Canonical Poisson-Nijenhuis structures on higher order tangent bundles

by P. M. Kouotchop Wamba (Yaoundé)

Abstract

Let M be a smooth manifold of dimension $m>0$, and denote by $S_{\text {can }}$ the canonical Nijenhuis tensor on $T M$. Let Π be a Poisson bivector on M and Π^{T} the complete lift of Π on $T M$. In a previous paper, we have shown that $\left(T M, \Pi^{T}, S_{\text {can }}\right)$ is a Poisson-Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from M to $T^{r} M$ have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on $T^{A} M$ are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002), 243-257], where A is a Weil algebra. In the particular case where $A=J_{0}^{r}(\mathbb{R}, \mathbb{R}) \simeq \mathbb{R}^{r+1}$ with the canonical basis $\left(e_{\alpha}\right)$, we obtain for each $0 \leq \alpha \leq r$ the canonical Nijenhuis tensor S_{α} on $T^{r} M$ defined by the vector e_{α}. The tensor S_{α} is called the canonical Nijenhuis tensor on $T^{r} M$ of degree α. In this paper, we show that if (M, Π) is a Poisson manifold, then for each α with $1 \leq \alpha \leq r,\left(T^{r} M, \Pi^{(c)}, S_{\alpha}\right)$ is a Poisson-Nijenhuis manifold. In particular, we describe other prolongations of Poisson manifolds from M to $T^{r} M$ and we give some of their properties.

1. Introduction. Let M be a smooth manifold of dimension $m>0$. We denote by $\pi_{M}: T M \rightarrow M$ the tangent vector bundle and by $\pi_{M}^{*}: T^{*} M \rightarrow M$ the cotangent vector bundle. We also denote by $\langle\cdot, \cdot\rangle_{M}: T M \times_{M} T^{*} M \rightarrow \mathbb{R}$ the usual canonical pairing. Let S be a (1,1)-tensor field on M. The Nijenhuis torsion of S is defined by, for any $X, Y \in \mathfrak{X}(M)$,

$$
T_{S}(X, Y)=[S X, S Y]-S([S X, Y]+[X, S Y]-S[X, Y])
$$

If $T_{S}=0$, then S is said to be a Nijenhuis tensor and the pair (M, S) is called a Nijenhuis manifold. Let Π be a Poisson bivector on M. We denote by $S \Pi$ the $(2,0)$-tensor field associated with the vector bundle morphism $S \circ \sharp_{\Pi}$ from $T^{*} M$ to $T M$ defined for any 1-forms ω, ϖ by

$$
S \Pi(\omega, \varpi)=\left\langle\omega, S \circ \nVdash_{\Pi}(\varpi)\right\rangle_{M}=\left\langle S^{*} \omega, \not \sharp_{\Pi}(\varpi)\right\rangle_{M}=\Pi\left(S^{*} \omega, \varpi\right),
$$

where S^{*} denotes the dual map of S. Let (M, S) be a Nijenhuis manifold and Π a Poisson bivector on M. The Poisson structure Π and the Nijenhuis

[^0]tensor S are called compatible (see [KO], [KM2], [V1] or [V2]) if
$$
\sharp_{\Pi} \circ S^{*}=S \circ \sharp_{\Pi} \quad \text { and } \quad \nabla_{\Pi S}(\omega, \varpi)=0
$$
for any $\omega, \varpi \in \Omega^{1}(M)$, where
$$
\nabla_{\Pi S}(\omega, \varpi)=[\omega, \varpi]_{S \Pi}-\left(\left[S^{*} \omega, \varpi\right]_{\Pi}+\left[\omega, S^{*} \varpi\right]_{\Pi}-S^{*}[\omega, \varpi]_{\Pi}\right)
$$
and $[\cdot, \cdot]_{\Pi},[\cdot, \cdot]_{S \Pi}$ are the Koszul brackets induced by the bivectors Π and $S \Pi$. In particular, the bivector $S \Pi$ defined by the vector bundle morphism $S \circ \sharp_{\Pi}: T^{*} M \rightarrow T M$ over id_{M} is a Poisson bivector on M.

Let $\left(x^{1}, \ldots, x^{m}\right)$ be a local coordinate system of M such that

$$
S=S_{j}^{i} d x^{j} \otimes \frac{\partial}{\partial x^{i}} \quad \text { and } \quad \Pi=\Pi^{i j} \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}} .
$$

Writing

$$
\nabla_{\Pi S}=\Gamma_{k}^{i j} d x^{k} \otimes\left(\frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}}\right)
$$

we have

$$
\Gamma_{k}^{i j}=\Pi^{\ell j} \frac{\partial S_{k}^{i}}{\partial x^{\ell}}+\Pi^{i \ell} \frac{\partial S_{k}^{j}}{\partial x^{\ell}}-S_{k}^{\ell} \frac{\partial \Pi^{i j}}{\partial x^{\ell}}+S_{\ell}^{j} \frac{\partial \Pi^{i \ell}}{\partial x^{k}}-\Pi^{\ell j} \frac{\partial S_{\ell}^{i}}{\partial x^{k}} .
$$

Let $\mathcal{M} f$ be the category of all manifolds and all smooth maps, and $\mathcal{F M}$ the category of all smooth fibred manifolds and fibred morphisms. For any integer $r \geq 1$ and any manifold M, we put $T^{r} M=J_{0}^{r}(\mathbb{R}, M)$. The elements of $T^{r} M$ are said to be 1-dimensional velocities of order r on M. The smooth map $\pi_{M}^{r}: T^{r} M \rightarrow M$ defined by $\pi_{M}^{r}\left(j_{0}^{r} \varphi\right)=\varphi(0)$ for $j_{0}^{r} \varphi \in T^{r} M$ defines the structure of a smooth fiber bundle. Usually, the manifold $T^{r} M$ with the projection π_{M}^{r} is called the tangent bundle of M of order r. On the other hand, every smooth map $f: M \rightarrow N$ extends to an $\mathcal{F} \mathcal{M}$-morphism $T^{r} f: T^{r} M \rightarrow T^{r} N$ defined by $T^{r} f\left(j_{0}^{r} \varphi\right)=j_{0}^{r}(f \circ \varphi)$. Hence, T^{r} is a functor $\mathcal{M} f \rightarrow \mathcal{F M}$ and it preserves products.

Let $\left(U, x^{i}\right)$ be a local coordinate system of M. The local coordinate system of $T^{r} M$ over $T^{r} U$ is such that the coordinate functions $\left(x_{\beta}^{i}\right)$ with $i=1, \ldots, m$ and $\beta=0, \ldots, r$ are given by

$$
\left\{\begin{array}{l}
x_{0}^{i}\left(j_{0}^{r} g\right)=x^{i}(g(0)), \\
x_{\beta}^{i}\left(j_{0}^{r} g\right)=\left.\frac{1}{\beta!} \frac{d^{\beta}\left(x^{i} \circ g\right)}{d t^{\beta}}(t)\right|_{t=0} .
\end{array}\right.
$$

In the following, the coordinate function x_{0}^{i} is denoted by x^{i}. For $r=1$, we obtain the usual tangent functor denoted by T.

In this paper, we generalize the work of [KW]. The main results are Theorems 4.1, 4.2 and 5.2: given a Poisson manifold (M, Π) and the canonical Nijenhuis tensor field S_{α} of degree α on $T^{r} M$ defined below, we prove that $\left(T^{r} M, \Pi^{(c)}, S_{\alpha}\right)$ is a Poisson-Nijenhuis manifold, where the Poisson bivector
$\Pi^{(c)}$ on $T^{r} M$ is the complete lift of Π to $T^{r} M$ defined in KWN; moreover, we study some properties of the Poisson bivector Π^{α} defined by $S_{\alpha} \circ \sharp_{\Pi^{(c)}}$.

In this paper, all manifolds and mappings are assumed to be of class C^{∞}. We shall fix a natural number $r \geq 1$.

