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A note on generalized projections in c0

by Beata Deręgowska and Barbara Lewandowska (Kraków)

Abstract. Let V ⊂ Z be two subspaces of a Banach space X. We define the set of
generalized projections by

PV (X,Z) := {P ∈ L(X,Z) : P |V = id}.
Now let X = c0 or lm∞, Z := ker f for some f ∈ X∗ and V := Z ∩ ln∞ (n < m). The main
goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal
generalized projection in this case. Also formulas for the relative generalized projection
constant and the strong uniqueness constant will be given (cf. J. Blatter and E. W. Cheney
[Ann. Mat. Pura Appl. 101 (1974), 215–227] and G. Lewicki and A. Micek [J. Approx.
Theory 162 (2010), 2278–2289] where the case of projections has been considered). We
discuss both the real and complex cases.

1. Introduction. Let X be a Banach space and V be a closed linear
subspace of X. Then we denote by P(X,V ) the set of all linear projections
continuous with respect to the operator norm. Recall that an operator P :
X → V is called a projection if P |V = idV . A projection P0 ∈ P(X,V ) is
called minimal if
(1.1) ‖P0‖ = λ(V,X) := inf{‖P‖ : P ∈ P(X,V )}.

Minimal projections in the context of functional analysis and approxima-
tion theory were extensively studied by many authors (see e.g., [3], [5]–[12],
[14]–[17], [20], [21], [25], [27], [29]–[31]). Mainly the problems of existence of
minimal projections, their uniqueness, finding concrete formulas for minimal
projections and estimates of the constant λ(V,X) were considered.

Projections play an important role in numerical analysis, as the error of
approximation of an element x by Px can be estimated by means of the
elementary inequality
(1.2) ‖x− Px‖ ≤ ‖id− P‖ · dist(x, V ) ≤ (1 + ‖P‖) · dist(x, V ),

where dist(x, V ) := inf{‖x− v‖ : v ∈ V }.
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Let us introduce a generalization of projections (compare with quasi-
projection, [13]), for which the above inequality also holds.

Definition 1.1. Let V ⊂ Z be two subspaces of a Banach space X.
Then

(1.3) PV (X,Z) := {P ∈ L(X,Z) : P |V = id}.
An element P0 ∈ PV (X,Z) is called a minimal generalized projection (MGP)
if

(1.4) ‖P0‖ = λZ(V,X) := inf{‖P‖ : P ∈ PV (X,Z)}
Notice that λZ(V,X) ≤ λ(V,X) for any V ⊂ Z ⊂ X. In general λ(V,X)

and λZ(V,X) are not equal (see Example 2.5). It is worth mentioning that
some classical operators like Bernstein operators, Fejér operators and de La
Vallée Poussin operators are generalized projections.

In this paper we discuss existence, uniqueness and strong uniqueness of
minimal generalized projections in the case X = c0 or X = lm∞, Z = kerf for
some f ∈ X∗ \ {0} and V = Z ∩ ln∞ (n < m). Also formulas for the relative
generalized projection constant λZ(V,X) and the strong uniqueness constant
will be given. This generalizes some results of J. Blatter and E. W. Cheney [3]
and G. Lewicki and A. Micek [19]. Our results seem interesting because cases
in which exact values of the above constants can be given are rare.

The notion of strong uniqueness was introduced by Newman and
Shapiro [26]. Let X be a normed space and let Y ⊂ X be a nonempty
subset. An element y ∈ Y is called a strongly unique best approximation
(SUBA) to x ∈ X if there exists r > 0 such that for every v ∈ Y ,

(1.5) ‖x− v‖ ≥ ‖x− y‖+ r‖v − y‖.
The largest such r is called the strong uniqueness constant. The significance
of this notion can be illustrated by its two main applications. The error es-
timate of the Remez algorithm is based on an iteration process for finding
the constant r satisfying (1.5). The strong uniqueness of best approxima-
tion yields the Lipschitz continuity of the best approximation mapping (see
e.g. [4]).

