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On the principle of real moduli flexibility:
perfect parametrizations

by Edoardo Ballico and Riccardo Ghiloni (Trento)

Abstract. Let V be a real algebraic manifold of positive dimension. The aim of this
paper is to show that, for every integer b (arbitrarily large), there exists a trivial Nash
family V = {Vy}y∈Rb of real algebraic manifolds such that V0 = V , V is an algebraic

family of real algebraic manifolds over y ∈ Rb \ {0} (possibly singular over y = 0) and V
is perfectly parametrized by Rb in the sense that Vy is birationally nonisomorphic to Vz

for every y, z ∈ Rb with y 6= z. A similar result continues to hold if V is a singular real
algebraic set.

1. Introduction and main results. This paper deals with the follow-
ing principle.

Principle of real moduli flexibility. The algebraic structure of
every real algebraic manifold of positive dimension can be deformed by an
arbitrarily large number of effective parameters.

In [4], we proved the validity of this principle via the notion of almost
perfectly parametrized algebraic real-deformation. Let us recall our result.

Let R be a real closed field. By a real algebraic set, we mean an algebraic
subset of some Rn. A real algebraic manifold is an irreducible nonsingular
real algebraic set. Let X and Y be real algebraic sets. If there exists a
biregular isomorphism from a Zariski dense Zariski open subset of X to
a Zariski dense Zariski open subset of Y , then X and Y are said to be
birationally isomorphic, and we writeX ∼ Y . IfX and Y are not birationally
isomorphic, then we say that X and Y are birationally nonisomorphic and
we write X � Y . We will use standard notions from real semialgebraic and
Nash geometry (see [5]).

Let f : X → Rb be a surjective regular map from the real algebraic set
X to some Rb. By identifying f with the family {f−1(y)}y∈Rb of its fibers,

we can assert that f is parametrized by Rb. Define the subset Sf of Rb×Rb
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and the map ρb : Rb ×Rb → Rb by setting

Sf := {(y, z) ∈ Rb ×Rb | f−1(y) ∼ f−1(z)} and ρb(y, z) := y.

We say that f is perfectly parametrized by Rb if f−1(y) � f−1(z) for each
y, z ∈ Rb with y 6= z. We say that f is almost perfectly parametrized by Rb

if there exists a semialgebraic subset T of Rb ×Rb such that T contains Sf
and each fiber of the restriction of ρb to T is finite.

Consider now an algebraic family of real algebraic manifolds parametrized
by Rb; that is, a surjective submersive regular map π : V → Rb from a real
algebraic manifold V to Rb with irreducible fibers. Given a real algebraic
manifold V , we say that π is an algebraic real-deformation of V if there
exists a regular map π′ : V → V such that the map π × π′ : V → Rb × V
is a Nash isomorphism and the restriction of π′ to π−1(0) is a biregular
isomorphism.

In [4], we proved the following result, which is a manifestation of the
principle stated above.

Theorem F . Every real algebraic manifold V of positive dimension has
the following property: for each nonnegative integer b, there exists an alge-
braic real-deformation of V almost perfectly parametrized by Rb.

In the same paper, we conjectured that, in the preceding statement, one
can replace “almost perfectly parametrized” with “perfectly parametrized”
(see also [9, Remark 1.10(i)]).

The aim of this paper is to show that, on relaxing suitably the notion
of algebraic real-deformation, this conjecture is true. Furthermore, we will
show that, in the singular case, the conjecture holds with a quite natural
notion of “topological” real-deformation.

Let us present our results. We begin by introducing the concept of real
algebro-Nash manifold. By a real algebro-Nash manifold, we mean an irre-
ducible algebraic subset of some Rn, which is also a Nash submanifold of Rn.
This hybrid notion makes sense. In fact, it determines an intermediate class
between the class of real algebraic manifolds and that of Nash manifolds.
The algebraic curve of R2 given by the equation y3 − x3(x2 + 1) = 0 is a
simple example of a real algebro-Nash manifold, which is not a real algebraic
manifold, having a singularity at (0, 0).

