Strict plurisubharmonicity of Bergman kernels on generalized annuli

by Yanyan Wang (Shanghai)

Abstract

Let $A_{\zeta}=\Omega-\overline{\rho(\zeta) \cdot \Omega}$ be a family of generalized annuli over a domain U. We show that the logarithm of the Bergman kernel $K_{\zeta}(z)$ of A_{ζ} is plurisubharmonic provided $\rho \in \operatorname{PSH}(U)$. It is remarkable that A_{ζ} is non-pseudoconvex when the dimension of A_{ζ} is larger than one. For standard annuli in \mathbb{C}, we obtain an interesting formula for $\partial^{2} \log K_{\zeta} / \partial \zeta \partial \bar{\zeta}$, as well as its boundary behavior.

1. Introduction and results. In 2004, F. Maitani and H. Yamaguchi [MY] brought a new viewpoint by studying the variation of the Bergman metrics on the Riemann surfaces. Let us briefly recall their results.

Let B be a disk in the complex ζ-plane, D be a domain in the product space $B \times \mathbb{C}_{z}$, and π be the first projection from $B \times \mathbb{C}_{z}$ to B, which is proper and smooth. Let $D_{\zeta}=\pi^{-1}(\zeta)$ be a domain in \mathbb{C}_{z}. Let K_{ζ} denote the Bergman kernel of D_{ζ}. Set $\partial D=\bigcup_{\zeta \in B}\left(\zeta, \partial D_{\zeta}\right)$.

Theorem 1.1 ([М్]). If D is a pseudoconvex domain over $B \times \mathbb{C}_{z}$ with smooth boundary, then $\log K_{\zeta}(z)$ is plurisubharmonic on D.

Theorem 1.2 (MY). If D is a pseudoconvex domain over $B \times \mathbb{C}_{z}$ with smooth boundary, and for each $\zeta \in B, \partial D$ has at least one strictly pseudoconvex point, then $\log K_{\zeta}(z)$ is strictly plurisubharmonic on D.

In 2006, B. Berndtsson (B) made a striking generalization of Theorem 1.1 to higher-dimensional case, by using Hörmander's L^{2}-estimates for $\bar{\partial}$:

Theorem 1.3 ([$[\mathbf{B}]$). Let D be a pseudoconvex domain in $\mathbb{C}_{\zeta}^{k} \times \mathbb{C}_{z}^{n}$ and ϕ a plurisubharmonic function on D. For each ζ, let D_{ζ} denote the n-dimensional slice $D_{\zeta}:=\left\{z \in \mathbb{C}^{n}:(\zeta, z) \in D\right\}$ and ϕ^{ζ} the restriction of ϕ to D_{ζ}. Let $K_{\zeta}(z)$ be the Bergman kernel of the Bergman space $H^{2}\left(D_{\zeta}, e^{-\phi^{\varsigma}}\right)$. Then $\log K_{\zeta}(z)$ is plurisubharmonic or identically equal to $-\infty$ on D.

[^0]Key words and phrases: Bergman kernels, plurisubharmonicity.

The above mentioned works rely heavily upon the pseudoconvexity of the total space D. In this paper, we obtain the plurisubharmonicity of $\log K_{\zeta}(z)$ for certain non-pseudoconvex domains.

We consider the following family of generalized annuli:

$$
A_{\zeta}=\Omega-\overline{\Omega_{\zeta}}
$$

where $\Omega \subset \mathbb{C}^{n}$ is a bounded complete circular domain and

$$
\Omega_{\zeta}=\rho(\zeta) \cdot \Omega:=\{\rho(\zeta) z: z \in \Omega\}
$$

with $0<\rho<1$ being an upper semicontinuous function on a domain U in \mathbb{C}^{m}. Let $K_{\zeta}(z)$ denote the Bergman kernel of A_{ζ}.

Main Theorem 1.4. If $n \geq 2$ and $\rho \in \operatorname{PSH}(U)$, then $\log K_{\zeta}(z)$ is a plurisubharmonic function on $U \times \Omega$. Furthermore, if ρ is strictly plurisubharmonic on U, then $\log K_{\zeta}(z)$ is strictly plurisubharmonic on $U \times \Omega$.

