# A normality criterion for meromorphic functions having multiple zeros 

by Shanpeng Zeng (Hangzhou) and Indrajit Lahiri (Kalyani)


#### Abstract

We prove a normality criterion for a family of meromorphic functions having multiple zeros which involves sharing of a non-zero value by the product of functions and their linear differential polynomials.


1. Introduction, definitions and results. Let $f$ and $g$ be two meromorphic functions in the open complex plane $\mathbb{C}$. If for some $a \in \mathbb{C} \cup\{\infty\}$ the functions $f$ and $g$ have the same set of $a$-points ignoring multiplicities, we say that $f$ and $g$ share the value a $I M$ (ignoring multiplicities).

In 1959 W. K. Hayman [6] proposed the following:
Theorem A. If $f$ is a transcendental meromorphic function in $\mathbb{C}$, then $f^{n} f^{\prime}$ assumes every finite non-zero complex value infinitely often for any positive integer $n$.

Hayman [6] himself proved Theorem A for $n \geq 3$, and $n \geq 2$ if $f$ is entire. Further it was proved by E. Mues [12] for $n \geq 2$ and by J. Clunie [3] for $n \geq 1$ if $f$ is entire; also by W. Bergweiler and A. Eremenko [1] and by H. H. Chen and M. L. Fang [2] for $n=1$. Thus Theorem A is completely established.

In relation to Theorem A, Hayman [7] proposed the following conjecture on normal families.

Theorem B (Hayman's Conjecture). Let $\mathfrak{F}$ be a family of meromorphic functions in a domain $D \subset \mathbb{C}$, $n$ be a positive integer and a be a non-zero finite complex number. If $f^{n} f^{\prime} \neq a$ in $D$ for each $f \in \mathfrak{F}$, then $\mathfrak{F}$ is normal.

Theorem B was proved by L. Yang and G. Zhang [19, 20] (for $n \geq 5$ and $n \geq 2$ for a family of holomorphic functions), by Y. X. Gu [5] (for $n=3,4$ ), by I. B. Oshkin [13] (for holomorphic functions and $n=1$; see also [9) and

[^0]by X. C. Pang (for $n \geq 2$ ). It is indicated in [14] that the case $n=1$ is a consequence of the theorem of Chen-Fang [2].

In 2009 Q. Lu and Y. X. Gu [10] considered the general order derivative in Theorem B for $n=1$. Their result can be stated as follows:

Theorem C. Let $\mathfrak{F}$ be a family of meromorphic functions in a domain $D \subset \mathbb{C}, k$ be a positive integer and a be a finite non-zero complex number. If for each $f \in \mathfrak{F}$, the zeros of $f$ have multiplicities at least $k+2$ and $f$ satisfies $f f^{(k)} \neq a$ for $z \in D$, then $\mathfrak{F}$ is normal.

Recently J. Xu and W. Cao [18] improved Theorem C by including meromorphic functions having zeros with multiplicities at least $1+k$.

In 2011 D. W. Meng and P. C. Hu [11] improved the result of J. Xu and W. Cao [18] by including the possibility when $f f^{(k)}$ is allowed to assume the value $a$. The following is the result of Meng and Hu [11].

Theorem D ([11]). Let $\mathfrak{F}$ be a family of meromorphic functions in a domain $D \subset \mathbb{C}, k$ be a positive integer and a be a finite non-zero complex number. If for each $f \in \mathfrak{F}$, the zeros of $f$ have multiplicities at least $1+k$, and for each pair of functions $f, g \in \mathfrak{F}, f f^{(k)}$ and $g g^{(k)}$ share the value a IM, then $\mathfrak{F}$ is normal.

Let $f$ be a meromorphic function in $D \subset \mathbb{C}$ and $k$ be a positive integer. A linear differential polynomial $L(f)$ is defined as

$$
L(f)=a_{1} f^{(1)}+\cdots+a_{k} f^{(k)}
$$

where $a_{1}, \ldots, a_{k}(\neq 0)$ are constants.
In the paper we investigate the situation when in Theorem $\mathrm{D}, f f^{(k)}$ and $g g^{(k)}$ are respectively replaced by $f L(f)$ and $g L(g)$. The following is our main result.

THEOREM 1.1. Let $\mathfrak{F}$ be a family of meromorphic functions in a domain $D \subset \mathbb{C}$ such that $L(f) \not \equiv 0$ for $f \in \mathfrak{F}$, $k$ be a positive integer and $a$ be a finite non-zero complex number. If for each $f \in \mathfrak{F}$, the zeros of $f$ have multiplicities at least $1+k$, and for each pair of functions $f, g \in \mathfrak{F}, f L(f)$ and $g L(g)$ share the value a IM, then $\mathfrak{F}$ is normal.

Since the zeros of $f^{k+1}$ have multiplicities at least $k+1$, the following is a simple consequence of Theorem 1.1.