2. Preliminaries

2.1. The canonical isomorphism $\kappa_{M}^{r}: T^{r} T M \rightarrow T T^{r} M$. For each $\beta \in\{0, \ldots, r\}$, we denote by τ_{β} the canonical linear form on $J_{0}^{r}(\mathbb{R}, \mathbb{R})$ defined by

$$
\tau_{\beta}\left(j_{0}^{r} g\right)=\left.\frac{1}{\beta!} \frac{d^{\beta}}{d t^{\beta}}(g(t))\right|_{t=0}, \quad \text { for } g \in C^{\infty}(\mathbb{R}, \mathbb{R})
$$

Let M be a smooth manifold of dimension $m>0$. For $f \in C^{\infty}(M)$, we set $f^{(\beta)}=\tau_{\beta} \circ T^{r} f$. The smooth map $f^{(\beta)}$ is called the β-prolongation of f; it is defined for any $j_{0}^{r} \varphi \in T^{r} M$ by

$$
f^{(\beta)}\left(j_{0}^{r} \varphi\right)=\left.\frac{1}{\beta!} \frac{d^{\beta}(f \circ \varphi)}{d t^{\beta}}(t)\right|_{t=0}
$$

It follows that $x_{\beta}^{i}=\left(x^{i}\right)^{(\beta)}$ on $T^{r} U$ with coordinate system $\left(x^{1}, \ldots, x^{m}\right)$.
For each manifold M, there is a canonical diffeomorphism (see GMP, [KMS]

$$
\kappa_{M}^{r}: T^{r} T M \rightarrow T T^{r} M
$$

which is an isomorphism of vector bundles from

$$
T^{r}\left(\pi_{M}\right): T^{r} T M \rightarrow T^{r} M \quad \text { to } \quad \pi_{T^{r} M}: T T^{r} M \rightarrow T^{r} M
$$

such that $T\left(\pi_{M}^{r}\right) \circ \kappa_{M}^{r}=\pi_{T M}^{r}$ and for any smooth map $f: M \rightarrow N$ we have the equality

$$
\kappa_{N}^{r} \circ T^{r} T f=T T^{r} f \circ \kappa_{M}^{r} .
$$

Let $\left(x^{1}, \ldots, x^{m}\right)$ be a local coordinate system of M. We introduce the coordinates $\left(x^{i}, \dot{x}^{i}\right)$ in $T M,\left(x^{i}, \dot{x}^{i}, x_{\beta}^{i}, \dot{x}_{\beta}^{i}\right)$ in $T^{r} T M$ and $\left(x^{i}, x_{\beta}^{i}, \dot{x}^{i}, \dot{x_{\beta}^{i}}\right)$ in $T T^{r} M$. We have

$$
\kappa_{M}^{r}\left(x^{i}, \dot{x}^{i}, x_{\beta}^{i}, \dot{x}_{\beta}^{i}\right)=\left(x^{i}, x_{\beta}^{i}, \dot{x}^{i}, \dot{x_{\beta}^{i}}\right)
$$

with $\dot{x_{\beta}^{i}}=\dot{x}_{\beta}^{i}$.
2.2. The canonical isomorphism $\alpha_{M}^{r}: T^{*} T^{r} M \rightarrow T^{r} T^{*} M$. For any manifold M, there is a canonical diffeomorphism

$$
\alpha_{M}^{r}: T^{*} T^{r} M \rightarrow T^{r} T^{*} M
$$

which is an isomorphism of the vector bundles

$$
\pi_{T^{r} M}^{*}: T^{*} T^{r} M \rightarrow T^{r} M \quad \text { and } \quad T^{r}\left(\pi_{M}^{*}\right): T^{r} T^{*} M \rightarrow T^{r} M
$$

dual to κ_{M}^{r} with respect to the pairings $\langle\cdot, \cdot\rangle_{T^{r} M}^{\prime}=\tau_{r} \circ T^{r}\left(\langle\cdot, \cdot\rangle_{M}\right)$ and $\langle\cdot, \cdot\rangle_{T^{r} M}$, i.e. for any $\left(u, u^{*}\right) \in T^{r} T M \oplus T^{*} T^{r} M$,

$$
\left\langle\kappa_{M}^{r}(u), u^{*}\right\rangle_{T^{r} M}=\left\langle u, \alpha_{M}^{r}\left(u^{*}\right)\right\rangle_{T^{r} M}^{\prime}
$$

Let $\left(x^{1}, \ldots, x^{m}\right)$ be a local coordinate system of M. We introduce the coordinates $\left(x^{i}, p_{j}\right)$ in $T^{*} M,\left(x^{i}, p_{j}, x_{\beta}^{i}, p_{j}^{\beta}\right)$ in $T^{r} T^{*} M$ and $\left(x^{i}, x_{\beta}^{i}, \pi_{j}, \pi_{j}^{\beta}\right)$ in $T^{*} T^{r} M$. We have

$$
\alpha_{M}^{r}\left(x^{i}, \pi_{j}, x_{\beta}^{i}, \pi_{j}^{\beta}\right)=\left(x^{i}, x_{\beta}^{i}, p_{j}, p_{j}^{\beta}\right) \quad \text { with } \quad\left\{\begin{array}{l}
p_{j}=\pi_{j}^{r} \\
p_{j}^{\beta}=\pi_{j}^{r-\beta}
\end{array} .\right.
$$

We denote $\left(\alpha_{M}^{r}\right)^{-1}$ by ε_{M}^{r}.

3. Canonical Nijenhuis tensor on higher order tangent bundles

3.1. Higher order lifting of vector fields. Let (E, M, π) be a vector bundle, and consider the vector bundle morphism $\chi_{E}^{(\alpha)}: T^{r} E \rightarrow T^{r} E$ defined by

$$
\chi_{E}^{(\alpha)}\left(j_{0}^{r} \Psi\right)=j_{0}^{r}\left(t^{\alpha} \Psi\right)
$$

where $\Psi \in C^{\infty}(\mathbb{R}, E)$ and $t^{\alpha} \Psi$ is the smooth map defined for any $t \in \mathbb{R}$ by

$$
\left(t^{\alpha} \Psi\right)(t)=t^{\alpha} \Psi(t)
$$

Let X be a vector field on the manifold M. We define the α-prolongation of X, denoted $X^{(\alpha)}$, by

$$
X^{(\alpha)}=\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r} X
$$

When $\alpha=0$, it is called the complete lift of X to $T^{r} M$, and it is denoted by $X^{(c)}$. We put $X^{(\alpha)}=0$ for $\alpha>r$ or $\alpha<0$.

If (U, x^{i}) is a local coordinate system of M such that $X=X^{i} \frac{\partial}{\partial x^{i}}$, then

$$
X^{(\alpha)}=\left(X^{i}\right)^{(\beta-\alpha)} \frac{\partial}{\partial x_{\beta}^{i}} .
$$

Proposition 3.1.
(i) For $X \in \mathfrak{X}(M), f \in C^{\infty}(M)$ and $\alpha, \beta \in\{0, \ldots, r\}$, we have

$$
X^{(\alpha)}\left(f^{(\beta)}\right)=(X(f))^{(\beta-\alpha)} .
$$

(ii) For $X, Y \in \mathfrak{X}(M)$ and $\alpha, \beta \in\{0, \ldots, r\}$, we have:

$$
\begin{equation*}
\left[X^{(\alpha)}, Y^{(\beta)}\right]=[X, Y]^{(\alpha+\beta)} . \tag{3.1}
\end{equation*}
$$

(iii) The set $\left\{X^{(\beta)} \mid X \in \mathfrak{X}(M), \beta=0, \ldots, r\right\}$ generates the $C^{\infty}\left(T^{r} M\right)$ module $\mathfrak{X}\left(T^{r} M\right)$.
3.2. Higher order tangent lifts of 1-forms. Let $\omega \in \Omega^{1}(M)$. We define the α-lift of ω, denoted $\omega^{(\alpha)}$, by

$$
\omega^{(\alpha)}=\varepsilon_{M}^{r} \circ \chi_{T^{*} M}^{(r-\alpha)} \circ T^{r} \omega .
$$

When $\alpha=r, \omega^{(\alpha)}$ is called the complete lift of ω and denoted by $\omega^{(c)}$.
In local coordinates, if $\omega=\omega_{i} d x^{i}$, then

$$
\omega^{(\alpha)}=\left(\omega_{i}\right)^{(\alpha-\beta)} d x_{\beta}^{i} .
$$

Proposition 3.2.
(i) For any $X \in \mathfrak{X}(M)$ and $\beta=0, \ldots, r$, we have

$$
\omega^{(\alpha)}\left(X^{(\beta)}\right)=[\omega(X)]^{(\alpha-\beta)} .
$$

(ii) For any $X \in \mathfrak{X}(M)$ and $\beta=0, \ldots, r$, we have

$$
(d \omega)^{(\alpha)}=d(\omega)^{(\alpha)} \quad \text { and } \quad \mathcal{L}_{X^{(\beta)}} \omega^{(\alpha)}=\left(\mathcal{L}_{X} \omega\right)^{(\alpha-\beta)} .
$$

(iii) The set $\left\{\omega^{(\alpha)} \mid \omega \in \Omega^{1}(M), \alpha=0, \ldots, r\right\}$ generates the $C^{\infty}\left(T^{r} M\right)$ module $\Omega^{1}\left(T^{r} M\right)$.

