Strict plurisubharmonicity of Bergman kernels on generalized annuli

by YANYAN WANG (Shanghai)

Abstract. Let $A_{\zeta} = \Omega - \overline{\rho(\zeta) \cdot \Omega}$ be a family of generalized annuli over a domain U. We show that the logarithm of the Bergman kernel $K_{\zeta}(z)$ of A_{ζ} is plurisubharmonic provided $\rho \in \text{PSH}(U)$. It is remarkable that A_{ζ} is non-pseudoconvex when the dimension of A_{ζ} is larger than one. For standard annuli in \mathbb{C} , we obtain an interesting formula for $\partial^2 \log K_{\zeta}/\partial \zeta \partial \overline{\zeta}$, as well as its boundary behavior.

1. Introduction and results. In 2004, F. Maitani and H. Yamaguchi [MY] brought a new viewpoint by studying the variation of the Bergman metrics on the Riemann surfaces. Let us briefly recall their results.

Let *B* be a disk in the complex ζ -plane, *D* be a domain in the product space $B \times \mathbb{C}_z$, and π be the first projection from $B \times \mathbb{C}_z$ to *B*, which is proper and smooth. Let $D_{\zeta} = \pi^{-1}(\zeta)$ be a domain in \mathbb{C}_z . Let K_{ζ} denote the Bergman kernel of D_{ζ} . Set $\partial D = \bigcup_{\zeta \in B} (\zeta, \partial D_{\zeta})$.

THEOREM 1.1 ([MY]). If D is a pseudoconvex domain over $B \times \mathbb{C}_z$ with smooth boundary, then $\log K_{\zeta}(z)$ is plurisubharmonic on D.

THEOREM 1.2 ([MY]). If D is a pseudoconvex domain over $B \times \mathbb{C}_z$ with smooth boundary, and for each $\zeta \in B$, ∂D has at least one strictly pseudoconvex point, then $\log K_{\zeta}(z)$ is strictly plurisubharmonic on D.

In 2006, B. Berndtsson [B] made a striking generalization of Theorem 1.1 to higher-dimensional case, by using Hörmander's L^2 -estimates for $\bar{\partial}$:

THEOREM 1.3 ([B]). Let D be a pseudoconvex domain in $\mathbb{C}^k_{\zeta} \times \mathbb{C}^n_z$ and ϕ a plurisubharmonic function on D. For each ζ , let D_{ζ} denote the n-dimensional slice $D_{\zeta} := \{z \in \mathbb{C}^n : (\zeta, z) \in D\}$ and ϕ^{ζ} the restriction of ϕ to D_{ζ} . Let $K_{\zeta}(z)$ be the Bergman kernel of the Bergman space $H^2(D_{\zeta}, e^{-\phi^{\zeta}})$. Then $\log K_{\zeta}(z)$ is plurisubharmonic or identically equal to $-\infty$ on D.

²⁰¹⁰ Mathematics Subject Classification: Primary 32A25; Secondary 32U05. Key words and phrases: Bergman kernels, plurisubharmonicity.

The above mentioned works rely heavily upon the pseudoconvexity of the total space D. In this paper, we obtain the plurisubharmonicity of $\log K_{\zeta}(z)$ for certain *non-pseudoconvex* domains.

We consider the following family of generalized annuli:

$$A_{\zeta} = \Omega - \overline{\Omega_{\zeta}},$$

where $\Omega \subset \mathbb{C}^n$ is a bounded complete circular domain and

$$\Omega_{\zeta} = \rho(\zeta) \cdot \Omega := \{\rho(\zeta)z : z \in \Omega\}$$

with $0 < \rho < 1$ being an upper semicontinuous function on a domain U in \mathbb{C}^m . Let $K_{\zeta}(z)$ denote the Bergman kernel of A_{ζ} .

MAIN THEOREM 1.4. If $n \geq 2$ and $\rho \in PSH(U)$, then $\log K_{\zeta}(z)$ is a plurisubharmonic function on $U \times \Omega$. Furthermore, if ρ is strictly plurisubharmonic on U, then $\log K_{\zeta}(z)$ is strictly plurisubharmonic on $U \times \Omega$.