Corollary 1.1. Let $\mathfrak{F}$ be a family of meromorphic functions in a do$\operatorname{main} D \subset \mathbb{C}, k$ be a positive integer and a be a finite non-zero complex value. If for each pair of functions $f, g \in \mathfrak{F}, f^{k+1}\left(f^{k+1}\right)^{(k)}$ and $g^{k+1}\left(g^{k+1}\right)^{(k)}$ share the value a IM, then $\mathfrak{F}$ is normal.

The following example establishes the necessity of the hypothesis on the multiplicities of zeros.

Example 1.1 (cf. [11]). Let $D$ be a domain containing the point $1 / 2$ and

$$
\mathfrak{F}=\left\{f_{m}: f_{m}(z)=m z-\frac{m}{2}+\frac{a}{m} \text { for } m=1,2, \ldots\right\},
$$

where $a$ is a non-zero finite complex value. For distinct positive integers $m$ and $l$ we have $f_{m} f_{m}^{\prime}=m^{2}(z-1 / 2)+a$ and $f_{l} f_{l}^{\prime}=l^{2}(z-1 / 2)+a$. Hence $f_{m} f_{m}^{\prime}$ and $f_{l} f_{l}^{\prime}$ share the value $a$ CM. We note that each $f_{m}$ has only simple zeros. Since

$$
f_{m}^{\#}(1 / 2)=\frac{m^{3}}{m^{2}+|a|^{2}} \rightarrow \infty \quad \text { as } m \rightarrow \infty
$$

by Marty's criterion [16, p. 75] the family $\mathfrak{F}$ is not normal in $D$.
2. Lemmas. In this section we present some necessary lemmas.

Lemma 2.1 ([16, p. 101], [15). Let $\mathfrak{F}$ be a family of meromorphic functions in a domain $D \subset \mathbb{C}$. If $\mathfrak{F}$ is not normal in $D$, then there exist
(i) a number $r$ with $0<r<1$,
(ii) points $z_{j}$ satisfying $\left|z_{j}\right|<r$,
(iii) functions $f_{j} \in \mathfrak{F}$,
(iv) positive numbers $\rho_{j} \rightarrow 0$ as $j \rightarrow \infty$
such that $f_{j}\left(z_{j}+\rho_{j} \zeta\right) \rightarrow g(\zeta)$ as $j \rightarrow \infty$ locally spherically uniformly, where $g$ is a non-constant meromorphic function in $\mathbb{C}$ with $g^{\#}(\zeta) \leq g^{\#}(0)=1$. In particular, $g$ has order at most 2 .

Lemma 2.2. Let $R=A / B$ be a rational function and $B$ be non-constant. Then $\left(R^{(k)}\right)_{\infty} \leq(R)_{\infty}-k$, where $k$ is a positive integer, $(R)_{\infty}=\operatorname{deg}(A)-$ $\operatorname{deg}(B)$ and $\operatorname{deg}(A)$ denotes the degree of $A$.

Proof. By the quotient rule of differentiation we get

$$
R^{(1)}=\frac{A^{(1)} B-A B^{(1)}}{B^{2}}
$$

and so $\left(R^{(1)}\right)_{\infty} \leq \operatorname{deg}(A)-\operatorname{deg}(B)-1=(R)_{\infty}-1$. Now the lemma follows by induction.

Lemma 2.3. Let $f$ be a non-constant rational function, $k$ be a positive integer and a be a non-zero finite complex number. If $f$ has only zeros of multiplicities at least $1+k$, then $f L(f)-a$ has at least two distinct zeros.

Proof. We consider the following cases.
CASE 1. Let $f L(f)-a$ have exactly one zero at $z_{0}$.
Subcase 1.1. Let $f$ be a non-constant polynomial. Since $f$ has only zeros of multiplicities at least $1+k$, the degree of $f$ is at least $1+k(\geq 2)$.

So $f L(f)$ is a polynomial of degree at least $k+2(\geq 3)$. Since $z_{0}$ is the only zero of $f L(f)-a$, we can put

$$
\begin{equation*}
f L(f)-a=A\left(z-z_{0}\right)^{m}, \tag{2.1}
\end{equation*}
$$

where $A \neq 0, m \geq k+2$.
We see that a zero of $f$ is a zero of $f L(f)$ with multiplicity at least $k+2$ and so it is a zero of $(f L(f)-a)^{\prime}=(f L(f))^{\prime}$ with multiplicity at least $1+k$. Since $(f L(f)-a)^{\prime}=A m\left(z-z_{0}\right)^{m-1}$ has only one zero at $z_{0}$, and $f$, being non-constant, must have a zero, we see that $z_{0}$ is a zero of $f$. This contradicts (2.1).

Subcase 1.2. Let $f$ be a non-polynomial rational function. We put

$$
\begin{equation*}
f(z)=A \frac{\left(z-\alpha_{1}\right)^{m_{1}} \cdots\left(z-\alpha_{s}\right)^{m_{s}}}{\left(z-\beta_{1}\right)^{n_{1}} \cdots\left(z-\beta_{t}\right)^{n_{t}}}, \tag{2.2}
\end{equation*}
$$

where $A$ is a non-zero constant and $m_{i} \geq 1+k(i=1, \ldots, s)$ and $n_{j} \geq 1$ $(j=1, \ldots, t)$ are integers. We further put $M=m_{1}+\cdots+m_{s}$ and $N=$ $n_{1}+\cdots+n_{t}$.