The proofs of Propositions 3.1 and 3.2 can be found in MO .
3.3. Canonical Nijenhuis tensors on higher order tangent bundles. Let M be a smooth manifold. Multiplication of tangent vectors by real numbers is a map $\mathfrak{m}_{M}: \mathbb{R} \times T M \rightarrow T M$. Applying the functor T^{r}, we obtain $T^{r}\left(\mathfrak{m}_{M}\right): J_{0}^{r}(\mathbb{R}, \mathbb{R}) \times T^{r} T M \rightarrow T^{r} T M$. Then
$\mathcal{T}^{r}\left(\mathfrak{m}_{M}\right)=\kappa_{M}^{r} \circ T^{r}\left(\mathfrak{m}_{M}\right) \circ\left(\mathrm{id}_{J_{0}^{r}(\mathbb{R}, \mathbb{R})} \times\left(\kappa_{M}^{r}\right)^{-1}\right): J_{0}^{r}(\mathbb{R}, \mathbb{R}) \times T T^{r} M \rightarrow T T^{r} M$ and we define, for each $\alpha \in\{0, \ldots, r\}$, the tensor field

$$
S_{\alpha}=\mathcal{T}^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\alpha}, \cdot\right): T T^{r} M \rightarrow T T^{r} M,
$$

where $\left(e_{0}, \ldots, e_{r}\right)$ is the canonical basis of $J_{0}^{r}(\mathbb{R}, \mathbb{R}) \simeq \mathbb{R}^{r+1}$.
Definition 3.1. The $(1,1)$-tensor field S_{α} is called the canonical Nijenhuis tensor on $T^{r} M$ of degree α.

Proposition 3.3.
(i) For any $X \in \mathfrak{X}(M)$ and $\beta \in\{0, \ldots, r\}$, we have

$$
S_{\alpha}\left(X^{(\beta)}\right)=X^{(\alpha+\beta)} .
$$

(ii) Denote by S_{α}^{*} the dual map of S_{α}. Then for any $\omega \in \Omega^{1}(M)$ and $\beta \in\{0, \ldots, r\}$, we have

$$
S_{\alpha}^{*}\left(\omega^{(\beta)}\right)=\omega^{(\beta-\alpha)} .
$$

Proof. (i) Let $X \in \mathfrak{X}(M)$. We know that $X^{(\beta)}=\kappa_{M}^{r} \circ T^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\beta}, T^{r} X\right)$, and it follows that

$$
\begin{aligned}
S_{\alpha}\left(X^{(\beta)}\right) & =\kappa_{M}^{r} \circ T^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\alpha},\left(\kappa_{M}^{r}\right)^{-1}\right) \circ \kappa_{M}^{r} \circ T^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\beta}, T^{r} X\right) \\
& =\kappa_{M}^{r} \circ T^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\alpha}, T^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\beta}, T^{r} X\right)\right) \\
& =\kappa_{M}^{r} \circ T^{r}\left(\mathfrak{m}_{M}\right)\left(e_{\alpha+\beta}, T^{r} X\right)=X^{(\alpha+\beta)} .
\end{aligned}
$$

(ii) For any $X \in \mathfrak{X}(M)$ and $\gamma \in\{0, \ldots, r\}$, we have

$$
\begin{aligned}
S_{\alpha}^{*}\left(\omega^{(\beta)}\right)\left(X^{(\gamma)}\right) & =\omega^{(\beta)}\left(S_{\alpha}\left(X^{(\gamma)}\right)\right)=\omega^{(\beta)}\left(X^{(\gamma+\alpha)}\right) \\
& =(\omega(X))^{(\beta-\alpha-\gamma)}=\omega^{(\beta-\alpha)}\left(X^{(\gamma)}\right) .
\end{aligned}
$$

Therefore, $S_{\alpha}^{*}\left(\omega^{(\beta)}\right)=\omega^{(\beta-\alpha)}$.
Let $\left(U, x^{i}\right)$ be a local coordinate system of M. We denote by $\left(x^{i}, x_{\beta}^{i}\right)$ the local coordinate system of $T^{r} M$ over $T^{r} U$. The local expression of the tensor field S_{α} is

$$
S_{\alpha}=d x_{\beta}^{i} \otimes \frac{\partial}{\partial x_{\alpha+\beta}^{i}} .
$$

Corollary 3.1. Denote by T_{α} the torsion of the (1,1)-tensor S_{α}. Then $T_{\alpha}=0$.

Proof. Let $X, Y \in \mathfrak{X}(M)$ and $\beta, \gamma \in\{0, \ldots, r\}$. We have

$$
\begin{aligned}
T_{\alpha}\left(X^{(\beta)}, Y^{(\gamma)}\right)= & {\left[S_{\alpha} X^{(\beta)}, S_{\alpha} Y^{(\gamma)}\right]-S_{\alpha}\left(\left[S_{\alpha} X^{(\beta)}, Y^{(\gamma)}\right]\right) } \\
& +S_{\alpha}\left(\left[X^{(\beta)}, S_{\alpha} Y^{(\gamma)}\right]\right)-S_{2 \alpha}\left(\left[X^{(\beta)}, Y^{(\gamma)}\right]\right) \\
= & {[X, Y]^{(\beta+\gamma+2 \alpha)}-S_{\alpha}\left([X, Y]^{(\beta+\gamma+\alpha)}\right) . }
\end{aligned}
$$

As $T_{\alpha}\left(X^{(\beta)}, Y^{(\gamma)}\right)=0$ for any $X, Y \in \mathfrak{X}(M)$ and $\beta, \gamma=0, \ldots, r$, we deduce that $T_{\alpha}=0$.

From this corollary, we deduce that the pair $\left(T^{r} M, S_{\alpha}\right)$ is a Nijenhuis manifold, called the canonical Nijenhuis manifold on $T^{r} M$.

Corollary 3.2.
(i) For any $\alpha, \beta \in\{0, \ldots, r\}$, we have

$$
S_{\alpha} \circ S_{\beta}=S_{\beta} \circ S_{\alpha}=S_{\alpha+\beta}
$$

(ii) Let p_{α} be a natural number such that $\alpha \cdot p_{\alpha}>r$. Then

$$
\underbrace{S_{\alpha} \circ \cdots \circ S_{\alpha}}_{p_{\alpha} \text { times }}=0
$$

In particular, when $r=\alpha=1$ we obtain the canonical $(1,1)$-tensor on $T M$ and we have the famous formula

$$
S_{\mathrm{can}} \circ S_{\mathrm{can}}=0 .
$$

Proof. Let $X \in \mathfrak{X}(M)$ and $\gamma \in\{0, \ldots, r\}$. We have

$$
S_{\alpha} \circ S_{\beta}\left(X^{(\gamma)}\right)=S_{\alpha}\left(X^{(\beta+\gamma)}\right)=X^{(\alpha+\beta+\gamma)}=S_{\alpha+\beta}\left(X^{(\gamma)}\right) .
$$

Therefore $S_{\alpha} \circ S_{\beta}=S_{\alpha+\beta}$.
Remark 3.1. Let $S: T M \rightarrow T M$ be a (1,1)-tensor field. For each $\beta \in\{0, \ldots, r\}$ we put

$$
\begin{equation*}
S^{(\beta)}=\kappa_{M}^{r} \circ \chi_{T M}^{(\beta)} \circ T^{r} S \circ\left(\kappa_{M}^{r}\right)^{-1} . \tag{3.2}
\end{equation*}
$$

Then $S^{(\beta)}$ is a (1,1)-tensor field on $T^{r} M$; when $\beta=0$, it is called the complete lift of S and denoted by $S^{(c)}$. We verify easily that for any $X \in \mathfrak{X}(M)$ and $\gamma \leq r$,

$$
S^{(\beta)}\left(X^{(\gamma)}\right)=(S X)^{(\beta+\gamma)} .
$$

From this equality, it follows that

$$
S_{\alpha} \circ S^{(\beta)}=S^{(\beta)} \circ S_{\alpha}=S^{(\alpha+\beta)} .
$$

In particular,

$$
\left[S^{(\beta)}, S_{\alpha}\right]=0 \quad \text { and } \quad\left(S^{(c)} \circ S_{\alpha}\right)^{p_{\alpha}}=0
$$

We show easily that if $T_{S}=0$ then $T_{S^{(\beta)}}=0$, so that $\left(T^{r} M, S^{(\beta)}\right)$ is a Nijenhuis manifold.