In the case of operators, the notion of strong uniqueness reduces to the
following definition:

Definition 1.2. Let T0 ∈ T ⊂ L(X,Z). Then T0 is called a strongly
unique minimal operator in T if there exists r > 0 such that for any T ∈ T ,
(1.6) ‖T‖ ≥ ‖T0‖+ r‖T − T0‖.
The largest such r, is called the strong uniqueness operator constant in T .

For results concerning strong uniqueness in general and in the context of
minimal projections see e.g. [1], [2], [18], [19], [23], [24], [26], [28], [32].
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The main tool to study strong uniqueness is a Kolmogorov type criterion
[17, Theorem 1.2.5]. The following theorem is a special case of this criterion.

Theorem 1.3. Let Z ⊂ X be finite-dimensional spaces and let T be an
affine subspace of L(X,Z). Then T0 is a strongly unique minimal operator
in T with constant r > 0 iff for every T ∈ T there exists z∗ ∈ crit∗(T0) such
that

(1.7) inf{Re(z∗((T − T0)x)) : x ∈ Az∗(T0)} ≤ −r‖T − T0‖,

where crit∗(T0) := {z∗ ∈ ext(SX∗) : ‖z∗ ◦ T0‖ = ‖T0‖} and Az∗(T0) :=
{x ∈ SX : z∗(T0x) = ‖T0‖}.

2. Results and applications. In this section, unless otherwise stated,
we consider both real and complex cases. Let n ∈ N. For every f ∈ l1 we
define f (n) := (f1, . . . , fn). We denote by Qn the operator given by

(2.1) Qn : c0 3 (x1, x2, . . . ) 7→ (x1, . . . , xn) ∈ ln∞.

Lemma 2.1. Let X := c0, Z := ker f with f ∈ l1 such that f (n) 6= 0,
and V = Z ∩ ln∞. If P ∈ PV (X,Z) then P ◦Qn ∈ PV (X,Z). Moreover there
exists w ∈ X such that f(w) = 1 and

(2.2) P ◦Qn(x) = Qn(x)− f(Qn(x))w for all x ∈ X.

Proof. It is obvious that P ◦Qn ∈ PV (X,Z). Now let {yk}ni=1 be a basis
of ln∞ such that f(yn) = 1 and f(yk) = 0 for all k ∈ {1, . . . , n−1}. Fix x ∈ X.
Since Qn(x) ∈ ln∞, there exist v ∈ V and α ∈ K such that Qn(x) = v + αyn.
Hence

P (Qn(x)) = P (v) + αP (yn) = v + αyn − αyn + αP (yn)

= Qn(x)− α(yn − P (yn)),

f(Qn(x)) = f(v) + αf(yn) = α,

f(yn − P (yn)) = f(yn)− f(P (yn)) = 1,

as required.

Since ‖Qn‖ = 1, we can state

Corollary 2.2. Let X,Z, V be as in Lemma 2.1. Then

(2.3) λZ(V,X) = inf{‖P‖ : P ∈ P̃V (X,Z)},

where P̃V (X,Z) := {Qn − f ◦Qn(·)w : w ∈ X, f(w) = 1}.

Lemma 2.3. Let X,Z, V be as in Lemma 2.1. Fix w ∈ X such that
f(w) = 1 and let

(2.4) P (x) := Qn(x)− f(Qn(x))w for all x ∈ X.
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Then
(2.5)
‖P‖ = max

{
max
k≤n
{|1− fkwk|+ (‖f (n)‖1 − |fk|)|wk|},max

k>n
{‖f (n)‖1|wk|}

}
.

Proof. Let M := max{‖f (n)‖1|wk| : k > n}. Observe that

‖P‖ = sup
‖x‖=1

{
max

{
max
k≤n

{∣∣∣xk − n∑
j=1

fjxjwk

∣∣∣},max
k>n

{∣∣∣ n∑
j=1

fjxj

∣∣∣ |wk|}}}

= max
{

sup
‖x‖=1

max
k≤n

{∣∣∣xk(1− fkwk)− k−1∑
j=1

fjxjwk −
n∑

j=k+1

fjxjwk

∣∣∣},M}
= max

{
max
k≤n

{
|1− fkwk|+

( n∑
j=1

|fj | − |fk|
)
|wk|

}
,M
}

= max
{

max
k≤n
{|1− fkwk|+ (‖f (n)‖1 − |fk|)|wk|},max

k>n
{‖f (n)‖1|wk|}

}
,

as required.