Let N be a real algebro-Nash manifold and let $ : N → Rb be a surjec-
tive submersive regular map with irreducible fibers. Denote by Reg(N ) the
set of nonsingular points of N of maximum dimension, that is, of dimension
dimN . We say that $ is an algebro-Nash real-deformation of the real alge-
braic manifold V if $−1(Rb \{0}) ⊂ Reg(N ) and there exists a regular map
$′ : N → V such that the map $×$′ : N → Rb×V is a Nash isomorphism
and the restriction of $′ to $−1(0) is a biregular isomorphism.
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The reader will observe that, if $ has these properties, then its fibers are
real algebraic manifolds, Nash isomorphic to V . In this way, an algebro-Nash
real-deformation of V , parametrized by Rb, can be interpreted as a family of
real algebraic structures on the Nash manifold underlying V , which coincides
with the real algebraic structure of V itself on y = 0, and which depends on
y ∈ Rb with Nash regularity and on y ∈ Rb \ {0} with algebraic regularity.
Such a family may be singular over y = 0 in the algebraic sense, but not in
the Nash sense.

The first main result of this paper is as follows.

Theorem 1.1. Every real algebraic manifold V of positive dimension
has the following property: for each nonnegative integer b, there exists an
algebro-Nash real-deformation of V perfectly parametrized by Rb.

Let W andW be real algebraic sets, and let Π :W → Rb be a surjective
regular map. We call Π a semialgebraic real-deformation of W if there exists
a regular map Π ′ :W →W such that Π ×Π ′ :W → Rb×W is a semialge-
braic homeomorphism and the restriction of Π ′ to Π−1(0) is a biregular iso-
morphism. Moreover, we say that Π is a good semialgebraic real-deformation
of W if, for each y ∈ Rb \ {0}, the restriction Π ′y of Π ′ to Wy := Π−1(y)

has the following additional property: (Π ′y)
−1(Reg(W )) ⊂ Reg(Wy) and the

restriction of Π ′y from (Π ′y)
−1(Reg(W )) to Reg(W ) is a Nash isomorphism.

The next is our second main result (see also Remark 3.1).

Theorem 1.2. Every real algebraic set W of positive dimension has
the following property: for each nonnegative integer b, there exists a good
semialgebraic real-deformation of W perfectly parametrized by Rb.

Let N be an arbitrary connected (affine) Nash manifold over R. It is
well-known that N is Nash isomorphic to a real algebraic manifold (see [7]).
Thanks to Theorem 1.1, it follows at once that, if dimN ≥ 1, then the
set of birationally nonisomorphic real algebraic manifolds which are Nash
isomorphic toN has the cardinality of R. This was proved in [10, Corollary 2]
by a different argument (see also [3, 6, 11, 12]).

We will give the proof of Theorems 1.1 and 1.2 in Sections 2 and 3,
respectively. We conclude this introductory section by presenting the idea
of these proofs.

Sketch of proof of Theorem 1.1. Let V be a real algebraic manifold of pos-
itive dimension and let b be a nonnegative integer. By Theorem F , there is an
algebraic real-deformation π : V → Rb+1 of V almost perfectly parametrized
by Rb+1. For each u ∈ Rb+1, define Vu := π−1(u). Let T be a semialgebraic
subset of Rb+1 × Rb+1 containing Sπ = {(u, v) ∈ Rb+1 × Rb+1 |Vu ∼ Vv}
such that the map ρT : T → Rb+1 sending (u, v) to u has finite fibers. By
combining this property of ρT with the fact that T contains the diagonal ∆
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of Rb+1×Rb+1, we infer that dim T = b+1. It follows that ∆ is an irreducible
component of the Zariski closure T of T in Rb+1 × Rb+1. Since the inter-
section of ∆ with the other irreducible components of T is a proper closed
subset of ∆, there exist u0 ∈ Rb+1 and a sufficiently small neighborhood B
of u0 in Rb+1 such that (B × B) ∩ Sπ ⊂ ∆. Thanks to this inclusion, it is
easy to find a sphere S of Rb+1 contained in B such that u0 ∈ S, Vu � V for
each u ∈ S \ {u0} and Vu � Vv for each u, v ∈ S \ {u0} with u 6= v. Choose
u1 ∈ S \ {u0} and a biregular isomorphism λ : Rb → S \ {u1} such that
λ(0) = u0. It is evident that the family V ′ := {Vλ(t)}t∈Rb is an algebraic

real-deformation of Vu0 perfectly parametrized by Rb. Now, the problem is
that Vu0 could not be biregularly isomorphic to V . To overcome this prob-
lem, we use a suitable version of a blowing down theorem due to Akbulut
and King, which allows one to make algebraic the operation of topological
adjunction. In order to be able to apply the result of Akbulut and King, we
must work with real algebraic sets satisfying certain “projective closedness”
conditions. This leads to some technical difficulties in the proof.