4. Canonical Poisson-Nijenhuis manifolds

4.1. Higher order tangent lifts of Poisson manifolds. We recall in this subsection the notion of higher order tangent lifts of Poisson manifolds. For each natural number $q \geq 2$, we consider the natural transformations $\Lambda^{q}: \oplus^{q} T^{*} \rightarrow \Lambda^{q} T^{*}$ defined for any smooth manifold M by

$$
\bigwedge_{M}^{q}: \oplus^{q} T^{*} M \rightarrow \bigwedge^{q} T^{*} M, \quad \xi_{1} \oplus \cdots \oplus \xi_{q} \mapsto \xi_{1} \wedge \cdots \wedge \xi_{q} .
$$

The bundle map

$$
T^{r}\left(\bigwedge_{M}^{q}\right) \circ\left(\bigoplus^{q} \alpha_{M}^{r}\right): \bigoplus^{q} T^{*} T^{r} M \rightarrow T^{r}\left(\bigwedge^{q} T^{*} M\right)
$$

is a well-defined and skew-symmetric fibred morphism over $\operatorname{id}_{T^{r} M}$. Therefore, there is a unique bundle morphism

$$
\alpha_{M}^{r, q}: \bigwedge^{q} T^{*} T^{r} M \rightarrow T^{r}\left(\bigwedge^{q} T^{*} M\right)
$$

over $\mathrm{id}_{T^{r} M}$ such that

$$
\alpha_{M}^{r, q} \circ \bigwedge_{T^{r} M}^{q}=T^{r}\left(\bigwedge_{M}^{q}\right) \circ\left(\bigoplus^{q} \alpha_{M}^{r}\right) .
$$

For $q=1$, we put $\alpha_{M}^{r, 1}=\alpha_{M}^{r}$ and the local expression for $\alpha_{M}^{r, q}$ is given in KWN. We denote by $\kappa_{M}^{r, q}$ the vector bundle morphism

$$
\kappa_{M}^{r, q}: T^{r}\left(\bigwedge^{q} T M\right) \rightarrow \bigwedge^{q} T T^{r} M
$$

such that, for any $u \oplus v \in T^{r}\left(\bigwedge^{q} T M\right) \oplus \bigwedge^{q}\left(T^{*} T^{r} M\right)$,

$$
\left\langle u, \alpha_{M}^{r, q}(v)\right\rangle_{T^{r} M}^{\prime q}=\left\langle\kappa_{M}^{r, q}(u), v\right\rangle_{T^{r} M}^{q},
$$

where $\langle\cdot, \cdot\rangle_{M}^{q}: \bigwedge^{q} T M \times_{M} \bigwedge^{q} T^{*} M \rightarrow \mathbb{R}$ is the canonical pairing and $\langle\cdot, \cdot\rangle_{T^{r} M}^{q}=\tau_{r} \circ T^{r}\left(\langle\cdot, \cdot\rangle_{M}^{q}\right): T^{r}\left(\bigwedge^{q} T M\right) \times_{T^{r} M} T^{r}\left(\bigwedge^{q} T^{*} M\right) \rightarrow \mathbb{R}$. So, we have the natural transformation (see [KWN])

$$
\kappa^{r, q}: T^{r} \circ\left(\bigwedge^{q} T\right) \rightarrow \bigwedge^{q} T \circ T^{r} .
$$

For any manifold M of dimension m, we have locally

$$
\kappa_{M}^{r, q}\left(x_{\beta}^{i}, \Pi_{\beta}^{i_{1} \cdots i_{q}}\right)=\left(x_{\beta}^{i}, \widetilde{\Pi}^{i_{1}, \beta_{1} \cdots i_{q}, \beta_{q}}\right)
$$

with

$$
\widetilde{\Pi}^{i_{1}, \beta_{1} \cdots i_{q}, \beta_{q}}=\sum_{\gamma_{1}+\cdots+\gamma_{q}+\gamma=r} \delta_{\beta_{1}}^{r-\gamma_{1}} \cdots \delta_{\beta_{q}}^{r-\gamma_{q}} \Pi_{\gamma}^{i_{1} \cdots i_{q}} .
$$

Let Π be a multivector field of degree q on M. We put

$$
\Pi^{(c)}=\kappa_{M}^{r, q} \circ T^{r}(\Pi): T^{r} M \rightarrow \bigwedge^{q} T T^{r} M
$$

Then $\Pi^{(c)}$ is a multivector field of degree q on $T^{r} M$. Let $\left(x^{1}, \ldots, x^{m}\right)$ be a local coordinate system of M such that

$$
\Pi=\sum_{1 \leq i_{1}<\cdots<i_{q} \leq m} \Pi^{i_{1} \cdots i_{q}} \frac{\partial}{\partial x^{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x^{i_{q}}} .
$$

Then

$$
\Pi^{(c)}=\sum_{\beta_{1}+\cdots+\beta_{q}+\beta=r}\left(\Pi^{i_{1} \cdots i_{q}}\right)^{(\beta)} \frac{\partial}{\partial x_{r-\beta_{1}}^{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x_{r-\beta_{q}}^{i_{q}}} .
$$

In the particular case where $q=2$ and $\Pi=\Pi^{i j} \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}}$, we have

$$
\Pi^{(c)}=\left(\Pi^{i j}\right)^{(\beta+\gamma-r)} \frac{\partial}{\partial x_{\beta}^{i}} \wedge \frac{\partial}{\partial x_{\gamma}^{j}} .
$$

Proposition 4.1 (see [KWN]). If Π is a simple multivector field of degree k (i.e. $\Pi=X_{1} \wedge \cdots \wedge X_{k}$ with $\left.X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)\right)$, then

$$
\begin{equation*}
\Pi^{(c)}=\sum_{\beta_{1}+\cdots+\beta_{k}=r} X_{1}^{\left(r-\beta_{1}\right)} \wedge \cdots \wedge X_{k}^{\left(r-\beta_{k}\right)} . \tag{4.1}
\end{equation*}
$$

Remark 4.1. For $r=1$, we have

$$
\Pi^{(c)}=\sum_{i=1}^{k} X_{1}^{(v)} \wedge \cdots \wedge X_{i}^{(c)} \wedge \cdots \wedge X_{k}^{(v)},
$$

where $X_{j}^{(v)}$ is the vertical lift of the vector field X_{j} from M to $T M$. Thus, we obtain the result of GU.

By the formulas (3.1) and (4.1), we deduce that for any $\Phi \in \mathfrak{X}^{p}(M)$ and $\Psi \in \mathfrak{X}^{q}(M)$, we have

$$
\left[\Phi^{(c)}, \Psi^{(c)}\right]=[\Phi, \Psi]^{(c)}
$$

So, if (M, Π) is a Poisson manifold then so is $\left(T^{r} M, \Pi^{(c)}\right)$. This induced Poisson structure on $T^{r} M$ is called the tangent lifting of the Poisson structure of order r.

Proposition 4.2 (see [KWN]). Let $(М, \Pi)$ be a Poisson manifold.
(i) If \sharp_{Π} is the anchor map induced by Π, we have

$$
\begin{equation*}
\sharp_{\Pi^{(c)}}=\kappa_{M}^{r} \circ T^{r}\left(\sharp_{\Pi}\right) \circ \alpha_{M}^{r} . \tag{4.2}
\end{equation*}
$$

(ii) For any $\omega \in \Omega^{1}(M)$ and $\beta \in\{0, \ldots, r\}$, we have

$$
\sharp_{\Pi^{(c)}}\left(\omega^{(\beta)}\right)=\left[\sharp_{\Pi}(\omega)\right]^{(r-\beta)} .
$$

(iii) For any $\omega, \varpi \in \Omega^{1}(M)$ and $\alpha, \beta \in\{0, \ldots, r\}$, we have

$$
\left[\omega^{(\alpha)}, \varpi^{(\beta)}\right]_{\Pi(c)}=\left([\omega, \varpi]_{\Pi}\right)^{(\alpha+\beta-r)}
$$

4.2. The main result. Let (M, Π) be a Poisson manifold. The pair $\left(T^{r} M, \Pi^{(c)}\right)$ is also a Poisson manifold and its sharp map is given by 4.2).