Theorem 2.4. Let X := c0, Z := ker f with f ∈ Sl1 such that f (n) 6= 0,
and V = Z ∩ ln∞. If ‖f (n)‖1 < 1/2 or ‖f (n)‖1 ≤ 2‖f (n)‖∞ then there exists a
minimal generalized projection in PV (X,Z) and λZ(V,X) = 1.

Proof. First assume that ‖f (n)‖1 ≤ 2‖f (n)‖∞. Then there exists k ∈
{1, . . . , n} such that |fk| ≥ 1

2‖f
(n)‖1. Now let w := (1/fk)ek (where {ej}∞j=1

is the canonical basis of c0) and

(2.6) P (x) := Qn(x)− f(Qn(x))w for x ∈ X.
It is easy to see that f(w) = 1 and P ∈ PV (X,Z). According to Lemma 2.3,

(2.7) ‖P‖ = max{1, ‖f (n)‖1/|fk| − 1}.
By assumption ‖f (n)‖1/|fk| − 1 ≤ 2‖f (n)‖1/‖f (n)‖1 − 1 = 1. Hence P is a
MGP and ‖P‖ = λZ(V,X) = 1.

Now assume that ‖f (n)‖1 < 1/2. We know that ‖f‖1 = 1, so there exists
M ∈ N such that

(2.8)
M∑

k=n+1

|fk| >
1

2
.

Define

(2.9) ϕ : [0, 1]M−n 3 (αn+1, . . . , αM ) 7→
M∑

k=n+1

αk
‖f (n)‖1

|fk| ∈ R.

The function ϕ is continuous, ϕ(0) = 0 and ϕ(1, . . . , 1) > 1, hence there
exists β ∈ [0, 1]M−n such that ϕ(β) = 1. Now let w := (w1, . . . , wM , 0, . . . )
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where wk = 0 for k = 1, . . . , n and

wk =
βk

‖f (n)‖1
f̄k
|fk|

for k = n+ 1, . . . ,M.

Define the generalized projection P ∈ PV (X,Z) by

(2.10) P (x) := Qn(x)− f(Qn(x))w for x ∈ X.
By Lemma 2.3, ‖P‖ = max{1,max{βj : j ∈ {n+ 1, . . . ,M}}} = 1.

Example 2.5. Let f :=
(
1
8 ,

1
8 ,

1
8 ,

5
16 ,

5
32 , . . .

)
∈ l1, and let X := c0, Z :=

ker f and V := ker f ∩ l3∞.
Notice that the assumptions of the above theorem are satisfied. Hence

e.g. P0 := Q3 − 32
15f ◦ Q3(·)(e4 + e5) is a MGP in PV (X,Z) and ‖P0‖ =

λZ(V,X) = 1. By [3], P1 := id − 8
3f ◦ Q3(·)(e1 + e2 + e3) is a minimal

projection in P(X,V ) and ‖P1‖ = λ(V,X) = 4
3 , but there does not exist a

minimal projection in P(X,Z), and λ(Z,X) ≈ 1.58.

Remark 2.6. Let the assumptions of the previous theorem hold. Then
there exist more than one MGP in P̃V (X,Z).

Proof. First assume that there exists k > n such that fk = 0. Let P
be a MGP defined as in Theorem 2.4 (P is given by (2.6) when ‖f (n)‖1 ≤
2‖f (n)‖∞ and by (2.10) when ‖f (n)‖1 < 1/2). Then wk = 0. Hence Q :=

Qn − f ◦Qn(·)(w + ek) is also a MGP in P̃V (X,Z).