Sketch of proof of Theorem 1.2. Let W be a real algebraic set of positive
dimension and let b be as above. First, suppose W irreducible. We apply
Hironaka’s desingularization theorem to W , obtaining a real algebraic mani-
fold W ∗. By Theorem 1.1, there exists an algebro-Nash real-deformation
{W ∗(u)}u∈Rb+1 of W ∗ perfectly parametrized by Rb+1. By suitably using
the aforementioned blowing down theorem of Akbulut and King, we obtain
a good semialgebraic real-deformation {Pu : W(u)→ W}u∈Rb+1 of W such
thatW(u) ∼W ∗(u) for each u ∈ Rb+1 \{0}. Since W ∗(u) �W ∗(v) for each
u, v ∈ Rb+1 \ {0} with u 6= v, there exists a sphere S of Rb+1 containing 0
such that W(u) � W(v) for each u, v ∈ S with u 6= v. Let u0 be a point
of S \ {0} and let λ : Rb → S \ {u0} be a biregular isomorphism such that
λ(0) = 0. The family {Π ′y := Pλ(y)}y∈Rb is the desired good semialgebraic

real-deformation of W perfectly parametrized by Rb. In case W is reducible,
the proof is more complicated. In fact, it requires an improved version of
Theorem 1.1 (see Theorem 2.2 below).

2. Proof of Theorem 1.1. This section is subdivided into two subsec-
tions. In the first, we present a version of the real algebraic blowing down
theorem of Akbulut and King (see [1, Proposition 3.1] and [2, Section 6 of
Chapter II]). In the second, we use this result and a strong version of The-
orem F to prove Theorem 1.1, first in the bounded case and then in the
unbounded one.

2.1. Real algebraic blowing down. Let n ∈ N∗ := N \ {0}, let
` ∈ {0, 1, . . . , n − 1} and let χn−` : Rn−` → Pn−`(R) be the coordinate
chart sending x′′ into [1, x′′]. We say that a real algebraic subset W of Rn =



Principle of real moduli flexibility 249

R`×Rn−` is projectively closed with respect to {0}×Rn−` if (idR`×χn−`)(W )
is Zariski closed in R`×Pn−`(R). Denote by X ′ and X ′′ the indeterminates
(X1, . . . , X`) and (X`+1, . . . , Xn), respectively. Let P be a polynomial in
R[X] = R[X ′, X ′′]. Write P as follows: P (X ′, X ′′) = P0(X

′, X ′′) + · · · +
Pe(X

′, X ′′), where e is the degree of P with respect to X ′′ and each poly-
nomial Pj is homogeneous of degree j with respect to X ′′. We call Pe the
principal part of P with respect to X ′′ and we say that P is overt with re-
spect to X ′′ if Pe is nowhere null (in the case e = 0) or it vanishes only on
R` × {0} (in the case e > 0). One can easily verify that W is projectively
closed with respect to {0}×Rn−` if and only if there exists a polynomial in
R[X] = R[X ′, X ′′] overt with respect to X ′′, whose zero set is W . If ` = 0,
then the preceding notions reduce to the standard ones of projectively closed
real algebraic set and of overt polynomial (see [2, p. 34]).

The next result is the version of the Akbulut–King real algebraic blowing
down theorem we need below. For the reader’s convenience, we include the
simple and short proof.

Lemma 2.1. Let n, k ∈ N∗, let W be a nonempty real algebraic subset of
Rn × Rk, let π : Rn × Rk → Rn be the projection sending (x, z) into x, let
W ′ be a real algebraic subset of Rn and let K ∈ R[X] = R[X1, . . . , Xn] be a
polynomial having W ′ as zero set. Suppose that W is projectively closed with
respect to {0} × Rk. Let L be a polynomial in R[X,Z] = R[X,Z1, . . . , Zk]
overt with respect to Z whose zero set is W, let e > 0 be the degree of L with
respect to Z and let LZ be the principal part of L with respect to Z. Define
the regular map Σ : Rn × Rk → Rn × Rk and the subset W of Rn × Rk by
setting Σ(x, z) := (x, z ·K(x)) and W := (W ′ × {0}) ∪Σ(W), respectively.