From (2.2) we get upon differentiation

$$
\begin{equation*}
f^{(p)}(z)=\frac{\left(z-\alpha_{1}\right)^{m_{1}-p} \cdots\left(z-\alpha_{s}\right)^{m_{s}-p} g_{p}(z)}{\left(z-\beta_{1}\right)^{n_{1}+p} \cdots\left(z-\beta_{t}\right)^{n_{t}+p}} \tag{2.3}
\end{equation*}
$$

where $g_{p}$ is a polynomial for $p=1, \ldots, k$. Hence from (2.2) and (2.3) we obtain

$$
\begin{align*}
f L(f) & =\sum_{p=1}^{k} \frac{\left(z-\alpha_{1}\right)^{2 m_{1}-p} \cdots\left(z-\alpha_{s}\right)^{2 m_{s}-p} g_{p}(z)}{\left(z-\beta_{1}\right)^{2 n_{1}+p \cdots\left(z-\beta_{t}\right)^{2 n_{t}+p}}}  \tag{2.4}\\
& =\frac{\left(z-\alpha_{1}\right)^{2 m_{1}-k} \cdots\left(z-\alpha_{s}\right)^{2 m_{s}-k} g(z)}{\left(z-\beta_{1}\right)^{2 n_{1}+k} \cdots\left(z-\beta_{t}\right)^{2 n_{t}+k}}=\frac{P}{Q}, \quad \text { say }
\end{align*}
$$

where $P, Q$ and $g$ are polynomials. Since $f L(f)-a$ has exactly one zero $z_{0}$, from (2.4) we get

$$
\begin{equation*}
f L(f)=a+\frac{B\left(z-z_{0}\right)^{l}}{\left(z-\beta_{1}\right)^{2 n_{1}+k \cdots\left(z-\beta_{t}\right)^{2 n_{t}+k}}}=\frac{P}{Q}, \tag{2.5}
\end{equation*}
$$

where $l$ is a positive integer and $B$ is a non-zero constant.
From (2.4) and (2.5) we get upon differentiation

$$
\begin{equation*}
(f L(f))^{\prime}=\frac{\left(z-\alpha_{1}\right)^{2 m_{1}-k-1} \cdots\left(z-\alpha_{s}\right)^{2 m_{s}-k-1} G_{1}(z)}{\left(z-\beta_{1}\right)^{2 n_{1}+k+1} \cdots\left(z-\beta_{t}\right)^{2 n_{t}+k+1}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(f L(f))^{\prime}=\frac{\left(z-z_{0}\right)^{l-1} G_{2}(z)}{\left(z-\beta_{1}\right)^{2 n_{1}+k+1 \cdots\left(z-\beta_{t}\right)^{2 n_{t}+k+1}},} \tag{2.7}
\end{equation*}
$$

where $G_{1}$ and $G_{2}$ are polynomials. From (2.2) and (2.3) we obtain $(f)_{\infty}=$ $M-N$ and $\left(f^{(p)}\right)_{\infty}=(M-N)-(s+t) k+\operatorname{deg}\left(g_{p}\right)$. So by Lemma 2.2 we
deduce

$$
\begin{equation*}
\operatorname{deg}\left(g_{p}\right) \leq p(s+t-1) \tag{2.8}
\end{equation*}
$$

for $p=1, \ldots, k$.
From 2.4 and 2.5 again we get

$$
\begin{equation*}
(f L(f))_{\infty}=2(M-N)-k(s+t)+\operatorname{deg}(g) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(f L(f)-a)_{\infty}=l-2 N-k t \tag{2.10}
\end{equation*}
$$

Formulas 2.6 and 2.7 lead to

$$
\begin{equation*}
\left((f L(f))^{\prime}\right)_{\infty}=2(M-N)-(k+1)(s+t)+\operatorname{deg}\left(G_{1}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left((f L(f))^{\prime}\right)_{\infty}=l-1-2 N-(k+1) t+\operatorname{deg}\left(G_{2}\right) \tag{2.12}
\end{equation*}
$$

Let $\phi_{p}(z)=\left\{\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{s}\right)\right\}^{p}$ and $\psi_{q}(z)=\left\{\left(z-\beta_{1}\right) \cdots\left(z-\beta_{s}\right)\right\}^{q}$. Then $\operatorname{deg}\left(\phi_{p}\right)=s p$ and $\operatorname{deg}\left(\psi_{q}\right)=t q$. Also by a simple calculation we see that $g(z)$ as in (2.4) is

$$
g(z)=\phi_{0} \psi_{0} g_{k}(z)+\phi_{1} \psi_{1} g_{k-1}(z)+\cdots+\phi_{k-2} \psi_{k-2} g_{2}(z)+\phi_{k-1} \psi_{k-1} g_{1}(z)
$$