Now assume that fk 6= 0 for every k > n and consider two cases.
(i) ‖f (n)‖1 ≤ 2‖f (n)‖∞. Let k ∈ {1, . . . , n} be such that |fk| = ‖f (n)‖∞.

Now for every α ∈ (0, 1) with α‖f (n)‖1 ≤ |fn+1| we define

Qα := Qn − f ◦Qn(·)y where y :=
1− α
fk

ek +
α

fn+1
en+1.

Then

‖Qα‖
(2.5)
= max

{
1, 2α− 1 + (1− α)

‖f (n)‖1
|fk|

,
α‖f (n)‖1
|fn+1|

}
= 1.

Hence for any α ∈ (0, 1), Qα is a MGP.
(ii) ‖f (n)‖1 < 1/2. It is easy to see that the function ϕ given by (2.9) is

equal to 1 at more than one point. Each such point can be used to define a
MGP (cf. (2.10)). Since fk 6= 0 for all k > n, these projections are different.

Theorem 2.7. Let X,Z, V be as in Theorem 2.4. Assume additionally
that ‖f (n)‖1 ≥ 1/2 and ‖f (n)‖∞ < ‖f (n)‖1/2. Then

(2.11) λZ(V,X) =
1 +

∑n
k=1

|fk|
‖f (n)‖1−2|fk|

1−‖f (n)‖1
‖f (n)‖1

+
∑n

k=1
|fk|

‖f (n)‖1−2|fk|

.
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Proof. Since ‖f (n)‖∞ < ‖f (n)‖1/2, we have ‖f (n)‖1 − 2|fk| > 0 for k ∈
{1, . . . , n}. For m > n (m ∈ N) put

λm :=

(
1 +

n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

)(∑m
k=n+1 |fk|
‖f (n)‖1

+
n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

)−1
,

and set

λ :=
1 +

∑n
k=1

|fk|
‖f (n)‖1−2|fk|

1−‖f (n)‖1
‖f (n)‖1

+
∑n

k=1
|fk|

‖f (n)‖1−2|fk|

.

We will construct a sequence {Pm}m>n of generalized projections such that
‖Pm‖ = λm. To do this, fix m > n and define w ∈ c0 as follows:

wk :=


f̄k
|fk|

λm − 1

‖f (n)‖1 − 2|fk|
for k = 1, . . . , n,

f̄k
|fk|

λm

‖f (n)‖1
for k = n+ 1, . . .m,

0 for k > m.
Then

f(w) =

n∑
k=1

|fk|
λm − 1

‖f (n)‖1 − 2|fk|
+

m∑
k=n+1

|fk|
λm

‖f (n)‖1

= (λm − 1)

n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

+
λm

‖f (n)‖1

m∑
k=n+1

|fk|

= λm

( n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

+

∑m
k=n+1 |fk|
‖f (n)‖1

)
−

n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

= 1.

Therefore, the operator

(2.12) Pm(x) := Qn(x)− f(Qn(x))w

is a generalized projection. Since fkwk ≥ 0 and
∑∞

k=1 fkwk = 1, we have
fkwk ≤ 1 for all k ∈ N. Using this observation and Lemma 2.3 we get

‖Pm‖ = max
{

max
k≤n
{1− fkwk + ‖f (n)‖1|wk| − fkwk}, λm

}
= max

{
max
k≤n
{1− 2fkwk + ‖f (n)‖1|wk|}, λm

}
= max

{
max
k≤n
{1 + |wk|(‖f (n)‖1 − 2|fk|)}, λm

}
= λm.

It is easy to see that λm → λ (m → ∞), which shows that λZ(V,X) ≤ λ.
To prove the opposite inequality, suppose that there exists a generalized
projection P such that ‖P‖ < λ. According to Corollary 2.2 we may assume
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that P is given by P (x) = Qn(x) − f(Qn(x))y for some y ∈ c0 such that
f(y) = 1. Using Lemma 2.3, we obtain

|1− fkyk|+ |yk|(‖f (n)‖1 − |fk|) ≤ ‖P‖ for k ∈ {1, . . . , n},
which implies

|yk|(‖f (n)‖1 − 2|fk|) ≤ ‖P‖ − 1 for k ∈ {1, . . . , n}.