Lemma 4.1. For each $\alpha \in\{0, \ldots, r\}$, we have

$$
\sharp_{\Pi^{(c)}} \circ S_{\alpha}^{*}=S_{\alpha} \circ \sharp_{\Pi^{(c)}} .
$$

Proof. For any $\omega \in \Omega^{1}(M)$ and $\beta=0, \ldots, r$, we have

$$
\sharp_{\Pi^{(c)}} \circ S_{\alpha}^{*}\left(\omega^{(\beta)}\right)=\sharp_{\Pi^{(c)}}\left(\omega^{(\beta-\alpha)}\right)=\left[\sharp_{\Pi}(\omega)\right]^{(r+\alpha-\beta)} .
$$

In the same way,

$$
S_{\alpha} \circ \sharp_{\Pi^{(c)}}\left(\omega^{(\beta)}\right)=S_{\alpha}\left(\left[\not \sharp_{\Pi}(\omega)\right]^{(r-\beta)}\right)=[\sharp \Pi(\omega)]^{(r+\alpha-\beta)} .
$$

It follows that, for any $\omega \in \Omega^{1}(M)$ and $\beta=0, \ldots, r$,

$$
\sharp_{\Pi^{(c)}} \circ S_{\alpha}^{*}\left(\omega^{(\beta)}\right)=S_{\alpha} \circ \sharp_{\Pi^{(c)}}\left(\omega^{(\beta)}\right) .
$$

Therefore, $\sharp_{\Pi^{(c)}} \circ S_{\alpha}^{*}=S_{\alpha} \circ \sharp_{\Pi^{(c)}}$.
Remark 4.2. From this lemma, it follows that the vector bundle morphism $\sharp_{\Pi^{(c)}} \circ S_{\alpha}^{*}$ is skew-symmetric. It defines a bivector field denoted by Π^{α} on $T^{r} M$, and for $\alpha=0$, we have $\Pi^{0}=\Pi^{(c)}$.

Lemma 4.2.
(i) For any $\omega \in \Omega^{1}(M)$ and $\beta \in\{0, \ldots, r\}$, we have

$$
\sharp \Pi^{\alpha}\left(\omega^{(\beta)}\right)=[\sharp \Pi(\omega)]^{(r-\beta+\alpha)} .
$$

(ii) For any $\omega, \varpi \in \Omega^{1}(M)$ and $\beta, \gamma=0, \ldots, r$,

$$
\left[\omega^{(\beta)}, \varpi^{(\gamma)}\right]_{\Pi^{\alpha}}=[\omega, \varpi]_{\Pi}^{(\beta+\gamma-\alpha-r)}
$$

Proof. (i) By (3.2), we have

$$
\sharp_{\Pi^{(\alpha)}}\left(\omega^{(\beta)}\right)=S_{\alpha} \circ \sharp_{\Pi^{(c)}}\left(\omega^{(\beta)}\right)=S_{\alpha}\left([\sharp \Pi(\omega)]^{(r-\beta)}\right)=[\sharp \Pi(\omega)]^{(r-\beta+\alpha)} .
$$

(ii) By the equality

$$
\left[\omega^{(\beta)}, \varpi^{(\gamma)}\right]_{\Pi^{(\alpha)}}=\mathcal{L}_{\sharp_{\Pi}(\alpha)}\left(\omega^{(\beta)}\right) \varpi^{(\gamma)}-\mathcal{L}_{\sharp_{\Pi}(\alpha)}\left(\varpi^{(\beta)}\right) \omega^{(\gamma)}-d\left(\Pi^{(\alpha)}\left(\omega^{(\beta)}, \varpi^{(\gamma)}\right)\right)
$$

the result follows from the first part of the lemma and Propositions 3.1, 3.2 and 4.2.

Theorem 4.1. Let (M, Π) be a Poisson manifold. Then for each $\alpha \in$ $\{0, \ldots, r\},\left(T^{r} M, \Pi^{(c)}, S_{\alpha}\right)$ is a Poisson-Nijenhuis manifold.

Proof. Let $\omega, \varpi \in \Omega^{1}(M)$ and $\beta, \gamma \in\{0, \ldots, r\}$. We have

$$
\begin{aligned}
\nabla_{S_{\alpha} \Pi^{(c)}}\left(\omega^{(\beta)}, \varpi^{(\gamma)}\right)= & {\left[\omega^{(\beta)}, \varpi^{(\gamma)}\right]_{\Pi^{\alpha}}-\left[S_{\alpha}^{*} \omega^{(\beta)}, \varpi^{(\gamma)}\right]_{\Pi^{(c)}} } \\
& -\left[\omega^{(\beta)}, S_{\alpha}^{*} \varpi^{(\gamma)}\right]_{\Pi^{(c)}}+S_{\alpha}^{*}\left[\omega^{(\beta)}, \varpi^{(\gamma)}\right]_{\Pi^{(c)}} \\
= & {[\omega, \varpi]_{\Pi}^{(\beta+\gamma-\alpha-r)}-\left[\omega^{(\beta-\alpha)}, \varpi^{(\gamma)}\right]_{\Pi^{(c)}} } \\
& -\left[\omega^{(\beta)}, \varpi^{(\gamma-\alpha)}\right]_{\Pi^{(c)}}+S_{\alpha}^{*}\left([\omega, \varpi]_{\Pi}^{(\gamma+\beta-r)}\right) \\
= & {[\omega, \varpi]_{\Pi}^{(\beta+\gamma-\alpha-r)}-[\omega, \varpi]_{\Pi}^{(\gamma+\beta-\alpha-r)} } \\
& -[\omega, \varpi]_{\Pi}^{(\gamma+\beta-\alpha-r)}+S_{\alpha}^{*}\left([\omega, \varpi]_{\Pi}^{(\gamma+\beta-r)}\right) \\
= & {[\omega, \varpi]_{\Pi}^{(\beta+\gamma-\alpha-r)}-[\omega, \varpi]_{\Pi}^{(\gamma+\beta-\alpha-r)} }
\end{aligned}
$$

It follows that $\nabla_{S_{\alpha} \Pi^{(c)}}=0$. The rest follows from Lemma 4.1.
REmark 4.3. In [KO], the author has shown that, if (M, Π, S) is a Poisson-Nijenhuis manifold, then the 2 -vector field defined by the vector bundle morphism $S \circ \sharp_{\Pi}$ is a Poisson bivector. It follows that, for $\alpha=1, \ldots, r$, the bivector Π^{α} is a Poisson bivector. This Poisson structure on $T^{r} M$ is called the α-lift of the Poisson manifold (M, Π).

Let $\left(U, x^{i}\right)$ be a local coordinate system of M such that locally,

$$
\Pi=\Pi^{i j} \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}}
$$

Then

$$
\Pi^{\alpha}=\left(\Pi^{i j}\right)^{(\beta+\gamma-\alpha-r)} \frac{\partial}{\partial x_{\beta}^{i}} \wedge \frac{\partial}{\partial x_{\gamma}^{j}}
$$

In particular, for $r=\alpha=1$, we have

$$
\Pi^{1}=\Pi^{i j} \frac{\partial}{\partial \dot{x}^{i}} \wedge \frac{\partial}{\partial \dot{x}^{j}}
$$

So, we obtain the result of [KW].
4.3. Some properties of the α-lift of Poisson manifolds. In this subsection, we fix $\alpha \in\{1, \ldots, r\}$.

Theorem 4.2. Let (M, Π) be a Poisson manifold.
(i) We have

$$
\sharp \Pi^{\alpha}=\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r}(\sharp \Pi) \circ \alpha_{M}^{r} .
$$

(ii) For any $f \in C^{\infty}(M)$ and $\beta \in\{0, \ldots, r\}$, we have

$$
\begin{equation*}
X_{f^{(\beta)}}=\left(X_{f}\right)^{(r-\beta+\alpha)} \tag{4.3}
\end{equation*}
$$

(iii) For $f, g \in C^{\infty}(M)$ and $\beta, \gamma \in\{0, \ldots, r\}$, we have

$$
\left\{f^{(\beta)}, g^{(\gamma)}\right\}_{\Pi^{\alpha}}=\left(\{f, g\}_{\Pi}\right)^{(\beta+\gamma-\alpha-r)}
$$

where $\{\cdot, \cdot\}_{\Pi}$ is a Poisson bracket on $C^{\infty}(M)$.
(iv) If $f:\left(M, \Pi_{M}\right) \rightarrow\left(N, \Pi_{N}\right)$ is a Poisson morphism, then so is $T^{r} f$: $\left(T^{r} M, \Pi_{M}^{\alpha}\right) \rightarrow\left(T^{r} N, \Pi_{N}^{\alpha}\right)$. In particular, if (G, Π) is a Poisson-Lie group, then $\left(T^{r} G, \Pi^{\alpha}\right)$ is a Poisson-Lie group.