Hence by 2.8 we get
(2.13) $\operatorname{deg}(g) \leq \max \left\{\operatorname{deg}\left(g_{k}\right), \operatorname{deg}\left(g_{k-1}\right)+s+t, \ldots\right.$,

$$
\begin{aligned}
& \left.\operatorname{deg}\left(g_{1}\right)+(k-1)(s+t)\right\} \\
& \leq \max \{(s+t-1) k,(s+t-1) k+1,(s+t-1) k+2, \ldots, \\
& =(s+t-1) k+(k-1) . \\
& (s+t-1) k+(k-1)\}
\end{aligned}
$$

Using Lemma 2.2 from $2.9-2.13$ we get

$$
\begin{equation*}
\operatorname{deg}\left(G_{1}\right) \leq(s+t-1)(k+1)+(k-1) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg}\left(G_{2}\right) \leq t \tag{2.15}
\end{equation*}
$$

From (2.4) and 2.5 we see that $z_{0} \notin\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$. So 2.6 and 2.7) together imply that $\left(z-\alpha_{1}\right)^{2 m_{1}-k-1} \cdots\left(z-\alpha_{s}\right)^{2 m_{s}-k-1}$ is a factor of $G_{2}$. Therefore by 2.15 we get

$$
\begin{equation*}
2 M-(k+1) s \leq \operatorname{deg}\left(G_{2}\right) \leq t \tag{2.16}
\end{equation*}
$$

Since $M \geq(k+1) s$, from 2.16 we deduce

$$
\begin{equation*}
s \leq \frac{t}{k+1} \tag{2.17}
\end{equation*}
$$

Suppose that $l \geq 2 N+k t$. Then from (2.6, 2.7) we see that $\left(z-z_{0}\right)^{l-1}$ is a factor of $G_{1}$. Hence in view of (2.14) we get

$$
l-1 \leq \operatorname{deg}\left(G_{1}\right) \leq(k+1)(s+t-1)+(k-1)
$$

and so $2 N+k t \leq(k+1)(s+t-1)+k$, which by 2.17) implies $2 t \leq 2 N \leq$ $(k+1) s+(t-1) \leq 2 t-1$, a contradiction. Therefore $l<2 N+k t$.

From (2.4) and 2.5 again we find that

$$
2 M-k s+\operatorname{deg}(g)=\operatorname{deg}(P)=\operatorname{deg}(Q)=2 N+k t
$$

Hence from 2.13 we obtain

$$
2 N+k t \leq 2 M-k s+(s+t-1) k+(k-1)=2 M+k t-1
$$

This implies, in view of 2.16 ,

$$
2 M \leq(k+1) s+t \leq M+N \leq M+M-\frac{1}{2}=2 M-\frac{1}{2}
$$

a contradiction.
CASE 2. Let $f L(f)-a$ have no zero. Then $f$ cannot be a polynomial because in this case $f L(f)$ becomes a polynomial of degree at least $k+2$ $(\geq 3)$. Hence $f$ is a non-polynomial rational function. Now putting $l=0$ in (2.5) and proceeding as in Subcase 1.2 we arrive at a contradiction. This proves Lemma 2.3.

A quasi-differential polynomial $P$ of a meromorphic function $f$ is defined by

$$
P(z)=\sum_{i=1}^{t} \phi_{i}(z)
$$

where

$$
\phi_{i}(z)=\alpha_{i}(z) \prod_{j=0}^{p}\left(f^{(j)}(z)\right)^{S_{i j}}, \quad \alpha_{i}(z) \not \equiv 0
$$

is a meromorphic function such that $m\left(r, \alpha_{i}\right)=S(r, f)$ and $S_{i j}$ 's are nonnegative integers. The number

$$
\gamma_{P}=\max _{1 \leq i \leq n} \sum_{j=0}^{p} S_{i j}
$$

is called the degree of the quasi-differential polynomial $P$.
Lemma 2.4 ([4], see also [8, p. 39]). Let $f$ be a non-constant meromorphic function and $Q_{1}, Q_{2}$ be quasi-differential polynomials in $f$ with $Q_{2} \not \equiv 0$. Let $n$ be a positive integer and $f^{n} Q_{1}=Q_{2}$. If $\gamma_{Q_{2}} \leq n$, then $m\left(r, Q_{1}\right)=S(r, f)$, where $\gamma_{Q_{2}}$ is the degree of $Q_{2}$.

Lemma 2.5. Let $f$ be a transcendental meromorphic function having no zero of multiplicity less than $1+k$ such that $L(f) \not \equiv 0$. If a is a finite non-zero complex number, then $F=f L(f)-a$ has infinitely many zeros.