Since |fk| < ‖f (n)‖1/2, we have |yk| ≤ ‖P‖−1
‖f (n)‖1−2|fk|

for k ∈ {1, . . . , n}. Anal-
ogously, |yk| ≤ ‖P‖/‖f (n)‖1 for k > n. By the above estimates we get

f(y) ≤
n∑
k=1

|fkyk|+
∞∑

k=n+1

|fkyk|

≤ (‖P‖ − 1)

n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

+
‖P‖
‖f (n)‖1

∞∑
k=n+1

|fk|

= ‖P‖
( n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

+
1− ‖f (n)‖1
‖f (n)‖1

)
−

n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

< λ

( n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

+
1− ‖f (n)‖1
‖f (n)‖1

)
−

n∑
k=1

|fk|
‖f (n)‖1 − 2|fk|

< 1,

a contradiction.

Corollary 2.8. Let the assumptions of the previous theorem hold. Then
there exists a MGP in PV (X,Z) iff f ∈ c00.

Proof. By the proof of Theorem 2.7 it is easy to see that if f ∈ c00 (i.e.
there exists m0 ≥ n such that fk = 0 for all k > m0) then Pm0 given by
(2.12) is a MGP.

Now assume conversely that f /∈ c00 and P ∈ PV (X,Z) is a MGP. By
Lemma 2.1 and Corollary 2.2 we can assume that P is given by

P (x) = Qn(x)− f(Qn(x))w for x ∈ X,
for some w ∈ c0 such that f(w) = 1. Then equality holds in the last inequality
of the proof of Theorem 2.7. This is possible only if |wk| = λ/‖f (n)‖1 for all
k > n such that fk 6= 0, which implies that w /∈ c0, a contradiction.

Theorem 2.9. Let X := lm∞ over R, Z := ker f with f ∈ Slm1 , and
V := Z ∩ ln∞ for fixed n ≤ m. Let ‖f (n)‖1 ≥ 1/2 and ‖f (n)‖∞ < ‖f (n)‖1/2.
Assume additionally that fj 6= 0 for all j ∈ {1, . . . ,m}. Then

(a) The MGP given by (2.12) is strongly unique in P̃V (X,Z) (see Corol-
lary 2.2).
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(b) Let

A(f) :=
n∑
k=1

fk
‖f (n)‖1 − 2|fk|

+
1− ‖f (n)‖1
‖f (n)‖1

.

Then the strong uniqueness constant is given by

(2.13) r =
1

‖f (n)‖1
min

{
|fj0 |

A(f)− |fj0 |
‖f (n)‖1−2|fj0 |

,
|fk0 |

A(f)− |fk0 |
‖f (n)‖1

}
,

where |fj0 | = min{|fj | : j ∈ {1, . . . , n}} and |fk0 | = min{|fk| : k ∈ {n + 1,
. . . ,m}}.

Proof. (a) Since

‖Pm‖ = ‖Qn − |f | ◦Qn(·)w̃‖ where w̃ =

(
w1f̄1
|f1|

, . . . ,
wmf̄m
|fm|

)
,

we can assume that fj > 0 for all j ∈ {1, . . . ,m}. By Theorem 1.3 it is
enough to prove that there exists r > 0 such that for every Q ∈ P̃V (X,Z)
there exists k ∈ {1, . . . ,m} with
M(Q, k) := inf{((Q−Pm)(x))k : x ∈ SX , (Pmx)k = ‖Pm‖} ≤ −r‖Q−Pm‖.
By the proof of Lemma 2.3 it is easy to see that if k ∈ {1, . . . , n} then
(2.14)
(Pmx)k = ‖Pm‖ iff xk = 1 and xj = −1 for j ∈ {1, . . . , k−1, k+1, . . . , n}
and if k ∈ {n+ 1, . . . ,m} then
(2.15) (Pmx)k = ‖Pm‖ iff xj = −1 for j ∈ {1, . . . , n}.
We know that there exists y ∈ X such that f(y) = 1 and

Q(x) = Qn(x)− f(Qn(x))y for all x ∈ X.
Hence

(2.16) M(Q, k) =

{
(2fk − ‖f (n)‖1)(wk − yk) for k ∈ {1, . . . , n},
−‖f (n)‖1(wk − yk) for k ∈ {n+ 1, . . . ,m}.