Proof. (i) Let $\omega \in \Omega^{1}(M)$ and $\beta=0, \ldots, r$. We know that

$$
\sharp \Pi_{\Pi^{\alpha}}\left(\omega^{(\beta)}\right)=[\sharp \Pi(\omega)]^{(r-\beta+\alpha)} .
$$

We put $\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r}(\sharp \Pi) \circ \alpha_{M}^{r}=(\sharp \Pi)^{(\alpha)}$. Then

$$
\begin{aligned}
(\sharp \Pi)^{(\alpha)}\left(\omega^{(\beta)}\right) & =\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r}(\sharp \Pi) \circ \chi_{T^{*} M}^{(r-\beta)} \circ T^{r} \omega \\
& =\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ \chi_{T M}^{(r-\beta)} \circ T^{r}(\sharp \Pi(\omega)) \\
& =\kappa_{M}^{r} \circ \chi_{T M}^{(r+\alpha-\beta)} \circ T^{r}\left(\not \sharp_{\Pi}(\omega)\right)=\left(\not{ }_{\Pi}(\omega)\right)^{(r+\alpha-\beta)} .
\end{aligned}
$$

(ii) Let $f \in C^{\infty}(M)$. Then

$$
X_{f^{(\beta)}}=\sharp_{\Pi^{\alpha}}\left(d f^{(\beta)}\right)=\left[\sharp_{\Pi}(d f)\right]^{(r+\alpha-\beta)}=\left(X_{f}\right)^{(r+\alpha-\beta)} .
$$

(iii) Let $f, g \in C^{\infty}(M)$ and $\beta, \gamma=0, \ldots, r$. Then

$$
\left\{f^{(\beta)}, g^{(\gamma)}\right\}_{\Pi^{\alpha}}=X_{f^{(\beta)}}\left(g^{(\gamma)}\right)=\left(X_{f}\right)^{(r+\alpha-\beta)}\left(g^{(\gamma)}\right)=\left(\{f, g\}_{\Pi}\right)^{(\gamma+\beta-\alpha-r)}
$$

(iv) We use the properties of the natural transformations of κ_{M}^{r} and α_{M}^{r} :

$$
\begin{aligned}
T T^{r} f \circ \sharp_{\Pi_{M}^{\alpha}} \circ T^{*} T^{r} f & =T T^{r} f \circ \kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r}\left(\not \Pi_{M}\right) \circ \alpha_{M}^{r} \circ T^{*} T^{r} f \\
& =\kappa_{N}^{r} \circ \chi_{T N}^{(\alpha)} \circ T^{r} T f \circ T^{r}\left(\not \Pi_{M}\right) \circ T^{r} T^{*} f \circ \alpha_{N}^{r} \\
& =\kappa_{N}^{r} \circ \chi_{T N}^{(\alpha)} \circ T^{r}\left(T f \circ \sharp_{\Pi_{M}} \circ T^{*} f\right) \circ \alpha_{N}^{r}=\sharp \Pi_{N}^{\alpha} .
\end{aligned}
$$

Thus $T^{r} f$ is a Poisson morphism.
REmARK 4.4. (i) By (4.3), if f is a Casimir function for (M, Π), then for each $\beta \in\{0, \ldots, r\}, f^{(\beta)}$ is a Casimir function for $\left(T^{r} M, \Pi^{\alpha}\right)$. In particular, for any $\beta<\alpha, f^{(\beta)}$ is a Casimir function.
(ii) If Π is a regular Poisson bivector of rank $2 d$, then Π^{α} is regular of rank $2 d(r-\alpha+1)$.

Remark 4.5. For $\beta \in\{0, \ldots, r\}$, we have

$$
\sharp \Pi_{\Pi^{\alpha}} \circ S_{\beta}^{*}=\sharp \Pi_{\Pi^{(c)}} \circ S_{\alpha}^{*} \circ S_{\beta}^{*}=\sharp \Pi_{\Pi^{(c)}} \circ S_{\alpha+\beta}^{*}=S_{\alpha+\beta} \circ \not \Pi_{\Pi^{(c)}}=S_{\beta} \circ \sharp \Pi_{\Pi^{\alpha}} .
$$

By the procedure of Subsection 4.2 , we verify easily that ($T^{r} M, \Pi^{\alpha}, S_{\beta}$) is a Poisson-Nijenhuis manifold. This structure is the same as the structure obtained from the canonical Nijenhuis tensor $S_{\alpha+\beta}$ on the Poisson manifold ($T^{r} M, \Pi^{(c)}$).

Corollary 4.1. For any $\alpha, \beta \in\{0, \ldots, r\}, \Pi^{\alpha}$ and Π^{β} are compatible, so

$$
\left[\Pi^{\alpha}, \Pi^{\beta}\right]=0
$$

Proof. Apply [V2, Theorem 1.3] and Remark 4.5.

5. Applications

5.1. Other prolongations of Lie algebroids. For any vector bundle (E, M, π), we define the β-prolongation of a section u, denoted $u^{(\beta)}$, by

$$
u^{(\beta)}=\chi_{E}^{(\beta)} \circ T^{r} u, \quad 0 \leq \beta \leq r,
$$

where $\chi_{E}^{(\beta)}: T^{r} E \rightarrow T^{r} E$ is a smooth map defined in Subsection 3.1. For convenience, we put $u^{(\beta)}=0$ for $\beta \notin\{0, \ldots, r\}$.

We denote by $\left(x^{i}, y^{j}\right)$ a local coordinate system of E; it induces local coordinate systems

$$
\begin{array}{ll}
\left(x^{i}, \pi_{j}\right) & \text { in } E^{*} \\
\left(x^{i}, y^{j}, x_{\beta}^{i}, y_{\beta}^{j}\right) & \text { in } T^{r} E \\
\left(x^{i}, \pi_{j}, x_{\beta}^{i}, \pi_{j}^{\beta}\right) & \text { in } T^{r} E^{*} \\
\left(x^{i}, \widetilde{\pi}_{j}, x_{\beta}^{i}, \widetilde{\pi}_{j}^{\beta}\right) & \text { in }\left(T^{r} E\right)^{*}
\end{array}
$$

We recall that there exists a natural bundle isomorphism

$$
I_{E^{*}}^{r}: T^{r} E^{*} \rightarrow\left(T^{r} E\right)^{*}
$$

such that locally,

$$
I_{E^{*}}^{r}\left(x^{i}, \pi_{j}, x_{\gamma}^{i}, \pi_{j}^{\gamma}\right)=\left(x^{i}, \widetilde{\pi}_{j}, x_{\gamma}^{i}, \widetilde{\pi}_{j}^{\gamma}\right) \quad \text { with } \quad\left\{\begin{array}{l}
\widetilde{\pi}_{j}=\pi_{j}^{r}, \\
\widetilde{\pi}_{j}^{\gamma}=\pi_{j}^{r-\gamma}
\end{array}\right.
$$

With these notations, we deduce the following result:
Theorem 5.1. Let $(E,[\cdot, \cdot], \rho)$ be a Lie algebroid and $\alpha \in\{0, \ldots, r\}$. There is a unique Lie algebroid structure on the bundle $T^{r} E \rightarrow T^{r} M$ with anchor map

$$
\rho^{(\alpha)}=\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r} \rho
$$

such that for any $u, v \in \Gamma(E)$ and $\beta, \gamma=0, \ldots, r$,

$$
\left[u^{(\beta)}, v^{(\gamma)}\right]=[u, v]^{(\alpha+\beta+\gamma)}
$$

This structure is called the α-lift of the Lie algebroid E.
Proof. Since $(E,[\cdot, \cdot], \rho)$ is a Lie algebroid, it induces a linear Poisson bivector $\Pi_{E^{*}}$ on E^{*}. So, the map $\sharp_{\Pi_{E^{*}}}: T^{*} E^{*} \rightarrow T E^{*}$ is a morphism of double vector bundles. By Theorem $4.2(1), \sharp_{\Pi_{E^{*}}}^{\alpha}$ is a morphism of double vector bundles. Therefore, $\left(T^{r} E^{*}, \Pi_{E^{*}}^{\alpha}\right)$ is a linear Poisson bivector and it follows that $\left(T^{r} E^{*}\right)^{*}$ is a Lie algebroid. We endow $T^{r} E$ with the structure of Lie algebroid such that $I_{E}^{r}: T^{r} E \rightarrow\left(T^{r} E^{*}\right)^{*}$ is an isomorphism of Lie algebroids. The rest of the proof is similar to the proof of [KWN, Theorem 3].