Then W is Zariski closed in Rn × Rk. More precisely, there exists a
polynomial L′ ∈ R[X,Z] such that the degree of L′ with respect to Z is < e
and

(2.1) W = {(x, z) ∈ Rn ×Rk |LZ(x, z) +K(x)L′(x, z) = 0}.
In this way, W is a real algebraic subset of Rn×Rk, projectively closed with
respect to {0} ×Rk.

Proof. The restriction of Σ from (Rn \W ′)×Rk into itself is a biregular
isomorphism whose inverse sends (x, z) to (x, z/K(x)). It follows that

(2.2) W \ (W ′ ×Rk) = {(x, z) ∈ (Rn \W ′)×Rk |L(x, z/K(x)) = 0}.
Furthermore,

(2.3) W ∩ (W ′ ×Rk) = W ′ × {0}.
By clearing denominators in the expression L(X,Z/K(X)), one obtains a
polynomial L′ ∈ R[X,Z] whose degree with respect to Z is < e and

(2.4) (K(x))eL(x, z/K(x)) = LZ(x, z) +K(x)L′(x, z)
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for each (x, z) ∈ (Rn \W ′) × Rk. By combining (2.2), (2.3), (2.4) and the
fact that LZ vanishes only on Rn × {0}, we immediately obtain (2.1). In
particular, W is a real algebraic subset of Rn×Rk, projectively closed with
respect to {0} ×Rk.

Let V be a real algebraic submanifold of Rn and let C = R[s]/(s2+1) be
the algebraic closure of R. An irreducible projective complex algebraic man-
ifold Z ⊂ Pm(C) is called a nonsingular complexification of V if it is defined
over R (that is, Z is invariant under the complex conjugation of Pm(C))
and the real part Z ∩ Pm(R) of Z is biregularly isomorphic to V . If V is
bounded, that is, contained in some open ball of Rn, then the existence of
nonsingular complexifications of V is ensured by Hironaka’s desingulariza-
tion theorem [13] (see also [4, Lemma 2.1]).

Let us recall the statement of Theorem 3.1 of [4] (see also [4, Remark 3.2]).

Theorem F+. Let V be a bounded real algebraic manifold of positive
dimension r, let b, ` ∈ N∗ and let d be an odd integer ≥ 3. Then there exist
M, c ∈ N∗, a real algebraic submanifold V of Rb × V × RM × R × R × R
and regular maps φ1 : Rb → RM , φ2 : Rb → R, G1 : Rb × V → R and
G2 : Rb × V ×R→ R with the following properties:

(i) G1(R
b × V ) ⊂ (0, 2) and G2(R

b × V × (0, 2)) ⊂ {r ∈ R | r > 0}.
(ii) G1(0, x) = 1 and G2(0, x, 1) = 1 for each x ∈ V .

(iii) V is equal to the subset of Rb × V ×RM ×R×R×R consisting of
points (y, x, a, s, t, v) such that a = φ1(y), s = φ2(y), td = G1(y, x)
and vd = G2(y, x, t). In particular, V is the graph of a Nash map
from Rb × V to RM ×R×R×R.

(iv) The projection π : V → Rb, sending (y, x, a, s, t, v) into y, is an
algebraic real-deformation of V almost perfectly parametrized by Rb.

(v) c ≥ ` and, for each y ∈ Rb \ {0}, π−1(y) admits a nonsingular
complexification Zy with ample canonical complex line bundle ωZy

such that ωrZy
= c.

We denote by idT : T → T the identity map on the set T and by Sm−1

the standard unit sphere of Rm.

We are now in a position to prove the next result, which is a strong form
of Theorem 1.1 for bounded real algebraic manifolds.

Theorem 2.2. Let V be a bounded real algebraic submanifold of Rn of
positive dimension r and let b, ` ∈ N∗. Then there exist m, c ∈ N∗ and a real
algebro-Nash submanifold N of Rb × V ×Rm with the following properties:

(i) N is the graph of a Nash map from Rb × V to Rm.
(ii) N ⊂ Rb × V × Sm−1.
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(iii) If $ : N → Rb denotes the projection sending (y, x, u) to y, then
$ is an algebro-Nash real-deformation of V perfectly parametrized
by Rb.

(iv) c ≥ ` and, for each y ∈ Rb \ {0}, $−1(y) admits a nonsingular
complexification Zy with ample canonical complex line bundle ωZy

such that ωrZy
= c.

Proof. We divide the proof into five steps.