Proof. Without loss of generality we may put $a=1$. First we verify that $f L(f)$ is non-constant. If $f L(f) \equiv K$, a constant, then we see that $f$ has
neither any pole nor any zero. So there exists an entire function $\alpha$ such that $f=e^{\alpha}$. Hence $Q\left(\alpha^{\prime}\right) e^{2 \alpha} \equiv K$, where $Q$ is a differential polynomial in $\alpha^{\prime}$. This implies, by the first fundamental theorem, $T\left(r, e^{2 \alpha}\right)=T\left(r, Q\left(\alpha^{\prime}\right)\right)+O(1)=$ $S\left(r, e^{2 \alpha}\right)$, a contradiction. Therefore $f L(f)$ is non-constant. Since

$$
\begin{equation*}
F=f L(f)-1 \tag{2.18}
\end{equation*}
$$

we get

$$
\begin{equation*}
T(r, F)=O(T(r, f)) \tag{2.19}
\end{equation*}
$$

Also

$$
\begin{equation*}
f h=-\frac{F^{\prime}}{F} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
h=\frac{f^{\prime}}{f} L(f)+L^{\prime}(f)-L(f) \frac{F^{\prime}}{F} \tag{2.21}
\end{equation*}
$$

As $F$ is non-constant, by 2.20 we see that $h \not \equiv 0$. By Lemma 2.4 applied to 2.20 we get, in view of $(2.19)$,

$$
\begin{equation*}
m(r, h)=S(r, f) \tag{2.22}
\end{equation*}
$$

Since a pole of $f$ is a simple pole of $F^{\prime} / F$, it follows from 2.20 that a pole of $f$ with multiplicity $q(\geq 2)$ is a zero of $h$ with multiplicity $q-1$. Hence

$$
\begin{equation*}
N_{(2}(r, \infty ; f) \leq 2 N(r, 0 ; h) \tag{2.23}
\end{equation*}
$$

where $N_{(2}(r, \infty ; f)$ denotes the counting function of multiple poles of $f$.
If possible, we suppose that $F$ has only a finite number of zeros. Hence

$$
\begin{equation*}
N(r, 0 ; F)=O(\log r)=S(r, f) \tag{2.24}
\end{equation*}
$$

Also we deduce from 2.20 that a simple pole of $f$ is neither a zero nor a pole of $h$.

A zero of $f$ with multiplicity $q(\geq 1+k)$ is a zero of $F^{\prime}=f^{\prime} L(f)+f L^{\prime}(f)$ with multiplicity at least $2 q-(k+1)$. Hence from 2.20 we see that it is not a pole of $h$. Therefore the poles of $h$ are provided by the zeros of $F$. Hence by 2.24 we get

$$
\begin{equation*}
N(r, \infty ; h) \leq N(r, 0 ; F)=S(r, f) \tag{2.25}
\end{equation*}
$$

So from 2.22 and 2.25 we obtain

$$
\begin{equation*}
T(r, h)=S(r, f) \tag{2.26}
\end{equation*}
$$

Hence 2.23 and (2.26 imply

$$
\begin{equation*}
N_{(2}(r, \infty ; f)=S(r, f) \tag{2.27}
\end{equation*}
$$

By 2.20, 2.26) and the first fundamental theorem we get

$$
\begin{equation*}
m(r, f) \leq m(r, 1 / h)+m\left(r, F^{\prime} / F\right)=S(r, f) \tag{2.28}
\end{equation*}
$$

Combining 2.27 and 2.28 we obtain

$$
\begin{equation*}
T(r, f)=N_{1)}(r, \infty ; f)+S(r, f) \tag{2.29}
\end{equation*}
$$

where $N_{1)}(r, \infty ; f)$ denotes the counting function of simple poles of $f$.
Let $z_{0}$ be a simple pole of $f$. Then $h\left(z_{0}\right) \neq 0, \infty$. Let, in some neighbourhood of $z_{0}$,

$$
\begin{align*}
& f(z)=\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)  \tag{2.30}\\
& h(z)=h\left(z_{0}\right)+h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2} \tag{2.31}
\end{align*}
$$

where $c_{1} \neq 0$. Differentiating both sides of 2.30 we get

$$
\begin{equation*}
f^{(j)}(z)=\frac{(-1)^{j} c_{1} j!}{\left(z-z_{0}\right)^{j+1}}+O(1) \tag{2.32}
\end{equation*}
$$

for $j=1,2, \ldots$ Therefore

$$
\begin{equation*}
L(f)=\sum_{j=1}^{k} a_{j} \frac{(-1)^{j} c_{1} j!}{\left(z-z_{0}\right)^{j+1}}+O(1) \tag{2.33}
\end{equation*}
$$

$$
\begin{equation*}
L^{\prime}(f)=\sum_{j=1}^{k} a_{j} \frac{(-1)^{j+1} c_{1}(j+1)!}{\left(z-z_{0}\right)^{j+2}}+O(1) \tag{2.34}
\end{equation*}
$$

Also from 2.20 and 2.21 we have

$$
\begin{equation*}
f h=f^{\prime} L(f)+f L^{\prime}(f)+f^{2} L(f) h \tag{2.35}
\end{equation*}
$$