The plurisubharmonicity of $\log K_{\zeta}(z)$ does not imply the pseudoconvexity of the total space even when the slices are planar domains. A simple example may be constructed as follows: let $D=\mathbb{D}^{2}-\Gamma_{f}$, where f is a non-holomorphic continuous self-map of the unit disc \mathbb{D} and Γ_{f} is the graph of f. Since $\log K_{\zeta}(z)=\log K_{\mathbb{D}}(z)$, it is naturally plurisubharmonic, yet D is not pseudoconvex, in view of the theorem of Hartogs on holomorphicity of pseudoconcave continuous graphs. Nevertheless, it is still worthwhile to ask the following question:

Question 1.5. Suppose D is a bounded domain over $U \times \mathbb{C}$ where U is a domain in \mathbb{C}. Let K_{ζ} denote the Bergman kernel of the slice D_{ζ}, and suppose $\log K_{\zeta}(z)$ is a plurisubharmonic function on D. Under which conditions is D pseudoconvex?

It is the case when $K_{\zeta}(z) \rightarrow \infty$ as $z \rightarrow \partial D_{\zeta}$ (note that $\log K_{\zeta}(z)$ is plurisubharmonic, in particular, upper semicontinuous on D). We remind the readers that Zwonek [Z] gave a complete characterization of Bergman exhaustiveness of bounded planar domains in terms of log capacities.

For standard annuli, i.e., Ω is the unit disc \mathbb{D}, U is the punctured disc \mathbb{D}^{*}, and $\rho(\zeta)=|\zeta|$, we have an interesting formula for $\partial^{2} \log K_{\zeta} / \partial \zeta \partial \bar{\zeta}$:

Main Theorem 1.6.

$$
\frac{\partial^{2} \log K_{\zeta}(z)}{\partial \zeta \partial \bar{\zeta}}=e^{2 \omega_{1}} \frac{\left(2 \mathcal{P}(u)-\mathcal{P}\left(\omega_{1}\right)+c\right)\left(\mathcal{P}\left(\omega_{1}\right)+c\right)}{4 \omega_{1}^{2}(\mathcal{P}(u)+c)^{2}}
$$

where $u=-2 \log |z|, \omega_{1}=-\log |\zeta|, c\left(\omega_{1}\right)=\zeta\left(\omega_{1}\right) / \omega_{1}, \mathcal{P}(\cdot)$ is the Weierstrass elliptic function with periods $2 \omega_{1}$ and $2 \pi i$, and $\zeta(\cdot)$ is the Weierstrass zeta function.

As a consequence, we obtain
Corollary 1.7. $\partial^{2} \log K_{\zeta}(z) / \partial \zeta \partial \bar{\zeta} \rightarrow 0$ as $D \ni(\zeta, z) \rightarrow \partial D$ in a non-trivial way, that is, at first $\zeta \rightarrow \zeta_{0}$, then $z \rightarrow \partial A_{\zeta_{0}}$.
2. Proof of Main Theorem 1.4. It is well-known that every holomorphic function f on a bounded complete circular domain Ω admits a power series expansion as follows:

$$
f(z)=\sum_{j \geq 0} p_{j}(z),
$$

where $p_{j}(z)$ is a holomorphic polynomial of degree j, in the sense of locally uniform convergence. Thus the Bergman space $H^{2}(\Omega)$ of Ω admits a complete orthogonal basis

$$
p_{j_{1}}, \ldots, p_{j_{m_{j}}} \in L_{j}, \quad j=0,1, \ldots,
$$

where L_{j} is the linear space spanned by homogeneous polynomials of degree j, and $m_{j}=\operatorname{dim}_{\mathbb{C}} L_{j}$. Since

$$
\int_{\Omega_{\zeta}} p_{j, r} \overline{r_{k, s}}=\rho(\zeta)^{2 j+2 k+2 n} \int_{\Omega} p_{j, r} \overline{p_{k, s}}=0
$$

for any pair $(j, r) \neq(k, s)$, it follows that

$$
\int_{A_{\zeta}} p_{j, r} \overline{p_{k, s}}=\int_{\Omega} p_{j, r} \overline{p_{k, s}}-\int_{\Omega_{\zeta}} p_{j, r} \overline{p_{k, s}}=0 .
$$

By Hartogs' extension theorem, every holomorphic function on A_{ζ} can be extended to a holomorphic function on Ω. Thus

$$
\begin{equation*}
K_{\zeta}(z)=\sum_{j=0}^{\infty} \sum_{r=1}^{m_{j}} c_{j, r}\left|p_{j, r}(z)\right|^{2}, \tag{2.1}
\end{equation*}
$$

where

$$
c_{j, r}^{-1}=\int_{A_{\zeta}}\left|p_{j, r}(z)\right|^{2}=\int_{\Omega}\left|p_{j, r}(z)\right|^{2}-\int_{\Omega_{\zeta}}\left|p_{j, r}(z)\right|^{2}=1-\rho(\zeta)^{2 j+2 n} .
$$