Now define a function φ := SX → R by

φ(x) := min
{

min
k≤n
{(2fk − ‖f (n)‖1)xk},min

k>n
{−‖f (n)‖1xk}

}
.

Since 0 < fk < ‖f (n)‖1/2 for k = 1, . . . ,m, we have φ(x) < 0 for every
x ∈ SX ∩ Z. Because φ is continuous and SX ∩ Z is a compact set, the
number
(2.17) r̂ := −max{φ(x) : x ∈ SX ∩ Z}‖f (n)‖−11

is positive. By (2.16) and (2.17) we can choose k ∈ {1, . . . ,m} such that

M(Q, k) = φ

(
w − y
‖w − y‖∞

)
‖w− y‖∞ ≤ −r̂‖w− y‖∞‖f (n)‖1 = −r̂‖Q−Pm‖.
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(b) First we will show that the constant r̂ given by (2.17) is the best
possible. Take r1 > r̂. By (2.17) there exists z ∈ SX ∩ Z such that φ(z) >

−r1‖f (n)‖1. Now define Q ∈ P̃V (X,Z) by

Q(x) := Pm(x) + f(Qn(x))z for x ∈ X.

Then
M(Q, k) ≥ φ(z) > −r1‖f (n)‖1 = −r1‖Q− Pm‖.

as required. Now we will show that r̂ = r (where r is given by (2.13)). Let
x ∈ SX ∩ Z yield the maximum in (2.17) and consider four cases.

(i) There exists i0 ∈ {1, . . . , n} such that xi0 = 1. Then

(2fi0 − ‖f (n)‖1)
(
A(f)− fj0

‖f (n)‖1 − 2fj0

)
≤ (2fi0 − ‖f (n)‖1)

fi0
‖f (n)‖1 − 2fi0

= −fi0 ≤ −fj0 .

Hence

‖f (n)‖1r̂ = −φ(x) ≥ fj0

A(f)− fj0
‖f (n)‖1−2fj0

≥ ‖f (n)‖1r.

(ii) There exists i0 ∈ {n+ 1, . . . ,m} such that xi0 = 1. Then

−‖f (n)‖1
(
A(f)− fk0

‖f (n)‖1

)
≤ −‖f (n)‖1

fi0
‖f (n)‖1

= −fi0 ≤ −fk0 .

Hence

‖f (n)‖1r̂ = −φ(x) ≥ fk0

A(f)− fk0
‖f (n)‖1

≥ ‖f (n)‖1r.

(iii) There exists i0 ∈ {1, . . . , n} such that xi0 = −1. Assume that
−φ(x) < r‖f (n)‖1. Since x ∈ ker f ,

fi0 =
∑

1≤k≤m
k 6=i0

fkxk

<
fj0

A(f)− fj0
‖f (n)‖1−2fj0

( ∑
1≤k≤n
k 6=i0

fk
‖f (n)‖1 − 2fk

+

m∑
k=n+1

fk
‖f (n)‖1

)

=
fj0

A(f)− fj0
‖f (n)‖1−2fj0

(
A(f)− fi0

‖f (n)‖1 − 2fi0

)
≤ fj0 ,

a contradiction.
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(iv) There exists i0 ∈ {n + 1, . . . ,m} such that xi0 = −1. Assume that
−φ(x) < r‖f (n)‖1. Since x ∈ ker f ,

fi0 =
∑

1≤k≤m
k 6=i0

fkxk <
fk0

A(f)− fk0
‖f (n)‖1

( n∑
k=1

fk
‖f (n)‖1 − 2fk

+
∑

n+1≤k≤m
k 6=i0

fk
‖f (n)‖1

)

=
fk0

A(f)− fk0
‖f (n)‖1

(
A(f)− fi0

‖f (n)‖1

)
≤ fk0 ,

a contradiction.