The plurisubharmonicity of $\log K_{\zeta}(z)$ does not imply the pseudoconvexity of the total space even when the slices are planar domains. A simple example may be constructed as follows: let $D = \mathbb{D}^2 - \Gamma_f$, where f is a *non-holomorphic* continuous self-map of the unit disc \mathbb{D} and Γ_f is the graph of f. Since $\log K_{\zeta}(z) = \log K_{\mathbb{D}}(z)$, it is naturally plurisubharmonic, yet D is not pseudoconvex, in view of the theorem of Hartogs on holomorphicity of pseudoconcave continuous graphs. Nevertheless, it is still worthwhile to ask the following question:

QUESTION 1.5. Suppose D is a bounded domain over $U \times \mathbb{C}$ where U is a domain in \mathbb{C} . Let K_{ζ} denote the Bergman kernel of the slice D_{ζ} , and suppose $\log K_{\zeta}(z)$ is a plurisubharmonic function on D. Under which conditions is D pseudoconvex?

It is the case when $K_{\zeta}(z) \to \infty$ as $z \to \partial D_{\zeta}$ (note that $\log K_{\zeta}(z)$ is plurisubharmonic, in particular, upper semicontinuous on D). We remind the readers that Zwonek [Z] gave a complete characterization of Bergman exhaustiveness of bounded planar domains in terms of log capacities.

For standard annuli, i.e., Ω is the unit disc \mathbb{D} , U is the punctured disc \mathbb{D}^* , and $\rho(\zeta) = |\zeta|$, we have an interesting formula for $\partial^2 \log K_{\zeta}/\partial \zeta \partial \bar{\zeta}$:

MAIN THEOREM 1.6.

$$\frac{\partial^2 \log K_{\zeta}(z)}{\partial \zeta \partial \overline{\zeta}} = e^{2\omega_1} \frac{(2\mathcal{P}(u) - \mathcal{P}(\omega_1) + c)(\mathcal{P}(\omega_1) + c)}{4\omega_1^2 (\mathcal{P}(u) + c)^2},$$

where $u = -2 \log |z|$, $\omega_1 = -\log |\zeta|$, $c(\omega_1) = \zeta(\omega_1)/\omega_1$, $\mathcal{P}(\cdot)$ is the Weierstrass elliptic function with periods $2\omega_1$ and $2\pi i$, and $\zeta(\cdot)$ is the Weierstrass zeta function.

As a consequence, we obtain

COROLLARY 1.7. $\partial^2 \log K_{\zeta}(z)/\partial \zeta \partial \overline{\zeta} \to 0$ as $D \ni (\zeta, z) \to \partial D$ in a non-trivial way, that is, at first $\zeta \to \zeta_0$, then $z \to \partial A_{\zeta_0}$.

2. Proof of Main Theorem 1.4. It is well-known that every holomorphic function f on a bounded complete circular domain Ω admits a power series expansion as follows:

$$f(z) = \sum_{j \ge 0} p_j(z),$$

where $p_j(z)$ is a holomorphic polynomial of degree j, in the sense of locally uniform convergence. Thus the Bergman space $H^2(\Omega)$ of Ω admits a complete orthogonal basis

$$p_{j_1},\ldots,p_{j_{m_j}}\in L_j, \quad j=0,1,\ldots,$$

where L_j is the linear space spanned by homogeneous polynomials of degree j, and $m_j = \dim_{\mathbb{C}} L_j$. Since

$$\int_{\Omega_{\zeta}} p_{j,r} \overline{p_{k,s}} = \rho(\zeta)^{2j+2k+2n} \int_{\Omega} p_{j,r} \overline{p_{k,s}} = 0$$

for any pair $(j, r) \neq (k, s)$, it follows that

$$\int_{A_{\zeta}} p_{j,r} \overline{p_{k,s}} = \int_{\Omega} p_{j,r} \overline{p_{k,s}} - \int_{\Omega_{\zeta}} p_{j,r} \overline{p_{k,s}} = 0.$$