That is,

$$
\begin{equation*}
K_{\zeta}(z)=\sum_{j=0}^{\infty} \sum_{r=1}^{m_{j}} \frac{\left|p_{j, r}(z)\right|^{2}}{1-\rho(\zeta)^{2 j+2 n}} \tag{2.2}
\end{equation*}
$$

for any $z \in A_{\zeta}$. Set

$$
K_{\zeta}^{k}(z)=\sum_{j=0}^{k} \sum_{r=1}^{m_{j}} \frac{\left|p_{j, r}(z)\right|^{2}}{1-\rho(\zeta)^{2 j+2 n}}
$$

Since $K_{\zeta}^{k} \in \operatorname{PSH}(\Omega)$, we infer from the maximum principle that

$$
\max _{z \in M} K_{\zeta}^{k}(z) \leq \max _{z \in \partial G} K_{\zeta}^{k}(z) \leq \max _{z \in \partial G} K_{\zeta}(z),
$$

where M is a compact set whose interior contains $\overline{\Omega_{\zeta}}$ and G is a domain such that $M \subset G \subset \subset \Omega$. It follows immediately that the power series (2.2) converges uniformly on compact subsets of Ω, so that K_{ζ} can be extended to a smooth real function on $U \times \Omega$. It is easy to verify that

$$
u_{j}(\zeta, z)=\log \sum_{r=1}^{m_{j}}\left|p_{j, r}(z)\right|^{2}-\log \left(1-\rho(\zeta)^{2 j+2 n}\right)
$$

is a plurisubharmonic function on Ω. Since

$$
\begin{equation*}
K_{\zeta}^{k}(z)=\sum_{j=0}^{k} e^{u_{j}(\zeta, z)} \tag{2.3}
\end{equation*}
$$

and

$$
\chi\left(t_{0}, \ldots, t_{k}\right):=\log \left(e^{t_{0}}+\cdots+e^{t_{k}}\right)
$$

is a convex function which is non-decreasing in each t_{j}, we conclude that $\log K_{\zeta}^{k}(z)$ is plurisubharmonic on $U \times \Omega$ (see [D, Theorem 4.16]). Since $\left\{\log K_{\zeta}^{k}(z)\right\}_{k=0}^{\infty}$ is an increasing sequence of plurisubharmonic functions on $U \times \Omega$ whose limit is the continuous function $\log K_{\zeta}(z)$, it follows that $\log K_{\zeta}(z)$ has to be plurisubharmonic on $U \times \Omega$.

Now suppose ρ is strictly plurisubharmonic on U. Without loss of generality, we may assume that the volume of Ω equals 1 . Then

$$
u_{0}(\zeta, z)=u_{0}(\zeta)=-\log \left(1-\rho(\zeta)^{2 n}\right)
$$

is also strictly plurisubharmonic on U. Since χ is convex and non-decreasing in each t_{j},

$$
\partial \bar{\partial} \log K_{\zeta}^{k}(z) \geq \frac{e^{u_{0}}}{K_{\zeta}^{k}(z)} \partial \bar{\partial} u_{0}(\zeta) .
$$

Letting $k \rightarrow \infty$ we get

$$
\partial \bar{\partial} \log K_{\zeta}(z) \geq \frac{e^{u_{0}}}{K_{\zeta}(z)} \partial \bar{\partial} u_{0}(\zeta)
$$

so that for every $\xi=\left(\xi_{1}, \ldots, \xi_{m}, \xi_{m+1}, \ldots, \xi_{m+n}\right)$ with $\left(\xi_{1}, \ldots, \xi_{m}\right) \neq 0$, the Levi form satisfies $L\left(\log K_{\zeta}(z) ; \xi\right)>0$. Moreover, for every non-zero vector $\xi=\left(0, \ldots, 0, \xi_{m+1}, \ldots, \xi_{m+n}\right)$, we have

$$
L\left(\log K_{\zeta}(z) ; \xi\right)=\sum_{\alpha, \beta=1}^{n} \frac{\partial^{2} \log K_{\zeta}(z)}{\partial z_{j} \partial \bar{z}_{k}} \xi_{m+\alpha} \overline{\xi_{m+\beta}}>0 .
$$

Thus $\log K_{\zeta}(z)$ is strictly plurisubharmonic on $U \times \Omega$.