By the above cases we have r̂ ≥ r. Now define

xk :=



−1, k = j0,
fj0

(‖f (n)‖1−2fk)
(
A(f)− fj0

‖f (n)‖1−2fj0

) , k∈{1, . . . , j0−1, j0+1, . . . , n},

fj0

‖f (n)‖1
(
A(f)− fj0

‖f (n)‖1−2fj0

) , k ∈ {n+ 1, . . . ,m},

and

yk :=



−1, k = k0,
fk0

(‖f (n)‖1 − 2fk)
(
A(f)− fj0

‖f (n)‖1

) , k ∈ {1, . . . , n},

fk0

‖f (n)‖1
(
A(f)− fj0

‖f (n)‖1

) , k∈{n+1, . . . , k0−1, . . . , k0+1, . . .m}.

One can easily check that x, y ∈ SX ∩ Z and

−φ(x) =
fj0

A(f)− fj0
‖f (n)‖1−2fj0

and − φ(y) =
fk0

A(f)− fk0
‖f (n)‖1

,

which implies the converse inequality.

Now we consider the complex case.

Theorem 2.10. Let X := lm∞ over C, Z := ker f with f ∈ Slm1 , and V :=

Z ∩ lm∞. Let ‖f (n)‖1 ≥ 1/2 and ‖f (n)‖∞ < ‖f (n)‖1/2. Assume additionally
that fj 6= 0 for all j ∈ {1, . . . ,m}. Then the operator given by (2.12) is the
only MGP in P̃V (X,Z) but it is not strongly unique.

Proof. Without loss of generality we can assume that f1, . . . , fm > 0. In
the complex case we define

M(Q, k) := inf{Re((Q− Pm)(x))k : x ∈ SX , (Pmx)k = ‖Pm‖},
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where Pm = Qn + f ◦Qn(·)w is given by (2.12). As in the proof of Theorem
2.9, we can show that

M(Q, k) =

{
Re((2fk − ‖f (n)‖1)(wk − yk)) for k ∈ {1, . . . , n},
−‖f (n)‖1 Re(wk − yk) for k ∈ {n+ 1, . . . ,m}.

To prove that Pm is not a strongly unique MGP in P̃V (X,Z) it is enough
to find Q ∈ P̃V (X,Z) such that M(Q, k) = 0 for every k ∈ {1, . . . ,m}. Let
y := w + (i/f1,−i/f2, 0, . . . , 0) and Q := Qn + f ◦ Qn(·)y. Then one can
easily check that M(Q, k) = 0.

Now we will show that Pm is the unique MGP in P̃V (X,Z). Let Q ∈
P̃V (X,Z) be such that ‖Q‖ = ‖Pm‖. Then Q(x) = Qn(x) − f(Qn(x))y for
some y ∈ lm∞ such that f(y) = 1. Observe that Q̃ := Qn − f ◦Qn(·) Re(y) is
also an element of P̃V (X,Z) and ‖Q̃‖ = ‖Q‖. Indeed, 1 = f(y) = Re(f(y)) =
f(Re(y)) and

‖Q̃‖ = max
{

max
k≤n
{|Re(1− fkyk)|+ (‖f (n)‖1 − |fk|)|Re(yk)|},

max
k>n
{‖f (n)‖1|Re(yk)|}

}
≤ max

{
max
k≤n
{|1− fkyk|+ (‖f (n)‖1 − |fk|)|yk|},max

k>n
{‖f (n)‖1|yk|}

}
= ‖Q‖.