By Hartogs' extension theorem, every holomorphic function on A_{ζ} can be extended to a holomorphic function on Ω . Thus

(2.1)
$$K_{\zeta}(z) = \sum_{j=0}^{\infty} \sum_{r=1}^{m_j} c_{j,r} |p_{j,r}(z)|^2,$$

where

$$c_{j,r}^{-1} = \int_{A_{\zeta}} |p_{j,r}(z)|^2 = \int_{\Omega} |p_{j,r}(z)|^2 - \int_{\Omega_{\zeta}} |p_{j,r}(z)|^2 = 1 - \rho(\zeta)^{2j+2n}.$$

That is,

(2.2)
$$K_{\zeta}(z) = \sum_{j=0}^{\infty} \sum_{r=1}^{m_j} \frac{|p_{j,r}(z)|^2}{1 - \rho(\zeta)^{2j+2r}}$$

for any $z \in A_{\zeta}$. Set

$$K_{\zeta}^{k}(z) = \sum_{j=0}^{k} \sum_{r=1}^{m_{j}} \frac{|p_{j,r}(z)|^{2}}{1 - \rho(\zeta)^{2j+2n}}$$

Since $K_{\zeta}^k \in \text{PSH}(\Omega)$, we infer from the maximum principle that

$$\max_{z \in M} K_{\zeta}^{k}(z) \le \max_{z \in \partial G} K_{\zeta}^{k}(z) \le \max_{z \in \partial G} K_{\zeta}(z),$$

where M is a compact set whose interior contains $\overline{\Omega_{\zeta}}$ and G is a domain such that $M \subset G \subset \subset \Omega$. It follows immediately that the power series (2.2) converges uniformly on compact subsets of Ω , so that K_{ζ} can be extended to a smooth real function on $U \times \Omega$. It is easy to verify that

$$u_j(\zeta, z) = \log \sum_{r=1}^{m_j} |p_{j,r}(z)|^2 - \log(1 - \rho(\zeta)^{2j+2n})$$

is a plurisubharmonic function on Ω . Since

(2.3)
$$K_{\zeta}^{k}(z) = \sum_{j=0}^{k} e^{u_{j}(\zeta, z)}$$

and

$$\chi(t_0,\ldots,t_k) := \log(e^{t_0} + \cdots + e^{t_k})$$

is a convex function which is non-decreasing in each t_j , we conclude that $\log K_{\zeta}^k(z)$ is plurisubharmonic on $U \times \Omega$ (see [D, Theorem 4.16]). Since $\{\log K_{\zeta}^k(z)\}_{k=0}^{\infty}$ is an increasing sequence of plurisubharmonic functions on $U \times \Omega$ whose limit is the *continuous* function $\log K_{\zeta}(z)$, it follows that $\log K_{\zeta}(z)$ has to be plurisubharmonic on $U \times \Omega$.

Now suppose ρ is strictly plurisubharmonic on U. Without loss of generality, we may assume that the volume of Ω equals 1. Then

$$u_0(\zeta, z) = u_0(\zeta) = -\log(1 - \rho(\zeta)^{2n})$$

is also strictly plurisubharmonic on U. Since χ is convex and non-decreasing in each t_j ,

$$\partial \bar{\partial} \log K^k_{\zeta}(z) \ge \frac{e^{u_0}}{K^k_{\zeta}(z)} \partial \bar{\partial} u_0(\zeta).$$

Letting $k \to \infty$ we get

$$\partial \bar{\partial} \log K_{\zeta}(z) \ge \frac{e^{u_0}}{K_{\zeta}(z)} \partial \bar{\partial} u_0(\zeta),$$

so that for every $\xi = (\xi_1, \ldots, \xi_m, \xi_{m+1}, \ldots, \xi_{m+n})$ with $(\xi_1, \ldots, \xi_m) \neq 0$, the Levi form satisfies $L(\log K_{\zeta}(z); \xi) > 0$. Moreover, for every non-zero vector $\xi = (0, \ldots, 0, \xi_{m+1}, \ldots, \xi_{m+n})$, we have

$$L(\log K_{\zeta}(z);\xi) = \sum_{\alpha,\beta=1}^{n} \frac{\partial^2 \log K_{\zeta}(z)}{\partial z_j \partial \bar{z}_k} \xi_{m+\alpha} \overline{\xi_{m+\beta}} > 0.$$

Thus $\log K_{\zeta}(z)$ is strictly plurisubharmonic on $U \times \Omega$.