Remark. Since $\log K_{\zeta}(0)=u_{0}(\zeta)$, we conclude that $\log K_{\zeta}(z)$ will not be plurisubharmonic on $U \times \Omega$ if $u_{0}(\zeta)$ is not plurisubharmonic.

3. Proof of Main Theorem 1.6 and Corollary 1.7

Proof of Theorem 1.2. It is known from [S$]$ that

$$
\begin{equation*}
\pi K_{\zeta}(z)=\frac{\mathcal{P}(-2 \log |z|)+\eta /(-\log |\zeta|)}{|z|^{2}}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \eta=\zeta(u-2 \log |\zeta|)-\zeta(u) \tag{3.2}
\end{equation*}
$$

$u=-2 \log |z|, \mathcal{P}(\cdot)$ is the Weierstrass elliptic function with periods $-2 \log |\zeta|$ and $2 \pi i$, and $\zeta(\cdot)$ is the Weierstrass zeta function. If we let $\omega_{1}=-\log |\zeta|$, then (3.1) changes to

$$
\begin{equation*}
\pi K_{\zeta}(z)=\frac{\mathcal{P}(u)+\eta / \omega_{1}}{|z|^{2}} . \tag{3.3}
\end{equation*}
$$

Since $\zeta^{\prime}(\cdot)=-\mathcal{P}(\cdot)$, we have

$$
\zeta^{\prime}\left(\cdot+2 \omega_{1}\right)=\zeta^{\prime}(\cdot),
$$

so that

$$
\zeta\left(\cdot+2 \omega_{1}\right)=\zeta(\cdot)+C .
$$

Take $u=-\omega_{1}$. Then we get $C=2 \zeta\left(\omega_{1}\right)$ and

$$
\begin{equation*}
\zeta\left(\cdot+2 \omega_{1}\right)=\zeta(\cdot)+2 \zeta\left(\omega_{1}\right) . \tag{3.4}
\end{equation*}
$$

By (3.2) and (3.4), we obtain $\eta=\zeta\left(\omega_{1}\right)$. Hence, (3.3) changes to

$$
\begin{equation*}
K_{\zeta}(z)=\frac{\mathcal{P}(u)+c\left(\omega_{1}\right)}{\pi|z|^{2}}, \tag{3.5}
\end{equation*}
$$

where $u=\left(0,2 \omega_{1}\right)$ and $c\left(\omega_{1}\right)=\zeta\left(\omega_{1}\right) / \omega_{1}$.
Now we turn to calculating $\partial^{2} \log K_{\zeta}(z) / \partial \zeta \partial \bar{\zeta}$. A straightforward calculation yields

$$
\begin{aligned}
\frac{\partial c\left(\omega_{1}\right)}{\partial \zeta} & =\frac{\partial c\left(\omega_{1}\right)}{\partial \omega_{1}} \frac{\partial \omega_{1}}{\partial \zeta}=\frac{1}{2 \zeta} \frac{\mathcal{P}\left(\omega_{1}\right)+c\left(\omega_{1}\right)}{\omega_{1}} \\
\frac{\partial c\left(\omega_{1}\right)}{\partial \bar{\zeta}} & =\frac{\partial c\left(\omega_{1}\right)}{\partial \omega_{1}} \frac{\partial \omega_{1}}{\partial \bar{\zeta}}=\frac{1}{2 \bar{\zeta}} \frac{\mathcal{P}\left(\omega_{1}\right)+c\left(\omega_{1}\right)}{\omega_{1}} \\
\frac{\partial^{2} c\left(\omega_{1}\right)}{\partial \zeta \partial \bar{\zeta}} & =\frac{\partial^{2} c\left(\omega_{1}\right)}{\partial \omega_{1}^{2}} \frac{\partial \omega_{1}}{\partial \zeta} \frac{\partial \omega_{1}}{\partial \bar{\zeta}}+\frac{\partial c\left(\omega_{1}\right)}{\partial \omega_{1}} \frac{\partial^{2} \omega_{1}}{\partial \zeta \partial \bar{\zeta}} \\
& =\frac{1}{4|\zeta|^{2}} \frac{\mathcal{P}\left(\omega_{1}\right)+c\left(\omega_{1}\right)-\omega_{1}\left(\mathcal{P}^{\prime}\left(\omega_{1}\right)+c^{\prime}\left(\omega_{1}\right)\right)}{\omega_{1}^{2}}
\end{aligned}
$$

