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On a problem concerning quasianalytic local rings

by Hassan Sfouli (Kénitra)

Abstract. Let (Cn)n be a quasianalytic differentiable system. Let m ∈ N. We consider

the following problem: let f ∈ Cm and f̂ be its Taylor series at 0 ∈ Rm. Split the set Nm

of exponents into two disjoint subsets A and B, Nm = A ∪B, and decompose the formal
series f̂ into the sum of two formal series G and H, supported by A and B, respectively.
Do there exist g, h ∈ Cm with Taylor series at zero G and H, respectively? The main
result of this paper is the following: if we have a positive answer to the above problem
for some m ≥ 2, then the system (Cn)n is contained in the system of analytic germs.
As an application of this result, we give a simple proof of Carleman’s theorem (on the
non-surjectivity of the Borel map in the quasianalytic case), under the condition that the
quasianalytic classes considered are closed under differentiation, for n ≥ 2.

1. Introduction. In this paper we consider the following problem con-
cerning quasianalytic classes, posed in [N1, N2] for a quasianalytic Denjoy–
Carleman class.

Problem. Let (Cn)n be a quasianalytic differentiable system. Let f ∈Cm
and f̂ be its Taylor series at 0 ∈ Rm. Split the set Nm of exponents into
two disjoint subsets A and B, Nm = A ∪ B, and decompose the formal

series f̂ into the sum of two formal series G and H, supported by A and B,
respectively. Do there exist g, h ∈ Cm with Taylor series at zero G and H,
respectively?

This problem is related to the question whether polynomials are dense
in a certain Hilbert space associated with a quasianalytic Denjoy–Carleman
class, investigated by Thilliez [T] in connection with his proof of Carleman’s
theorem on the failure of surjectivity for the Borel mapping. Clearly, the
above problem is trivial for the analytic system. In this paper, we solve this
problem for quasianalytic differentiable systems: we prove that if the an-
swer to this problem is affirmative for a given quasianalytic differentiable
system and some dimension m ≥ 2, then the system is contained in the
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analytic system. Furthermore, we present a simple proof of Carleman’s the-
orem (on the non-surjectivity of the Borel map in the quasianalytic case)
for quasianalytic differentiable Denjoy–Carleman classes. Finally, we give a
negative answer to the above problem for a differentiable analytic system
of an o-minimal structure. The work of this paper has been motivated by a
question (concerning the above problem) asked by K. J. Nowak [N2], who
was interested mainly in the diagonal splitting of exponents.

2. Quasianalytic differentiable systems. Let (X1, . . . , Xn) be an
n-tuple of distinct indeterminates with n ∈ N. The ring of formal se-
ries in X1, . . . , Xn over the field R of real numbers will be denoted by
R[[X1, . . . , Xn]], and the subring of R[[X1, . . . , Xn]] of formal series which
converge in some neighborhood of the origin in Rn will be denoted by
R〈X1, . . . , Xn〉.

Denote by An (resp. En) the ring of real-analytic (resp. smooth) function
germs at the origin of Rn, and by Pn the ring of germs, at the origin in Rn,
of polynomial functions. Clearly, Pn ⊆ An ⊆ En for all n ∈ N, and An is
isomorphic to R〈X1, . . . , Xn〉.

Definition 2.1. A differentiable system is a sequence

C = {Cn; n ∈ N}
such that, for each n ∈ N, Cn is a local subring of En and the following hold:

(C1) Pn ⊆ Cn ⊆ En;
(C2) if ϕ1, . . . , ϕn ∈ Cp are such that ϕ1(0) = · · · = ϕn(0) = 0, then for

every f ∈ Cn the composition f(ϕ1, . . . , ϕn) belongs to Cp;
(C3) ∂f/∂xi ∈ Cn for every f ∈ Cn and each i = 1, . . . , n.

Let

·̂ : Cn → R[[X1, . . . , Xn]]

be the map which associates to each f ∈ Cn its Taylor expansion. We con-
sider the following condition:

(C4) ·̂ is an injective homomorphism.

Definition 2.2. A differentiable system is called quasianalytic if the
condition (C4) holds.

Now, we consider the following two conditions:

(C5) For each n ≥ 2 and each f ∈ Cn there is a neighborhood, U , of the
origin in Rn such that the functions x 7→ f(x + a), a ∈ U , belong
to Cn.

