M. Rabelo, Mild solutions for impulsive neutral
functional differential equations with state-dependent delay, Semigroup Forum 80
(2010), 375–390.

[DC] J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impul-
sive fractional equations with infinite delay, Int. J. Differential Equations 2011,
art. ID 793023, 20 pp.

[DN] M. A. Darwish and S. K. Ntouyas, Functional differential equations of fractional
order with state-dependent delay, Dynam. Systems Appl. 18 (2009), 539–550.

[DB] A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal
impulsive quasilinear delay integro-differential systems, Comput. Math. Appl. 62
(2011), 1442–1450.

[DE] K. Deimling, Multi-Valued Differential Equations, de Gruyter, Berlin, 1992.

[D] B. C. Dhage, Fixed-point theorems for discontinuous multi-valued operators on
ordered spaces with applications, Comput. Math. Appl. 51 (2006), 589–604.

[E1] M. M. El-Borai, Some probability densities and fundamental solutions of fractional
evolution equations, Chaos Solitons Fractals 14 (2002), 433–440.

[E2] M. M. El-Borai, Semigroups and some nonlinear fractional differential equations,
Appl. Math. Comput. 149 (2004), 823–831.

[GN] W. G. Glockle and T. F. Nonnemacher, A fractional calculus approach of self-
similar protein dynamics, Biophys. J. 68 (1995), 46–53.

[HC] W. M. Haddad, V. Chellaboina and S. G. Nersesov, Impulsive and Hybrid Dynam-
ical Systems: Stability, Dissipativity, and Control, Princeton Univ. Press, Prince-
ton, NJ, 2006.

[HK] J. K. Hale and J. Kato, Phase spaces for retarded equations with infinite delay,
Funkcial. Ekvac. 21 (1978), 11–41.

[HG] E. Hernández, M. Pierri and G. Goncalves, Existence results for an impulsive
abstract partial differential equation with state-dependent delay, Comput. Math.
Appl. 52 (2006), 411–420.

[HL] J. Hu and X. Liu, Existence results of impulsive partial neutral integrodifferential
inclusions with infinity delay, Nonlinear Anal. 71 (2009), e1132–e1138.

[HP] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Kluwer, Dor-
drecht, 1997.

[KS] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of
Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier, Am-
sterdam, 2006.

http://dx.doi.org/10.1016/j.camwa.2011.03.031
http://dx.doi.org/10.1007/s00233-010-9213-6
http://dx.doi.org/10.1016/j.camwa.2011.03.075
http://dx.doi.org/10.1016/j.camwa.2005.07.017
http://dx.doi.org/10.1016/S0960-0779(01)00208-9
http://dx.doi.org/10.1016/S0096-3003(03)00188-7
http://dx.doi.org/10.1016/S0006-3495(95)80157-8
http://dx.doi.org/10.1016/j.camwa.2006.03.022
http://dx.doi.org/10.1016/j.na.2009.01.099


Impulsive fractional integro-differential inclusions 169

[LB] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive
Differential Equations, World Sci., Singapore, 1989.

[LO] A. Lasota and Z. Opial, An application of the Kakutani–Ky Fan theorem in the
theory of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys. 13 (1965), 781–786.

[MS] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnemacher, Relaxation in filled
polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180–7186.

[MR] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differ-
ential Equations, Wiley, New York, 1993.

[M] G. M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional
differential equations, Nonlinear Anal. 72 (2010), 1604–1615.

[PO] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[RB] B. Radhakrishnan and K. Balachandran, Controllability of neutral evolution in-

tegrodifferential systems with state-dependent delay, J. Optim. Theory Appl. 153
(2012), 85–97.

[SA] J. P. C. Santos, M. M. Arjunan and C. Cuevas, Existence results for fractional
neutral integro-differential equations with state-dependent delay, Comput. Math.
Appl. 62 (2011), 1275–1283.

[SL] X.-B. Shu, Y. Lai and Y. Chen, The existence of mild solutions for impulsive
fractional partial differential equations, Nonlinear Anal. 74 (2011), 2003–2011.

[S] E. Stumpf, On a differential equation with state-dependent delay, J. Dynam. Dif-
ferential Equations 24 (2012), 197–248.

[Y1] Z. Yan, Existence of solutions for nonlocal impulsive partial functional integrodif-
ferential equations via fractional operators, J. Comput. Appl. Math. 235 (2011),
2252–2262.

[Y2] Z. Yan, Existence results for fractional functional integrodifferential equations with
nonlocal conditions in Banach spaces, Ann. Polon. Math. 97 (2010), 285–299.

[Y3] Z. Yan, On a nonlocal problem for fractional integrodifferential inclusions in Ba-
nach spaces, Ann. Polon. Math. 101 (2011), 87–103.

[YO] K. Yosida, Functional Analysis, 6th ed., Springer, Berlin, 1980.
[ZJ] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution

equations, Comput. Math. Appl. 59 (2010), 1063–1077.

Zuomao Yan, Hongwu Zhang
Department of Mathematics
Hexi University
Zhangye, Gansu 734000, P.R. China
E-mail: yanzuomao@163.com

Received 10.11.2012
and in final form 7.1.2013 (2945)

http://dx.doi.org/10.1063/1.470346
http://dx.doi.org/10.1016/j.na.2009.08.046
http://dx.doi.org/10.1007/s10957-011-9934-z
http://dx.doi.org/10.1016/j.camwa.2011.03.048
http://dx.doi.org/10.1016/j.na.2010.11.007
http://dx.doi.org/10.1007/s10884-012-9245-6
http://dx.doi.org/10.1016/j.cam.2010.10.022
http://dx.doi.org/10.4064/ap97-3-7
http://dx.doi.org/10.4064/ap101-1-9
http://dx.doi.org/10.1016/j.camwa.2009.06.026



	1 Introduction
	2 Preliminaries
	3 Main results
	4 Application
	References