Remark 5.1. Let $(E,[\cdot, \cdot], \rho)$ be a Lie algebroid and u a smooth section of E. For $\beta \in\{0,1, \ldots, r\}$, we have $\rho^{(\alpha)}\left(u^{(\beta)}\right)=[\rho(u)]^{(\alpha+\beta)}$.

Corollary 5.1. Let $(E,[\cdot, \cdot], \rho)$ be a Lie algebroid. Then the vector bundle morphism $\chi_{E}^{(\alpha)}: T^{r} E \rightarrow T^{r} E$ is a morphism of Lie algebroids between the α-lift of the Lie algebroid denoted by $\left(T^{r} E,[\cdot, \cdot], \rho^{(\alpha)}\right)$ and the tangent lift of order r of the Lie algebroid denoted by ($T^{r} E,[\cdot, \cdot], \rho^{(r)}$) (see [KWN]).

Proof. We know that for any $u \in \Gamma(E)$ and $\beta=0, \ldots, r$, we have $\chi_{E}^{(\alpha)}\left(u^{(\beta)}\right)=u^{(\alpha+\beta)}$. It follows that

$$
\begin{aligned}
\chi_{E}^{(\alpha)}\left[u^{(\beta)}, v^{(\gamma)}\right] & =\chi_{E}^{(\alpha)}\left([u, v]^{(\alpha+\beta+\gamma)}\right)=[u, v]^{(2 \alpha+\beta+\gamma)} \\
& =\left[\chi_{E}^{(\alpha)}\left(u^{(\beta)}\right), \chi_{E}^{(\alpha)}\left(v^{(\gamma)}\right)\right]
\end{aligned}
$$

for any $u, v \in \Gamma(E)$ and $\beta, \gamma=0, \ldots, r$. We deduce our result from

$$
\rho^{(r)} \circ \chi_{E}^{(\alpha)}=\kappa_{M}^{r} \circ T^{r} \rho \circ \chi_{E}^{(\alpha)}=\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r} \rho
$$

Thus $\rho^{(r)} \circ \chi_{E}^{(\alpha)}=\rho^{(\alpha)}$.
Corollary 5.2. Let (M, Π) be a Poisson manifold, let $T^{r} T^{*} M$ designate the α-lift of the Lie algebroid $\left(T^{*} M,[\cdot, \cdot]_{\Pi}, \sharp_{\Pi}\right)$, and let $T^{*} T^{r} M$ be the Lie algebroid defined by the Poisson bivector Π^{α}. The canonical mapping $\alpha_{M}^{r}: T^{*} T^{r} M \rightarrow T^{r} T^{*} M$ is an isomorphism of Lie algebroids.

Proof. This follows by a calculation in local coordinates.
Example 5.1. We know that since $\left(T^{r} M, S_{\alpha}\right)$ is a Nijenhuis manifold, it induces a Lie algebroid structure on $T T^{r} M$ such that the bracket is given for $X, Y \in \mathfrak{X}\left(T^{r} M\right)$ by

$$
[X, Y]_{S_{\alpha}}=\left[S_{\alpha} X, Y\right]+\left[X, S_{\alpha} Y\right]-S_{\alpha}[X, Y]
$$

We denote by $\left(T^{r} T M,[\cdot, \cdot]_{\alpha}\right)$ the α-lift of the canonical Lie algebroid on $T M$. The vector bundle isomorphism κ_{M}^{r} is an isomorphism of Lie algebroids between $\left(T^{r} T M,[\cdot, \cdot]_{\alpha}\right)$ and $\left(T T^{r} M,[\cdot, \cdot]_{S_{\alpha}}\right)$.

Example 5.2. Let \mathfrak{g} be a Lie algebra; it is a Lie algebroid over a point. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis of \mathfrak{g}. For all $i, j \in\{1, \ldots, m\}$, we have

$$
\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k}
$$

Here the $c_{i j}^{k}$ are constant functions, so that $\left(c_{i j}^{k}\right)^{(\nu)}=0$ for all $\nu \geq 1$. The α-lift of the Lie algebroid \mathfrak{g} is such that for any $i, j \in\{1, \ldots, m\}$ and $\beta, \gamma \in\{0, \ldots, r\}$,

$$
\left[e_{i}^{\beta}, e_{j}^{\gamma}\right]=c_{i j}^{k} e_{k}^{\alpha+\beta+\gamma}
$$

In particular, when $r=1$, the vertical lift of the Lie algebra is such that

$$
\left[\dot{e}_{i}, \dot{e}_{j}\right]=\left[\dot{e}_{i}, e_{j}\right]=\left[e_{i}, \dot{e}_{j}\right]=0 \quad \text { and } \quad\left[e_{i}, e_{j}\right]=c_{i j}^{k} \dot{e}_{k}
$$

When $\alpha=0$, we obtain the usual tangent lift of order r of Poisson manifolds and Lie algebroids.

REmARK 5.2. Let $(E,[\cdot, \cdot], \rho)$ be a Lie algebroid over M, and $J: E \rightarrow E$ a morphism of vector bundles over M. For $u, v \in \Gamma(E)$, we put

$$
\begin{aligned}
{[u, v]_{J} } & =[J u, v]+[u, J v]-J[u, v] \\
T_{J}(u, v) & =[J u, J v]-J([J u, v]+[u, J v]-J[u, v]) .
\end{aligned}
$$

We easily verify that if $T_{J}=0$, then $\left(E,[\cdot, \cdot]_{J}\right)$ is a Lie algebroid over M with anchor map $\rho_{J}=\rho \circ J$. We thus obtain a J-deformation of the initial Lie algebroid $(E,[\cdot, \cdot], \rho)$.

Consider the canonical vector bundle morphism $J_{\alpha}=\chi_{E}^{(\alpha)}$. By Corollary 5.1 , the α-prolongation of the Lie algebroid on $T^{r} E$ coincides with the $J_{\alpha^{-}}$ deformation of the Lie algebroid ($T^{r} E,[\cdot, \cdot], \rho^{(r)}$).

5.2. Higher order tangent lifts of Poisson-Nijenhuis manifolds.

Let $S: T M \rightarrow T M$ be a tensor. We put

$$
\left(S^{*}\right)^{(c)}=\varepsilon_{M}^{r} \circ T^{r}\left(S^{*}\right) \circ \alpha_{M}^{r},
$$

where S^{*} designates the dual map of S.
Lemma 5.1. Let (M, S) be a Nijenhuis manifold. Then

$$
\left(S^{(c)}\right)^{*}=\left(S^{*}\right)^{(c)}
$$

Proof. For any $\omega \in \Omega^{1}(M)$ and $X \in \mathfrak{X}(M)$, we have

$$
\begin{aligned}
\left\langle X^{(\alpha)},\left(S^{(c)}\right)^{*}\left(\omega^{(\beta)}\right)\right\rangle_{T^{r} M} & =\left\langle S^{(c)}\left(X^{(\alpha)}\right), \omega^{(\beta)}\right\rangle_{T^{r} M}=\left\langle(S X)^{(\alpha)}, \omega^{(\beta)}\right\rangle_{T^{r} M} \\
& =\left(\langle S X, \omega\rangle_{M}\right)^{(\beta-\alpha)}=\left(\left\langle X, S^{*} \omega\right\rangle_{M}\right)^{(\beta-\alpha)} \\
& =\left\langle X^{(\alpha)},\left(S^{*} \omega\right)^{(\beta)}\right\rangle_{T^{r} M}=\left\langle X^{(\alpha)},\left(S^{*}\right)^{(c)}\left(\omega^{(\beta)}\right)\right\rangle_{T^{r} M}
\end{aligned}
$$

Therefore $\left(S^{(c)}\right)^{*}\left(\omega^{(\beta)}\right)=\left(S^{*}\right)^{(c)}\left(\omega^{(\beta)}\right)$, thus $\left(S^{(c)}\right)^{*}=\left(S^{*}\right)^{(c)}$.