Step I. Fix an odd integer d ≥ 3. We apply Theorem F+ with b + 1
in place of b, obtaining M , V, φ1, φ2, G1, G2 and π : V → Rb+1 with the
properties described in its statement. In particular, V is equal to the subset
of R := Rb+1×V ×RM ×R×R×R ⊂ Rb+1×Rn×RM+3 consisting of all
points (u, x, a, s, t, v) such that

(2.5) a = φ1(u), s = φ2(u), td = G1(u, x), vd = G2(u, x, t).

Moreover, by Theorem F+, (v), there exists an integer c ≥ ` such that, for
each u ∈ Rb+1 \ {0}, π−1(u) admits a nonsingular complexification Zu with
ample canonical complex line bundle ωZu such that ωrZu

= c.

Let us prove that, by replacing M + 3 with a larger integer k, we may
suppose that V is projectively closed with respect to {0} × {0} ×Rk.

Let χ : R → P1(R) be the coordinate chart sending t into [1, t], let
χ∗ : R → R1 := Rb+1 × V ×RM ×R× P1(R)× P1(R) be the map idRb+1 ×
idV × idRM × idR × χ× χ, let ϕ : P1(R) → R2 be the biregular embedding
sending [t0, t] to (t20− t2, 2t0t)/(t20 + t2) and let ϕ∗ : R1 → R2 := Rb+1×V ×
RM×R×R2×R2 be the biregular embedding idRb+1×idV×idRM×idR×ϕ×ϕ.
Thanks to the last two equations of (2.5), it is immediate to verify that χ∗(V)
is Zariski closed in R1 and hence V∗ := ϕ∗(χ∗(V)) is Zariski closed in R2. It
follows that V∗ is a real algebraic submanifold of R2 biregularly isomorphic
to V (via ϕ∗ ◦ χ∗). Moreover, since ϕ(P1(R)) = S1, we have

(2.6) V∗ ⊂ Rb+1 × V ×RM ×R× S1 × S1.

Denote by (u, x, a, s, p1, q1, p2, q2) = (u, x, a, s, (p1, q1), (p2, q2)) the co-
ordinates of R2, where u = (u1, . . . , ub+1), x = (x1, . . . , xn) and a =
(a1, . . . , aM ). Choose a polynomial L∗ in R[U,X,A, S, P1, Q1, P2, Q2] having
V∗ as zero set. Here U , X and A denote the indeterminates (U1, . . . , Ub+1),
(X1, . . . , Xn) and (A1, . . . ,AM ), respectively. Let e∗ be the degree of L∗
with respect to the indeterminates Z := (A, S, P1, Q1, P2, Q2) and let e be
the smallest even integer > e∗.

By Proposition 2.1.1 of [2], there exist polynomials φ′1,1, . . . , φ
′
1,M , φ′′1,

φ′2, φ
′′
2 in R[U ] such that φ′′1 and φ′′2 are nowhere null on Rb+1 and

φ1(u) = (φ′1,1(u), . . . , φ′1,M (u))/φ′′1(u) and φ2(u) = φ′2(u)/φ′′2(u)



252 E. Ballico and R. Ghiloni

for each u ∈ Rb+1. Define the polynomial L ∈ R[U,X,Z] by setting

L(U,X,Z) := (L∗(U,X,Z))2 +

M∑
j=1

(φ′′1(U)Aj − φ′1,j(U))2e

+ (φ′′2(U)S − φ′2(U))2e + (P 2
1 +Q2

1 − 1)e + (P 2
2 +Q2

2 − 1)e.

By combining (2.6) and the first two equations of (2.5), we infer that the
zero set of L in Rb+1 ×Rn ×RM ×R×R2 ×R2 coincides with V∗.

For simplicity, we rename V∗ as V and Z as (Z1, . . . , Zk), where k :=
M+5. Denote by L2e the principal part of L with respect to Z. The definition
of L implies that

L2e(U,X,Z) = (φ′′1(U))2e
(k−5∑
j=1

Z2e
j

)
+ (φ′′2(U))2eZ2e

k−4(2.7)

+ (Z2
k−3 + Z2

k−2)
e + (Z2

k−1 + Z2
k)e.