Now from 2.30-2.35 we obtain

$$
\begin{aligned}
& \left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\}\left\{h\left(z_{0}\right)+h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\} \\
& =\left\{\frac{-c_{1}}{\left(z-z_{0}\right)^{2}}+O(1)\right\}\left\{\sum_{j=1}^{k} a_{j} \frac{(-1)^{j} c_{1} j!}{\left(z-z_{0}\right)^{j+1}}+O(1)\right\} \\
& \quad+\left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\}\left\{\sum_{j=1}^{k} a_{j} \frac{(-1)^{j+1} c_{1}(j+1)!}{\left(z-z_{0}\right)^{j+2}}+O(1)\right\}^{\prime} \\
& \quad+\left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\}^{2}\left\{h\left(z_{0}\right)+h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\} \\
& \quad \times\left\{\sum_{j=1}^{k} a_{j} \frac{(-1)^{j} c_{1} j!}{\left(z-z_{0}\right)^{j+1}}+O(1)\right\}
\end{aligned}
$$

Comparing the coefficients of $1 /\left(z-z_{0}\right)^{k+3}$ and $1 /\left(z-z_{0}\right)^{k+2}$ on both sides, we respectively get

$$
\begin{equation*}
c_{1} h\left(z_{0}\right)=k+2 \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c_{0}}{c_{1}}=\frac{(k+1) a_{k-1}}{k(k+3) a_{k}}-\frac{1}{k+3}-\frac{(k+2) h^{\prime}\left(z_{0}\right)}{(k+3) h\left(z_{0}\right)} . \tag{2.37}
\end{equation*}
$$

From (2.30) and 2.32 we obtain

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\frac{-1}{z-z_{0}}+\frac{c_{0}}{c_{1}}+O\left(z-z_{0}\right) \tag{2.38}
\end{equation*}
$$

Also from 2.20, 2.30 and 2.31 we get

$$
\begin{align*}
-\frac{F^{\prime}}{F}=f h= & \left\{h\left(z_{0}\right)+h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right.  \tag{2.39}\\
& \left.+O\left(z-z_{0}\right)^{2}\right\}\left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\} \\
= & c_{1} h\left(z_{0}\right)\left\{\frac{1}{z-z_{0}}+\frac{h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}+\frac{c_{0}}{c_{1}}\right\}+O\left(z-z_{0}\right)
\end{align*}
$$

Formulas (2.36)-2.39) lead to

$$
\begin{align*}
(k+2)(k+3) \frac{f^{\prime}}{f} & -(k+3) \frac{F^{\prime}}{F}+(k+1)(k+2) \frac{h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}  \tag{2.40}\\
& =\frac{2(k+1)(k+2) a_{k-1}}{k a_{k}}-2(k+2)+O\left(z-z_{0}\right)
\end{align*}
$$

Let us put

$$
g=(k+2)(k+3) \frac{f^{\prime}}{f}-(k+3) \frac{F^{\prime}}{F}+(k+1)(k+2) \frac{h^{\prime}}{h}
$$

and

$$
A=\frac{2(k+1)(k+2) a_{k-1}}{k a_{k}}-2(k+2)
$$

If $g \equiv A$, then upon integration we get

$$
\begin{equation*}
f^{(k+2)(k+3)} h^{(k+1)(k+2)}=F^{k+3} e^{A z+B}, \tag{2.41}
\end{equation*}
$$

where $B$ is a constant.
Let $z_{1}$ be a zero of $f$ with multiplicity $q(\geq k+1)$. Then from (2.41) we see that $z_{1}$ is a pole of $h$ with multiplicity $p$ such that $q(k+2)(k+3)=$ $p(k+1)(k+2)$ and so

$$
p=\frac{k+3}{k+1} q>q
$$

Therefore $z_{1}$ is a pole of $f h$ with multiplicity $p-q$. Since $F\left(z_{1}\right)=-1$, we arrive at a contradiction by 2.20 . So $f$ has no zero. Hence by the first fundamental theorem we get

$$
\begin{aligned}
N(r, 1 / L(f)) & =N(r, 0 ; L(f) / f) \leq T(r, L(f) / f)+O(1) \\
& =N(r, L(f) / f)+S(r, f)=k \bar{N}(r, \infty ; f)+S(r, f) \\
& =N(r, \infty ; L(f))-N(r, \infty ; f)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
N(r, \infty ; f) \leq N(r, \infty ; L(f))-N(r, 0 ; L(f))+S(r, f) \tag{2.42}
\end{equation*}
$$

From (2.21) we have

$$
\frac{1}{L(f)}=\frac{1}{h}\left(\frac{f^{\prime}}{f}+\frac{L^{\prime}(f)}{L(f)}-\frac{F^{\prime}}{F}\right)
$$

and so $m(r, 0 ; L(f))=S(r, f)$. By the first fundamental theorem this implies

$$
\begin{equation*}
T(r, L(f))=N(r, 0 ; L(f))+S(r, f) \tag{2.43}
\end{equation*}
$$

From (2.42) and (2.43) we get $N(r, \infty ; f)=S(r, f)$, which contradicts 2.29). Therefore $g \not \equiv A$.