240

REMARK. Since $\log K_{\zeta}(0) = u_0(\zeta)$, we conclude that $\log K_{\zeta}(z)$ will not be plurisubharmonic on $U \times \Omega$ if $u_0(\zeta)$ is not plurisubharmonic.

3. Proof of Main Theorem 1.6 and Corollary 1.7

Proof of Theorem 1.2. It is known from [S] that

(3.1)
$$\pi K_{\zeta}(z) = \frac{\mathcal{P}(-2\log|z|) + \eta/(-\log|\zeta|)}{|z|^2},$$

where

(3.2)
$$2\eta = \zeta(u - 2\log|\zeta|) - \zeta(u),$$

 $u = -2 \log |z|, \mathcal{P}(\cdot)$ is the Weierstrass elliptic function with periods $-2 \log |\zeta|$ and $2\pi i$, and $\zeta(\cdot)$ is the Weierstrass zeta function. If we let $\omega_1 = -\log |\zeta|$, then (3.1) changes to

(3.3)
$$\pi K_{\zeta}(z) = \frac{\mathcal{P}(u) + \eta/\omega_1}{|z|^2}.$$

Since $\zeta'(\cdot) = -\mathcal{P}(\cdot)$, we have

$$\zeta'(\cdot+2\omega_1)=\zeta'(\cdot),$$

so that

$$\zeta(\cdot + 2\omega_1) = \zeta(\cdot) + C.$$

Take $u = -\omega_1$. Then we get $C = 2\zeta(\omega_1)$ and

(3.4)
$$\zeta(\cdot + 2\omega_1) = \zeta(\cdot) + 2\zeta(\omega_1).$$

By (3.2) and (3.4), we obtain $\eta = \zeta(\omega_1)$. Hence, (3.3) changes to

(3.5)
$$K_{\zeta}(z) = \frac{\mathcal{P}(u) + c(\omega_1)}{\pi |z|^2},$$

where $u = (0, 2\omega_1)$ and $c(\omega_1) = \zeta(\omega_1)/\omega_1$.

Now we turn to calculating $\partial^2 \log K_{\zeta}(z)/\partial \zeta \partial \overline{\zeta}$. A straightforward calculation yields

$$\begin{split} \frac{\partial c(\omega_1)}{\partial \zeta} &= \frac{\partial c(\omega_1)}{\partial \omega_1} \frac{\partial \omega_1}{\partial \zeta} = \frac{1}{2\zeta} \frac{\mathcal{P}(\omega_1) + c(\omega_1)}{\omega_1}, \\ \frac{\partial c(\omega_1)}{\partial \overline{\zeta}} &= \frac{\partial c(\omega_1)}{\partial \omega_1} \frac{\partial \omega_1}{\partial \overline{\zeta}} = \frac{1}{2\overline{\zeta}} \frac{\mathcal{P}(\omega_1) + c(\omega_1)}{\omega_1}, \\ \frac{\partial^2 c(\omega_1)}{\partial \zeta \partial \overline{\zeta}} &= \frac{\partial^2 c(\omega_1)}{\partial \omega_1^2} \frac{\partial \omega_1}{\partial \zeta} \frac{\partial \omega_1}{\partial \overline{\zeta}} + \frac{\partial c(\omega_1)}{\partial \omega_1} \frac{\partial^2 \omega_1}{\partial \zeta \partial \overline{\zeta}} \\ &= \frac{1}{4|\zeta|^2} \frac{\mathcal{P}(\omega_1) + c(\omega_1) - \omega_1(\mathcal{P}'(\omega_1) + c'(\omega_1))}{\omega_1^2}. \end{split}$$