Lemma 5.2. Let (M, Π, S) be a Poisson-Nijenhuis manifold. Then

$$
\sharp_{\Pi^{(c)}} \circ\left(S^{(c)}\right)^{*}=S^{(c)} \circ \sharp_{\Pi^{(c)}} .
$$

Proof. We compute

$$
\begin{aligned}
\sharp_{\Pi^{(c)}} \circ\left(S^{(c)}\right)^{*} & =\sharp_{\Pi^{(c)}} \circ\left(S^{*}\right)^{(c)}=\kappa_{M}^{r} \circ T^{r}\left(\not \sharp_{\Pi}\right) \circ \alpha_{M}^{r} \circ \varepsilon_{M}^{r} \circ T^{r} S^{*} \circ \alpha_{M}^{r} \\
& =\kappa_{M}^{r} \circ T^{r}\left(\not \sharp_{\Pi} \circ S^{*}\right) \circ \alpha_{M}^{r}=\kappa_{M}^{r} \circ T^{r}\left(S \circ \sharp_{\Pi}\right) \circ \alpha_{M}^{r} \\
& =S^{(c)} \circ \sharp_{\Pi^{(c)}} .
\end{aligned}
$$

Let (M, Π, S) be a Poisson-Nijenhuis manifold. We denote by Π_{S} the bivector defined by $S \circ \sharp_{\Pi}$. By Lemma 5.2 , we deduce that

$$
\sharp_{\Pi_{S}^{(c)}}=S^{(c)} \circ \sharp_{\Pi^{(c)}} .
$$

Therefore, for any $\omega, \varpi \in \Omega^{1}(M)$ and $\alpha, \beta \in\{0, \ldots, r\}$, we have

$$
\begin{equation*}
\left[\omega^{(\alpha)}, \varpi^{(\beta)}\right]_{\Pi_{S}^{(c)}}=[\omega, \varpi]_{\Pi_{S}}^{(\alpha+\beta-r)} \tag{5.1}
\end{equation*}
$$

Theorem 5.2. Let (M, Π, S) be a Poisson-Nijenhuis manifold. For any $\omega, \varpi \in \Omega^{1}(M)$ and $\alpha, \beta=0, \ldots, r$, we have

$$
\nabla_{\Pi^{(c)} S^{(c)}}\left(\omega^{(\alpha)}, \varpi^{(\beta)}\right)=\left(\nabla_{\Pi S}(\omega, \varpi)\right)^{(\alpha+\beta-r)}
$$

In particular, $\left(T^{r} M, \Pi^{(c)}, S^{(c)}\right)$ is a Poisson-Nijenhuis manifold.
Proof. This follows from Lemma 5.2, Proposition 4.2 and equation (5.1).
Corollary 5.3. Let (M, Π, S) be a Poisson-Nijenhuis manifold. Recall that for $\alpha \in\{0, \ldots, r\}, S^{(\alpha)}=\kappa_{M}^{r} \circ \chi_{T M}^{(\alpha)} \circ T^{r} S \circ\left(\kappa_{M}^{r}\right)^{-1}$.
(i) For each $\alpha \in\{0, \ldots, r\},\left(T^{r} M, \Pi^{(c)}, S^{(\alpha)}\right)$ is a Poisson-Nijenhuis manifold.
(ii) For each $\alpha, \beta \in\{0, \ldots, r\},\left(T^{r} M, \Pi^{\alpha}, S^{(\beta)}\right)$ is a Poisson-Nijenhuis manifold.
Proof. This follows from the equalities $S_{\alpha} \circ S^{(c)}=S^{(\alpha)}=S^{(c)} \circ S_{\alpha}$. ■
REmARK 5.3. Let (M, Π, S) be a Poisson-Nijenhuis manifold. For any $k \geq 2$, we put

$$
S^{\langle k\rangle}=\underbrace{S \circ \cdots \circ S}_{k \text { times }} \quad \text { and } \quad S^{\langle 1\rangle}=S
$$

In the same way, $\Pi^{\langle k\rangle}$ is the Poisson bivector defined by the vector bundle morphism $S \circ \sharp_{\Pi^{\langle k-1\rangle}}$ with $\Pi^{\langle 1\rangle}=\Pi$. The sequence $\left(S^{\langle k\rangle}, \Pi^{\langle k\rangle}\right)_{k \geq 2}$ is the hierarchy of the Poisson-Nijenhuis manifold (M, Π, S), so that for $k, p \geq 1$ we have

$$
\left[\Pi^{\langle k\rangle}, \Pi^{\langle p\rangle}\right]=0
$$

From the equalities

$$
\left(S^{(c)}\right)^{\langle k\rangle} \circ S_{\alpha}=S_{\alpha} \circ\left(S^{(c)}\right)^{\langle k\rangle}=\left(S_{\alpha} \circ S\right)^{\langle k\rangle}=\left(S^{(\alpha)}\right)^{\langle k\rangle} \quad(k \geq 1),
$$

it follows that $\left(\Pi^{\langle k\rangle}\right)^{\alpha}=\left(\Pi^{\alpha}\right)^{\langle k\rangle}$ where the sequence $\left(\Pi^{\alpha}\right)^{\langle k\rangle}$ is defined by $\left(S^{(\alpha)}\right)^{\langle k\rangle}$.

Acknowledgements. I would like to thank Jean Wouafo Kamga and Achille Ntyam for helpful suggestions and valuable comments.

References

[CK] A. Cabras and I. Koláŕ, Prolongation of projectable tangent valued forms, Arch. Math. (Brno) 38 (2002), 243-257.
[CS] F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between $T^{k} T^{*}$ and $T^{*} T^{k}$, C. R. Acad. Sci. Paris 309 (1989), 1509-1514.
[C] T. Courant, Tangent Lie algebroids, J. Phys. A 23 (1994), 4527-4536.
[GMP] J. Gancarzewicz, W. Mikulski and Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1-41.
[GU] J. Grabowski and P. Urbański, Tangent lifts of Poisson and related structures, J. Phys. A 28 (1995), 6743-6777.
[K] I. Kolář, Functorial prolongations of Lie algebroids, in: Differential Geometry and Its Applications, Matfyzpress, Praha, 2005, 305-314.
[KMS] I. Kolář, P. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[KO] Y. Kosmann-Schwarzbach, The Lie bialgebroid of a Poisson-Nijenhuis manifold, Lett. Math. Phys. 38 (1996), 421-428.
[KM1] Y. Kosmann-Schwarzbach and F. Magri, On the modular class of Poisson-Nijenhuis manifolds, arXiv:math/0611202v1 [math. SG] (2006).
[KM2] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 35-81.
[KW] P. M. Kouotchop Wamba, Canonical Poisson-Nijenhuis structures on the tangent bundles, to appear.
[KWN] P. M. Kouotchop Wamba, A. Ntyam and J. Wouafo Kamga, Tangent lift of higher order of multivector fields and applications, J. Math. Sci. Adv. Appl. 15 (2012), 89-112.
[M] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Note Ser. 213, Cambridge Univ. Press, Cambridge, 2005.
[MX] K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1998), 415-452.
[MV] G. Mitric and I. Vaisman, Poisson structures on tangent bundles, Differential Geom. Appl. 18 (2003), 207-228.
[MO] A. Morimoto, Lifting of some type of tensors fields and connections to tangent bundles of p^{r}-velocities, Nagoya Math. J. 40 (1970), 13-31.
[V1] I. Vaisman, A lecture on Poisson-Nijenhuis manifold structures, The Erwin Schrödinger International Institute for Mathematical Physics, Wien, 1994.
[V2] I. Vaisman, The Poisson-Nijenhuis manifolds revisited, Rend. Semin. Mat. Univ. Politec. Torino 52 (1994), 377-394.
[V3] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progr. Math. 118, Birkhäuser, 1994.
[W] J. Wouafo Kamga, Global prolongation of geometric objects to some jet spaces, International Centre for Theoretical Physics, Trieste, 1997.

P. M. Kouotchop Wamba
Department of Mathematics
University of Yaoundé 1
PO Box 812 Yaoundé, Cameroon
E-mail: wambapm@yahoo.fr

Received 17.8.2012
and in final form 3.4.2013

[^0]: 2010 Mathematics Subject Classification: Primary 53C15; Secondary 53C75, 53D05.
 Key words and phrases: Nijenhuis manifold, vertical lift and complete lift of vector fields, vertical lift and complete lift of 1 -forms and Lie algebroids.