Now by (2.40) we see that $g\left(z_{0}\right)=A$ and so by $(2.23),(\sqrt{2.24}),(2.26)$ and the first fundamental theorem we get

$$
\begin{aligned}
N_{1)}(r, \infty ; f) \leq & N(r, A ; g) \leq T(r, g)+O(1) \leq N(r, g)+S(r, f) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; h)+\bar{N}(r, \infty ; h) \\
& +N_{(2}(r, \infty ; f)+S(r, f) \\
\leq & \frac{1}{k+1} N(r, 0 ; f)+S(r, f) \leq \frac{1}{k+1} T(r, f)+S(r, f),
\end{aligned}
$$

which contradicts (2.29). This proves Lemma 2.5 .
3. Proof of Theorem 1.1. We suppose that $\mathfrak{F}$ is not normal in $D$. Then by Lemma 2.1 there exist
(i) a number $r, 0<r<1$,
(ii) points $z_{j}$ satisfying $\left|z_{j}\right|<r$,
(iii) functions $f_{j} \in \mathfrak{F}$,
(iv) positive numbers $\rho_{j} \rightarrow 0$
such that $f_{j}\left(z_{j}+\rho_{j} \zeta\right)=g_{j}(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where $g$ is a non-constant meromorphic function on $\mathbb{C}$ such that $g^{\#}(\zeta) \leq g^{\#}(0)=1$. Also the order of $g(\zeta)$ is at most 2 .

We note by Hurwitz's theorem that zeros of $g$ are of multiplicities at least $k+1$. We see that

$$
f_{j}\left(z_{j}+\rho_{j} \zeta\right) L\left(f_{j}\left(z_{j}+\rho_{j} \zeta\right)\right)-a=g_{j}(\zeta) L\left(g_{j}(\zeta)\right)-a \rightarrow g(\zeta) L(g(\zeta))-a
$$

as $j \rightarrow \infty$ uniformly in any compact subset of $\mathbb{C}$ which does not contain any pole of $g$.

We now verify that $L(g) \not \equiv 0$. If possible, let $L(g) \equiv 0$. Then $g$ is an entire function. Also

$$
\begin{equation*}
a_{2} \frac{g^{(2)}}{g^{(1)}}+a_{3} \frac{g^{(3)}}{g^{(1)}}+\cdots+a_{k} \frac{g^{(k)}}{g^{(1)}} \equiv-a_{1} \tag{3.1}
\end{equation*}
$$

If $\left(a_{1}, \ldots, a_{k-1}\right)=(0, \ldots, 0)$, then from 3.1 we get $g^{(k)} \equiv 0$ and so $g$ is a polynomial of degree at most $k-1$, which is impossible as $g$ has no zero of multiplicity less than $k+1$. Hence $\left(a_{1}, \ldots, a_{k-1}\right) \neq(0, \ldots, 0)$.

If $k=1$, then $L(g) \equiv 0$ implies $g^{(1)} \equiv 0$, which is impossible as $g$ is non-constant. So $k \geq 2$ and we see from (3.1) that $g$ has no zero. Hence by Hurwitz's theorem $g_{j}$ has no zero and no pole for all large values of $j$.

We put $g_{j}(\zeta)=e^{\alpha_{j}(\zeta)}$, where $\alpha_{j}(\zeta)$ is an entire function. Now $g_{j} L\left(g_{j}\right)=$ $Q_{j}\left(\alpha_{j}^{\prime}\right) e^{2 \alpha_{j}}$, where $Q_{j}\left(\alpha_{j}^{\prime}\right)$ is a differential polynomial in $\alpha_{j}^{\prime}$.

As $T\left(r, Q_{j}\left(\alpha_{j}^{\prime}\right)\right)=S\left(r, e^{2 \alpha_{j}}\right)$ and $L\left(g_{j}\right) \not \equiv 0$, by the second fundamental theorem we see that

$$
\begin{equation*}
\bar{N}\left(r, a ; g_{j} L\left(g_{j}\right)\right)=T\left(r, g_{j} L\left(g_{j}\right)\right)+S\left(r, g_{j} L\left(g_{j}\right)\right) \tag{3.2}
\end{equation*}
$$

Since $g_{j} L\left(g_{j}\right)-a \rightarrow g L(g)-a=-a$ as $j \rightarrow \infty$ uniformly in any compact subset of $\mathbb{C}$, by Hurwitz's theorem $g_{j} L\left(g_{j}\right)-a$ has no zero for all large values of $j$, a contradiction to $(3.2)$. Therefore $L(g) \not \equiv 0$. Also following the reasoning given in the first paragraph of the proof of Lemma 2.5 we can verify that $g L(g)$ is non-constant.

Now by Lemmas 2.3 and 2.5 we can choose $\zeta_{0}$ and $\zeta_{0}^{*}$ as two distinct zeros of $g L(g)-a$. Since zeros are isolated points, there exist two open discs $D_{1}$ and $D_{2}$ with centres at $\zeta_{0}, \zeta_{0}^{*}$ respectively such that $D_{1} \cup D_{2}$ contains only two zeros $\zeta_{0}, \zeta_{0}^{*}$ of $g L(g)-a$ and $D_{1} \cap D_{2}=\emptyset$.