(Sm) Let f ∈ Cm and f̂ be its Taylor series at 0 ∈ Rm. Split the set Nm
of exponents into two disjoint subsets A and B, Nm = A ∪B, and
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decompose the formal series f̂ into the sum of two formal series
G and H, supported by A and B, respectively. Then there exist
g, h ∈ Cm with Taylor series at zero G and H, respectively.

We can now state the main result of this paper, proved in Section 3.

Theorem 2.3. Let C = (Cn)n be a quasianalytic differentiable system
such that there is an integer m ≥ 2 for which the condition (Sm) holds.
Then:

(1) C1 ⊆ A1.
(2) If An ⊆ Cn for all n ≥ 2, then Cn = An for every n ∈ N.
(3) If the condition (C5) holds, then Cn ⊆ An for every n ∈ N.

3. Proof of Theorem 2.3. For the proof of Theorem 2.3 we need a
few lemmas.

Lemma 3.1. Let C = (Cn)n be a quasianalytic differentiable system. As-
sume that there is an integer m ≥ 2 such that the condition (Sm) holds.
Then the conditions (S1) and (S2) hold.

Proof. Let f ∈ C2. Put g(x1, . . . , xm) := f(x1, x2). By (C2), g ∈ Cm.
Split N2 into disjoint subsets A and B, N2 = A ∪ B, and decompose the
formal series f̂ into the sum of two formal series G and H, supported by
A and B, respectively. Put A′ = A × Nm−2 and B′ = B × Nm−2. Clearly,
A′ ∪ B′ = Nm and A′ ∩ B′ = ∅. Now, we decompose ĝ into the sum of
two formal series G′ and H ′, supported by A′ and B′, respectively. Then
there exist g0, g1 ∈ Cm with Taylor series at zero G′ and H ′, respectively.
By (C2), the germs f0 and f1 given by f0(x1, x2) = g0(x1, x2, 0, . . . , 0) and

f1(x1, x2) = g1(x1, x2, 0, . . . , 0) belong to C2. Clearly, f̂0 = ĝ0 = G′ = G and

f̂1 = ĝ1 = H ′ = H. Therefore, the condition (S2) holds. Using the same
discussion (with obvious changes), we can see that (S1) holds.

Proof of Theorem 2.3(1). Only in this proof X = X1, Y = X2, x = x1
and y = x2. Let f ∈ C1. Put g(x, y) = f(x+ y). We have g ∈ C2. Put

ĝ =
∑

(α,β)∈N2

aα,βX
αY β.

For each l ∈ {0, 1, 2, 3}, put Al = {(k, 4p+ l); k, p ∈ N}. Clearly the sets
Al, l = 0, 1, 2, 3, are disjoint and

3⋃
l=0

Al = N2.

Decompose the formal series ĝ into the sum of formal series H0, H1, H2

and H3, supported by A0, A1, A2 and A3, respectively. By Lemma 3.1, for
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each l ∈ {0, 1, 2, 3} there exists gl ∈ C2 such that ĝl = Hl. We have

f̂(X + iY ) = ĝ(X, iY ) =
∑

(α,β)∈N2

aα,βX
α(i)βY β = ĝ0 + iĝ1 − ĝ2 − iĝ3.

Put u = g0 − g2 and v = g1 − g3. Hence

(3.1) f̂(X + iY ) = û+ iv̂.

From (3.1), we have the Cauchy–Riemann equalities

∂û

∂X
=

∂v̂

∂Y
and

∂v̂

∂X
= − ∂û

∂Y
.

Then, by quasianalyticity, these equalities are satisfied by the functions u
and v themselves.

The function given by F (x+ iy) = u(x, y) + iv(x, y) is then holomorphic
in a neighborhood of the origin in C. Thus u and v belong to A2. Since
f̂ ∈ R[[X]], f̂(X) = û(X, 0) + iv̂(X, 0) = û(X, 0). Clearly the function u0
given by u0(x) = u(x, 0) belongs to A1 ∩ C1 and û0 = f̂ . Therefore, by
quasianalyticity, f = u0 ∈ A1.

Let F ∈ R[[X1, . . . , Xn]] and Sn−1 be the unit sphere of Rn. If ξ ∈ Sn−1,
write Fξ(t) = f(ξt) ∈ R[[t]].