Since L2e vanishes only on Rb+1 ×Rn × {0}, we infer at once that

(2.8) V is projectively closed with respect to {0} × {0} ×Rk.
Step II. Let ρ : Rb+1 × Rb+1 → Rb+1 be the projection onto the first

factor and let T be a semialgebraic subset of Rb+1×Rb+1 containing Sπ such
that the restriction ρT of ρ to T has finite fibers. Such a T exists because π
is an algebraic real-deformation of V almost perfectly parametrized by Rb+1.
The finiteness of the fibers of ρT implies that dim T = b+ 1 (recall that T
contains the diagonal ∆ of Rb+1 × Rb+1). In particular, the Zariski closure
T of T in Rb+1 × Rb+1 has dimension b + 1 and hence ∆ is an irreducible
component of T . Let T ′ be the union of the irreducible components of T
different from ∆. Since dim(∆ ∩ T ′) < b + 1, there exist u0 ∈ Rb+1 and an
open neighborhood B of u0 in Rb+1 such that (B× B) ∩ T ′ = ∅ and hence

(2.9) (B× B) ∩ Sπ ⊂ ∆.
Step III. Let K ∈ R[U,X] be a polynomial whose zero set in Rb+1×Rn

is equal to {u0}×V . Define the map Σ : Rb+1×Rn×Rk → Rb+1×Rn×Rk,
the subset V of Rb+1 × V × Rk and the map p : V → Rb+1 by setting
Σ(u, x, z) := (u, x, z · K(u, x)), V := Σ(V) and p(u, x, z) := u, respec-
tively. By Theorem F+, (iii), there exists a Nash map Φ : Rb+1 × V → Rk

such that V is the graph of Φ. It follows that V is the graph of the
Nash map from Rb+1 × V to Rk sending (u, x) into Φ(u, x)K(u, x). Ob-
serve that Σ(π−1(u0)) = {u0} × V × {0}, p−1(u) = Σ(π−1(u)) for each
u ∈ Rb+1 and the restriction of Σ from (Rb+1 \ {u0}) × V × Rk into it-
self is a biregular isomorphism. In particular, p−1(u0) is biregularly iso-
morphic to V and p−1(u) is biregularly isomorphic to π−1(u) for each
u ∈ Rb+1 \{u0}. Since V is projectively closed with respect to {0}×{0}×Rk
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(see (2.8)), Lemma 2.1 applies. It follows that V is a real algebro-Nash
submanifold of Rb+1 × V × Rk and p is an algebro-Nash real-deformation
of V . Furthermore, there exists a polynomial L′ ∈ R[U,X,Z] whose de-
gree with respect to Z is < 2e such that, defining L := L2e + KL′, we
have

V = {(u, x, z) ∈ Rb+1 ×Rn ×Rk | L(u, x, z) = 0}.

Step IV. Let H be the subset of B \ {u0} consisting of points u such
that V ∼ p−1(u) (or, equivalently, V ∼ π−1(u)). By (2.9), H contains at
most one element. In this way, it is possible to find a b-dimensional sphere
S of Rb+1 contained in B \ H and containing u0, a point u1 ∈ S \ {u0}
and a biregular isomorphism λ : Rb → S \ {u1} such that λ(0) = u0. Let
i : S \ {u1} ↪→ Rb+1 be the inclusion map. By using Proposition 2.1.1 of [2]
again, there exist polynomials µ1, . . . , µb+1, ν ∈ R[Y ] = R[Y1, . . . , Yb] such
that ν is nowhere null on Rb and λ(y) = µ(y)/ν(y) for each y ∈ Rb, where
µ : Rb → Rb+1 denotes the map sending y into (µ1(y), . . . , µb+1(y)). Define
the real algebro-Nash submanifold N ′ of Rb × Rb+1 × V × Rk as the fiber
product of i ◦ λ and p. By rearranging coordinates, N ′ is the subset of
Rb ×Rn ×Rk ×Rb+1 consisting of points (y, x, z, u) such that

(2.10) L(µ(y)/ν(y), x, z) = 0 and ν(y)u = µ(y).

Furthermore, N ′ is equal to the graph of the Nash map from Rb × V to
Rk × Rb+1 sending (y, x) into (Φ(λ(y), x)K(λ(y), x), λ(y)). Denote by $′ :
N ′ → Rb the projection sending (y, x, z, u) into y. Inclusion (2.9) and the
choice of S imply at once that $′ is an algebro-Nash real-deformation of V
perfectly parametrized by Rb. We have just proved that N ′ and $′ satisfy
conditions (i), (iii) and (iv). It remains to show that N ′ can be modified in
order to ensure the truth of (ii) too. We will do it in the next step.