By Hurwitz's theorem there exist two sequences $\left\{\zeta_{j}\right\} \subset D_{1},\left\{\zeta_{j}^{*}\right\} \subset D_{2}$ converging to $\zeta_{0}, \zeta_{0}^{*}$ respectively such that for $j=1,2, \ldots$,

$$
g_{j}\left(\zeta_{j}\right) L\left(g_{j}\left(\zeta_{j}\right)\right)=g_{j}\left(\zeta_{j}^{*}\right) L\left(g_{j}\left(\zeta_{j}^{*}\right)\right)=a
$$

Since $f_{1} L\left(f_{1}\right)$ and $f_{j} L\left(f_{j}\right)$ share $a$ IM for each $j=1,2, \ldots$, it follows that

$$
f_{1}\left(z_{j}+\rho_{j} \zeta_{j}\right) L\left(f_{1}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right)=f_{1}\left(z_{j}+\rho_{j} \zeta_{j}^{*}\right) L\left(f_{1}\left(z_{j}+\rho_{j} \zeta_{j}^{*}\right)\right)=a
$$

for $j=1,2, \ldots$.
By (ii) and (iv), considering a subsequence if necessary, we see that there exists a point $\xi,|\xi| \leq r$, such that $z_{j}+\rho_{j} \zeta_{j} \rightarrow \xi$ and $z_{j}+\rho_{j} \zeta_{j}^{*} \rightarrow \xi$ as $j \rightarrow \infty$. So $f_{1}(\xi) L\left(f_{1}(\xi)\right)=a$ and, since $a$-points are isolated, for sufficiently large values of $j$ we get $z_{j}+\rho_{j} \zeta_{j}=\xi=z_{j}+\rho_{j} \zeta_{j}^{*}$. Hence $\zeta_{j}=\left(\xi-z_{j}\right) / \rho_{j}=\zeta_{j}^{*}$, which is impossible as $D_{1} \cap D_{2}=\emptyset$. This proves Theorem 1.1.

## References

[1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamer. 11 (1995), 355-373.
[2] H. H. Chen and M. L. Fang, On the value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A 38 (1995), 789-798.
[3] J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389-392.
[4] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math. 98 (1982), 55-62.
[5] Y. X. Gu, On normal families of meromorphic functions, Sci. Sinica Ser. A 4 (1978), 373-384.
[6] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
[7] W. K. Hayman, Research Problems in Function Theory, Athlone Press, Univ. of London, 1967.
[8] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
[9] S. Y. Li and H. C. Xie, On normal families of meromorphic functions, Acta Math. Sinica 29 (1986), 468-476 (in Chinese).
[10] Q. Lu and Y. X. Gu, Zeros of differential polynomial $f(z) f^{(k)}(z)-a$ and its normality, Chinese Quart. J. Math. 24 (2009), 75-80.
[11] D. W. Meng and P. C. Hu, Normality criteria of meromorphic functions sharing one value, J. Math. Anal. Appl. 381 (2011), 724-731.
[12] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), 239-259.
[13] I. B. Oshkin, On a test for the normality of families of holomorphic functions, Uspekhi Mat. Nauk 37 (1982), no. 2, 221-222 (in Russian); English transl.: Russian Math. Surveys 37 (1982), no. 2, 237-238.
[14] X. C. Pang, Bloch's principle and normal criterion, Sci. Sinica Ser. A 11 (1988), 1153-1159; Sci. China Ser. A 32 (1989), 782-791.
[15] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
[16] J. L. Schiff, Normal Families, Springer, New York, 1993.
[17] J. P. Wang, On the value distribution of $f f^{(k)}$, Kyungpook Math. J. 46 (2006), 169-180.
[18] J. F. Xu and W. S. Cao, Some normality criteria of meromorphic functions, J. Inequal. Appl. 2010, art. ID 926302, 10 pp.
[19] L. Yang et G. Zhang, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples. I. Un nouveau critère et quelques applications, Sci. Sinica Ser. A 14 (1965), 1258-1271.
[20] L. Yang et G. Zhang, Recherches sur la normalité des famillies de fonctions analytiques à des valeurs multiples. II. Généralisations, Sci. Sinica Ser. A 15 (1966), 433-453.

Shanpeng Zeng
Department of Mathematics
Hangzhou Electronic Information Vocational School (Dingqiao campus)
Hangzhou, Zhejiang, 310021, P.R. China
E-mail: zengshanpeng@163.com

Indrajit Lahiri (corresponding author)
Department of Mathematics
University of Kalyani
Kalyani, West Bengal 741235, India
E-mail: ilahiri@hotmail.com

Received 9.11.2012 and in final form 29.1.2013


[^0]:    2010 Mathematics Subject Classification: 30D35, 30D45.
    Key words and phrases: meromorphic function, shared value, normality.