When we consider lm∞ over R, then Q̃ is also a MGP. Indeed, by Lemma
2.3, λ(V, lm∞(R)) ≤ λ(V, lm∞(C)) = ‖Q̃‖C = ‖Q̃‖R. Hence by Theorem 2.9,
Re(y) = w and by the proof of Theorem 2.7, for all k ∈ {1, . . . , n},

λZ(V,X) = |Re(1− fkyk)|+ (‖f (n)‖1 − |fk|)|Re(yk)|
= |1− fkyk|+ (‖f (n)‖1 − |fk|)|yk|,

and for k ∈ {n+ 1, . . . ,m},

λZ(V,X) = ‖f (n)‖1|Re(yk)| = ‖f (n)‖1|yk|.

This implies that y = Re(y) = w, as required.

Remark 2.11. If ‖Pm‖ > 1 then in Theorems 2.9 and 2.10 the assump-
tion that fj 6= 0 for j ∈ {1, . . . ,m} is necessary.

Proof. Let k ∈ {1, . . . ,m} be such that fk = 0. Let Pm = Qn−f ◦Qn(·)w
be as in Theorem 2.7. Now define Qε = Qn − f ◦ Qn(·)(w + εek). If k ≤ n
then

‖Qε‖ = max{‖Pm‖, 1 + ε‖f (n)‖1} = ‖Pm‖ for 0 < ε ≤ ‖Pm‖ − 1

‖f (n)‖1
,
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and if k > n then

‖Qε‖ = max{‖Pm‖, ε‖f (n)‖1} = ‖Pm‖ for 0 < ε ≤ ‖Pm‖
‖f (n)‖1

.

Corollary 2.12. Let X := lm∞, Z := ker f with f ∈ Slm1 , and V :=

Z ∩ lm∞. Let ‖f (n)‖1 ≥ 1/2 and ‖f (n)‖∞ < ‖f (n)‖1/2. Assume additionally
that fj 6= 0 for all j ∈ {1, . . . ,m}. Then the MGP given by (2.12) is unique
in PV (X,Z).

Proof. We know that Pm given by (2.12) is a MGP. Let Q ∈ PV (X,Z)
be such that ‖Q‖ = ‖Pm‖. By Theorems 2.9 and 2.10, Q◦Qn = Pm. Now let
{ek}mk=1 be the canonical basis of lm∞. By the proof of Theorem 2.7 we know
that for every k ∈ {1, . . . ,m} there exists xk ∈ Sln∞ such that (Pm(xk))k
= ‖Pm‖. Now fix j ∈ {n+ 1, . . . ,m}. Then ‖xk + αej‖ = 1 for some α ∈ K
such that |α| = 1, and

‖Q‖ ≥ max{(Q(xk + αej))k} = ‖Pm‖+ |Q(ej)k| for all k ∈ {1, . . . ,m}.

Hence Q(ej) = 0, as required.

Now we present an application of Theorem 2.7 and Corollary 2.8 .
Reasoning as in [12] or [14], we first prove the following.

Theorem 2.13. Let V ⊂ Z be two subspaces of a Banach space X. Let
Z be a dual space. If PV (X,Z) 6= ∅ then there exists a minimal generalized
projection.

Proof. Let

Pε := {P ∈ PV (X,Z) : ‖P‖ ≤ λZ(V,X) + ε}.

Observe that Pε is closed in ZX =
∏
x∈X Z, where in Z

X we take the product
topology with respect to the weak∗ topology in Z. By the Banach–Alaoglu
theorem and the Tychonoff theorem, Pε is compact. Hence P0 =

⋂
n∈N P1/n

is nonempty as the intersection of a decreasing family of nonempty compact
sets. Notice that any P ∈ P0 is a MGP in PV (X,Z).

Observe that the assumption that Z is a dual space cannot be replaced
by the assumption that V is dual, as the following example shows.

Example 2.14. Let f :=
(
1
4 ,

1
4 ,

1
4 ,

1
8 ,

1
16 , . . .

)
∈ l1 and let X := c0, Z :=

ker f , V := ker f ∩ l3∞.
Since V is finite-dimensional, it is a dual space. Applying Theorem 2.7

and Corollary 2.8 one can easily check that PV (X,Z) 6= ∅ but no MGP
exists in PV (X,Z).
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