We claim that $\mathcal{P}^{\prime}\left(\omega_{1}\right)=0$. To see this, simply note that \mathcal{P} is an even function, hence $\mathcal{P}^{\prime}\left(-\omega_{1}\right)=-\mathcal{P}^{\prime}\left(\omega_{1}\right)$. Since $\mathcal{P}^{\prime}\left(\omega_{1}\right)=\mathcal{P}^{\prime}\left(-\omega_{1}\right)$ by periodicity,
we have $\mathcal{P}\left(\omega_{1}\right)=0$. It follows that

$$
\frac{\partial^{2} c\left(\omega_{1}\right)}{\partial \zeta \partial \bar{\zeta}}=\frac{1}{4|\zeta|^{2}} \frac{2\left(\mathcal{P}\left(\omega_{1}\right)+c\left(\omega_{1}\right)\right)}{\omega_{1}^{2}}
$$

So

$$
\frac{\partial^{2} \log K_{\zeta}(z)}{\partial \zeta \partial \bar{\zeta}}=e^{2 \omega_{1}} \frac{\left(2 \mathcal{P}(u)-\mathcal{P}\left(\omega_{1}\right)+c\right)\left(\mathcal{P}\left(\omega_{1}\right)+c\right)}{4 \omega_{1}^{2}(\mathcal{P}(u)+c)^{2}}
$$

Proof of Corollary 1.7. It is easy to see that $\mathcal{P}(0)=\infty$ and $\mathcal{P}(u)$ decreases in $\left(0, \omega_{1}\right)$. We also know that $\mathcal{P}\left(2 \omega_{1}-u\right)=\mathcal{P}(u)$ and $\omega_{1}^{2} \mathcal{P}\left(\omega_{1}\right)$ $=\pi^{2} / 6$. So $\mathcal{P}(u)>0$ in $\left(0,2 \omega_{1}\right)$. Note that

$$
\mathcal{P}(u)=u^{-2}\left(1+O\left(u^{2}\right)\right)
$$

as $u \rightarrow 0$. Thus,

$$
2 \mathcal{P}(u)-\mathcal{P}\left(\omega_{1}\right)+c=2 u^{-2}\left(1+O\left(u^{2}\right)\right), \quad(\mathcal{P}(u)+c)^{2}=u^{-4}\left(1+O\left(u^{2}\right)\right)
$$

If $|z| \rightarrow 1$, then $u \rightarrow 0$. Hence,

$$
\lim _{|z| \rightarrow 1} \frac{\partial^{2} \log K_{\zeta}(z)}{\partial \zeta \partial \bar{\zeta}}=0
$$

Using the periodicity of $\mathcal{P}(u)$, we conclude that

$$
\lim _{|z| \rightarrow|\zeta|} \frac{\partial^{2} \log K_{\zeta}(z)}{\partial \zeta \partial \bar{\zeta}}=0
$$

REmARK. The proof of Main Theorem 1.6 implies that although the Levi form of $\log K_{\zeta}(z)$ with respect to ζ approaches 0 when (ζ, z) tends to the boundary of the domain, $\log K_{\zeta}(z)$ is a strictly plurisubharmonic function on D. So, in Theorem 1.2 , the condition that for each $\zeta \in B, \partial D$ has at least one strictly pseudoconvex point is only a sufficient condition for $\log K_{\zeta}(z, z)$ to be strictly plurisubharmonic on D.

Remark. The proof of Main Theorem 1.6 also yields the equation

$$
\frac{\partial^{2} K_{\zeta}(z)}{\partial \zeta \partial \bar{\zeta}}=\frac{\partial K_{\zeta}(z)}{\partial \zeta} \frac{\partial K_{\zeta}(z)}{\partial \bar{\zeta}}
$$

Acknowledgements. The author thanks Professor Takeo Ohsawa and Professor Bo-Yong Chen for their guidance.

This research was supported by NSFC (grant no. 11031008) and NSFS (grant no. 13ZR1444100).

References

[B] B. Berndtsson, Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56 (2006), 1633-1662.
[D] J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~ demailly/, 2012.
[MY] F. Maitani and H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann. 330 (2004), 477-489.
[S] N. Suita, Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal. 46 (1972), 212-217.
[Z] W. Zwonek, Wiener's type criterion for Bergman exhaustiveness, Bull. Polish Acad. Sci. Math. 50 (2002), 297-311.

Yanyan Wang
Department of Mathematics
Tongji University
200092 Shanghai, China
E-mail: ouzhiwang2009@tongji.edu.cn

Received 12.12.2013
and in final form 14.2.2014

[^0]: 2010 Mathematics Subject Classification: Primary 32A25; Secondary 32U05.