Step V. Let us prove that N ′ is projectively closed with respect to
{0} × {0} ×Rk ×Rb+1. Let h1 ∈ N∗ and φ′′′1 , φ

′′′
2 ∈ R[Y ] be such that

(φ′′1(µ(y)/ν(y)))2e = φ′′′1 (y)/(ν(y))2eh1 ,

(φ′′2(µ(y)/ν(y)))2e = φ′′′2 (y)/(ν(y))2eh1

for each y ∈ Rb. Evidently, φ′′′1 and φ′′′2 assume only positive values on Rb.
Define L′2e ∈ R[Y,X,Z] homogeneous of degree 2e with respect to Z by
setting

L′2e(Y,X,Z) = φ′′′1 (Y )(
∑k−5

j=1 Z
2e
j ) + φ′′′2 (Y )Z2e

k−4

+ (ν(Y ))2eh1(Z2
k−3 + Z2

k−2)
e + (ν(Y ))2eh1(Z2

k−1 + Z2
k)e.

By (2.7), for each (y, x, z) ∈ Rb ×Rn ×Rk,

(ν(y))2eh1L2e(µ(y)/ν(y), x, z) = L′2e(y, x, z).
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The latter equality implies the existence of a nonnegative integer h2 and a
polynomial L′′ ∈ R[Y,X,Z] whose degree with respect to Z is < 2e and
such that

(2.11) (ν(y))2eh1+h2L(µ(y)/ν(y), x, z) = (ν(y))h2L′2e(y, x, z) + L′′(y, x, z)

for each (y, x, z) ∈ Rb×Rn×Rk. Denote by L′′2e ∈ R[Y,X,Z] the polynomial
νh2L′2e. By (2.10) and (2.11), it follows that N ′ consists of points (y, x, z, u)
in Rb ×Rn ×Rk ×Rb+1 such that

(2.12) L′′2e(y, x, z) + L′′(y, x, z) = 0 and ν(y)u = µ(y).

Moreover, by definition of L′′2e, it follows that

(2.13) L′′2e vanishes only on Rb ×Rn × {0}.
Define N ′ ∈ R[Y,X,Z, U ] by setting

N ′(Y,X,Z, U) := (L′′2e(Y,X,Z) + L′′(Y,X,Z))2 +

b+1∑
i=1

(ν(Y )Ui − µi(Y ))4e.

Bearing in mind (2.12), we infer that the zero set of N ′ is equal to N ′.
Furthermore, if N ′Z,U denotes the principal part of N ′ with respect to (Z,U),
then

N ′Z,U (Y,X,Z, U) = (L′′2e(Y,X,Z))2 + (ν(Y ))4e
b+1∑
j=1

U4e
j .

By (2.13), it follows that N ′Z,U vanishes only on Rb × Rn × {0} × {0}. We

have just proved that N ′ is projectively closed with respect to {0} × {0} ×
Rk×Rb+1 = {0}×{0}×Rk+b+1. In this way, if θ denotes the integer k+b+1
and ξ : Rk ×Rb+1 = Rθ → Pθ(R) is the coordinate chart sending (z, u) into
[1, z, u], then N ′′ := (idRb× idV ×ξ)(N ′) is Zariski closed in Rb×V ×Pθ(R).

Let us complete the proof. Let m := (θ + 1)2, let Θ : Pθ(R)→ Sm−1 be

the biregular embedding sending [q0, q1, . . . , qθ] to (qiqj/
∑θ

a=0 q
2
a)i,j (see [2,

p. 38]) and let N := (idRb × idV ×Θ)(N ′′). The real algebro-Nash manifold
N and the projection $ : N → Rb sending (y, x, p) to y have all the required
properties.

Let us give the proof of Theorem 1.1 in the unbounded case.
Let V be a real algebraic submanifold of some Rn of positive dimension.

Suppose that V is unbounded, that is, not bounded. We recall that the
Alexandrov compactification of V can be made algebraic (see [2, Lemma
2.6.2] and [5, pp. 76–77]). More precisely, there exist a bounded real algebraic
subset V̇ of Rn+1, a point p ∈ V̇ and a biregular isomorphism from V to
V̇ \ {p}. Identify V with V̇ \ {p} via such a biregular isomorphism. Observe
that V ⊂ Reg(V̇ ). By Hironaka’s desingularization theorem, there exist
a bounded real algebraic submanifold V ∗ of some Rm and a regular map
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% : V ∗ → V̇ such that the restriction of % from %−1(V ) to V is a biregular
isomorphism. Identify V with %−1(V ) via %.