We claim that $\mathcal{P}'(\omega_1) = 0$. To see this, simply note that \mathcal{P} is an even function, hence $\mathcal{P}'(-\omega_1) = -\mathcal{P}'(\omega_1)$. Since $\mathcal{P}'(\omega_1) = \mathcal{P}'(-\omega_1)$ by periodicity,

we have $\mathcal{P}(\omega_1) = 0$. It follows that

$$\frac{\partial^2 c(\omega_1)}{\partial \zeta \partial \overline{\zeta}} = \frac{1}{4|\zeta|^2} \frac{2(\mathcal{P}(\omega_1) + c(\omega_1))}{\omega_1^2}.$$

 So

$$\frac{\partial^2 \log K_{\zeta}(z)}{\partial \zeta \partial \overline{\zeta}} = e^{2\omega_1} \frac{(2\mathcal{P}(u) - \mathcal{P}(\omega_1) + c)(\mathcal{P}(\omega_1) + c)}{4\omega_1^2(\mathcal{P}(u) + c)^2}.$$

Proof of Corollary 1.7. It is easy to see that $\mathcal{P}(0) = \infty$ and $\mathcal{P}(u)$ decreases in $(0, \omega_1)$. We also know that $\mathcal{P}(2\omega_1 - u) = \mathcal{P}(u)$ and $\omega_1^2 \mathcal{P}(\omega_1) = \pi^2/6$. So $\mathcal{P}(u) > 0$ in $(0, 2\omega_1)$. Note that

$$\mathcal{P}(u) = u^{-2}(1 + O(u^2))$$

as $u \to 0$. Thus,

$$2\mathcal{P}(u) - \mathcal{P}(\omega_1) + c = 2u^{-2}(1 + O(u^2)), \quad (\mathcal{P}(u) + c)^2 = u^{-4}(1 + O(u^2)).$$

If $|z| \to 1$, then $u \to 0$. Hence,

$$\lim_{|z| \to 1} \frac{\partial^2 \log K_{\zeta}(z)}{\partial \zeta \partial \overline{\zeta}} = 0.$$

Using the periodicity of $\mathcal{P}(u)$, we conclude that

$$\lim_{|z| \to |\zeta|} \frac{\partial^2 \log K_{\zeta}(z)}{\partial \zeta \partial \overline{\zeta}} = 0. \quad \bullet$$

REMARK. The proof of Main Theorem 1.6 implies that although the Levi form of log $K_{\zeta}(z)$ with respect to ζ approaches 0 when (ζ, z) tends to the boundary of the domain, log $K_{\zeta}(z)$ is a strictly plurisubharmonic function on D. So, in Theorem 1.2, the condition that for each $\zeta \in B$, ∂D has at least one strictly pseudoconvex point is only a sufficient condition for log $K_{\zeta}(z, z)$ to be strictly plurisubharmonic on D.

REMARK. The proof of Main Theorem 1.6 also yields the equation

$$\frac{\partial^2 K_{\zeta}(z)}{\partial \zeta \partial \overline{\zeta}} = \frac{\partial K_{\zeta}(z)}{\partial \zeta} \frac{\partial K_{\zeta}(z)}{\partial \overline{\zeta}}.$$

Acknowledgements. The author thanks Professor Takeo Ohsawa and Professor Bo-Yong Chen for their guidance.

This research was supported by NSFC (grant no. 11031008) and NSFS (grant no. 13ZR1444100).

References

[B] B. Berndtsson, Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56 (2006), 1633–1662.

242

- [D] J.-P. Demailly, *Complex Analytic and Differential Geometry*, http://www-fourier.ujf-grenoble.fr/~demailly/, 2012.
- [MY] F. Maitani and H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann. 330 (2004), 477–489.
- [S] N. Suita, Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal. 46 (1972), 212–217.
- W. Zwonek, Wiener's type criterion for Bergman exhaustiveness, Bull. Polish Acad. Sci. Math. 50 (2002), 297–311.

Yanyan Wang Department of Mathematics Tongji University 200092 Shanghai, China E-mail: ouzhiwang2009@tongji.edu.cn

Received 12.12.2013 and in final form 14.2.2014

(3288)