Lemma 3.2 ([AM]). Let F ∈ R[[X1, . . . , Xn]]. Assume that Fξ(t) ∈ R〈t〉
for each ξ ∈ Sn−1. Then F ∈ R〈X1, . . . , Xn〉.

Corollary 3.3. Let C = (Cn)n be a quasianalytic differentiable system.
Assume that there is an integer m ≥ 2 for which the condition (Sm) holds.

Then for all n and all f ∈ Cn we have f̂ ∈ R〈X1, . . . , Xn〉.

Proof. Let f ∈ Cn. By Theorem 2.3(1), for each ξ ∈ Sn−1, we have

f̂ξ ∈ R〈t〉. Hence by Lemma 3.2, f̂ ∈ R〈X1, . . . , Xn〉.

Proof of Theorem 2.3(2). Let f ∈ Cn. By Corollary 3.3, we have f̂ ∈
R〈X1, . . . , Xn〉. Let g be the germ of f̂ at the origin of Rn. By the hypothesis,

g ∈ Cn. Since ĝ = f̂ , f = g ∈ An by quasianalyticity.

Proof of Theorem 2.3(3). Let f ∈ Cn. As before, f̂ ∈ R〈X1, . . . , Xn〉. Let

g be the germ of f̂ at the origin of Rn. By the hypothesis, there exists ε > 0
such that the functions x 7→ f(x) and x 7→ g(x) are well defined on

B := {x; ‖x‖ < ε}
and for all a ∈ B the function x 7→ f(x + a) belongs to Cn. Using again
Theorem 2.3(1), it is easy to see that for all ξ ∈ Sn−1 and t ∈ (−ε, ε) we
have f(tξ) = g(tξ). Therefore, f = g ∈ An.

The following corollary is an extension of [ES, Theorem 2].
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Corollary 3.4. Let C = (Cn) be a quasianalytic differentiable system.
Then for n ≥ 2 the Taylor map T : Cn → R[[X1, . . . , Xn]] is not surjective.

Proof. Clearly, if T : Cn → R[[X1, . . . , Xn]] is surjective for some n ≥ 2,
then T : C2 → R[[X1, X2]] is surjective. It suffices to prove that T : C2 →
R[[X1, X2]] is not surjective. Suppose it is. Clearly, T : C1 → R[[X1]] is
surjective. It is easy to see that the condition (S2) holds for C2. Hence, by
Theorem 2.3(1), C1 ⊆ A1. This is a contradiction because T : C1 → R[[X1]]
must be surjective.

4. On Carleman’s theorem. We use the following notation: for any
multi-index J = (j1, . . . , jn) in Nn, we denote the length j1 + · · · + jn of

J by the corresponding lower case letter j. We put DJ = ∂j/∂xj11 . . . ∂xjnn ,

J ! = j1! . . . jn! and XJ = Xj1
1 . . . Xjn

n , where X = (X1, . . . , Xn).
The map T0 : En → R[[X]] defined by

T0f =
∑
J∈Nn

DJf(0)

J !
XJ

will be called the Borel map.
Now, let M = (Mj)j≥0 be an increasing sequence of real numbers with

M0 = 1. Denote by En(M) the set of elements f of En for which there exist
a neighborhood U of 0 and positive constants C and A such that

|DJf(x)| ≤ CAjj!Mj for all J ∈ Nn and x ∈ U.
We clearly have

An ⊆ En(M) ⊆ En.
In the same spirit, denote by Fn(M) the set of elements

F =
∑
J∈Nn

FJX
J

of R[[X]] for which there exist positive constants C and A such that

(4.1) |FJ | ≤ CAjMj for all J ∈ Nn.
The Borel map then obviously satisfies

T0En(M) ⊆ Fn(M).

One cannot hope to get much more information on the sets En(M) and
Fn(M) without additional assumptions on the sequence M . From now on,
we shall always make the following assumption:

the sequence M is logarithmically convex,

that is, Mj+1/Mj increases. Under this assumption, En(M) is a local ring
and is closed under composition in the sense of the condition (C2).
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The ring En(M) is stable under derivation if and only if

sup
j≥1

(Mj+1/Mj)
1/j <∞.

The local ring En(M) is quasianalytic if and only if

∞∑
j=0

Mj/((j + 1)Mj+1) =∞.

Example 4.1. Let α be a real number with 1 ≥ α > 0. Put Mj =
(log(j + e))αj . Then (En(M))n is a quasianalytic differentiable system
(see [T]).

In the following, we present a simple proof of Carleman’s theorem
(see [T]) for the quasianalytic Denjoy–Carleman classes that are closed un-
der differentiation.

Theorem 4.2. Assume that (En(M))n is a quasianalytic differentiable
system. Let n ≥ 2 be an integer. If An 6= En(M), then the map T0 : En(M)→
Fn(M) is not surjective.

Proof. Suppose otherwise. Let

F =
∑
J∈Nn

FJX
J ∈ Fn(M),

and let

G =
∑
J∈Nn

GJX
J

be such that GJ ∈ {0, FJ}. By (4.1),

|FJ | ≤ CAjMj for all J ∈ Nn.

Then

|GJ | ≤ CAjMj for all J ∈ Nn.

Thus G ∈ Fn(M). Hence the condition (Sn) holds for the local ring Fn(M).
Since the map T0 is an isomorphism, (Sn) holds for the local ring En(M).
Now, by Theorem 2.3(2), Ap = Ep(M) for all p ∈ N. Therefore, T0 is not
surjective.

5. The problem and some o-minimal structures. Let R := (R,+,
−,×, <, 0, 1) be the ordered field of real numbers. In this section we will
give a negative answer to the above problem for the rings of definable C∞

germs in the following o-minimal structures: R1 := (R, exp |[0,1]), R2 :=

(R, sin |[0,1]) and the expansion RG of the real field R generated by mul-
tisummable real series [DS]. The o-minimality of RG was proved in [DS].
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Among the basic operations of RG we have the C∞ functions f : [0, 1]→ R
whose restriction to (0, 1] extends to holomorphic functions on a sector

S(R,φ) := {z ∈ C; |z| < R, |arg z| < φ}
for some R > 1 and φ > π/2, such that there exist positive constants A,B
with |f (n)(z)| ≤ ABn(n!)2 for all z ∈ S(R,φ), and

lim
S(R,φ)3z→0

f (n)(z) = f (n)(0).

An example of such a function is

f(x) =

∞�

0

e−t

1 + xt
dt for 0 ≤ x ≤ 1.

Its Taylor expansion at 0 is the divergent series
∑∞

n=0(−1)nn!xn.
Let g : (−1, 1) → R be the function given by g(x) = f(x2). The Taylor

expansion of g at 0 is the divergent series ĝ :=
∑∞

n=0(−1)nn!x2n. Split the
set N of exponents into A = {4p; p ∈ N} and B = N \ A, and decompose ĝ
into the sum of formal series G and H, supported by A and B, respectively.
Clearly the series G =

∑∞
p=0(2p)!x

4p is divergent. By [DS, Corollary 8.6],
there is no C∞ function h : (−ε, ε) → R, for some ε > 0, that is definable
in RG and whose Taylor series at 0 is G. Therefore, we have a negative answer
to the problem for the ring of germs, at the origin of Rn, of RG-definable
C∞ functions at the origin of Rn for all n ≥ 1.

We have

sin(x) :=
∞∑
p=0

(−1)p
x2p+1

(2p+ 1)!
, cos(x) :=

∞∑
p=0

(−1)p
x2p

(2p)!
, exp(x) :=

∞∑
p=0

xp

p!
.

Clearly, if we have a positive answer to the problem for the ring of germs
(at the origin of R) of C∞ R2-definable functions at 0 ∈ R, then the germ,
at 0, of

exp(x) =

∞∑
p=0

x2p+1

(2p+ 1)!
+

∞∑
p=0

x2p

(2p)!

is definable in R2. This contradicts Bianconi’s theorem [B]. On the other
hand if we have a positive answer to the problem for the ring of germs (at
the origin of R) of C∞ R1-definable functions at 0 ∈ R, then the germ,
at 0, of

sin(x) :=
∞∑
p=0

(−1)p
x2p+1

(2p+ 1)!

is definable in R2, also contrary to Bianconi’s theorem [B].
It is not clear to us what is the answer to the problem for the ring of

germs of Nash functions at the origin of R. In particular, we do not know if
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the germ at 0 of the function

x 7→
∑
p∈P

xp,

where P is the set of prime numbers, is a Nash function or not.
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