Let b ∈ N∗. By Theorem 2.2, there exists an algebro-Nash real-deforma-
tion π∗ : V∗ → Rb of V ∗ perfectly parametrized by Rb. Let π′ : V∗ → V ∗

be a regular map such that π∗ × π′ : V∗ → Rb × V ∗ is a Nash isomor-
phism and the restriction of π′ to (π∗)−1(0) is a biregular isomorphism.
Define V := (π∗ × π′)−1(Rb × V ) and π : V → Rb as the restriction of π∗

to V. It is evident that π is an algebro-Nash real-deformation of V perfectly
parametrized by Rb.

The proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.2. We organize the proof into four steps.

Step I. Let Ẇ be a bounded real algebraic subset of some Rn obtained
from W by adding a point p at infinity. Identify W with Ẇ \{p}. By Hiron-
aka’s desingularization theorem, there exist k ∈ N and a nonsingular real
algebraic subset W ′ of Ẇ × Pk(R) such that, denoting by η : W ′ → Ẇ
the projection sending (x, q) to x, the restriction of η from η−1(Reg(Ẇ )) to
Reg(Ẇ ) is a biregular isomorphism.

Let ` := (k + 1)2 and let Θ : Pk(R)→ S`−1 be the biregular embedding

sending [q0, q1, . . . , qk] to (qiqj/
∑k

a=0 q
2
a)i,j . Define W ∗ := (idẆ ×Θ)(W ′) ⊂

Rn×R` and % : W ∗ → Ẇ by setting %(x, x′) = x. Evidently, % has the same
property of η: its restriction from %−1(Reg(Ẇ )) to Reg(Ẇ ) is a biregular
isomorphism. Clearly,

(3.1) W ∗ ⊂ Ẇ × S`−1.

Let W ∗1 , . . . ,W
∗
h be all the irreducible components of W ∗ and define σ :

Reg(Ẇ )→ R` to be the regular map such that

(3.2) (x, σ(x)) ∈W ∗ for each x ∈ Reg(Ẇ ).

By applying Theorem 2.2 to W ∗j , with b + 2 in place of b, inductively
on j ∈ {1, . . . , h}, we find c1, . . . , ch ∈ N∗ with c1 < · · · < ch and, for
each j ∈ {1, . . . , h}, mj ∈ N∗, a real algebro-Nash submanifold W∗j of

Rb+2×W ∗j ×Smj−1 ⊂ Rb+2× (Rn×R`)×Rmj and a Nash map Φ∗j : Rb+2×
W ∗j → Rmj such that:W∗j is the graph of Φ∗j , the projection$∗j :W∗j → Rb+2

sending (u, x, x′, yj) = (u, (x, x′), yj) to u is an algebro-Nash real-deformation
of W ∗j perfectly parametrized by Rb+2 and, for each u ∈ Rb+2 \ {0}, the

real algebraic manifold W ∗(u, j) := ($∗j )
−1(u) admits a nonsingular com-

plexification Z(u, j) with ample canonical complex line bundle ωZ(u,j) and
ωrZ(u,j) = cj , where r = dimW = dimW ∗j . Observe that, thanks to (3.1),

(3.3) W∗j ⊂ Rb+2 × Ẇ × S`−1 × Smj−1 for each j ∈ {1, . . . , h}.
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Let m :=
∑h

j=1mj . Identify each Euclidean space Rb+2×Rn×R`×Rmj

with the real vector subspace Rb+2×Rn×R`×{0<j}×Rmj×{0>j} of Rb+2×
Rn×R`×

∏
0≤i<j R

mi×Rmj×
∏
j<i≤hR

mi = Rb+2×Rn×R`×Rm, where 0<j
and 0>j denote the origins of

∏
0≤i<j R

mi and of
∏
j<i≤hR

mi , respectively.
Define the projectively closed real algebraic subset O of Rm by setting O :=⋃h
j=1({0<j} × Smj−1 × {0>j}). Denote by W∗ the real algebraic subset of

Rb+2×Rn×R`×Rm equal to the disjoint union of theW∗j ’s, by $∗ :W∗ →
Rb+2 the projection sending (u, x, x′, z) to u, by W ∗(u) the fiber ($∗)−1(u)
of $∗ over u for each u ∈ Rb+2 and by Φ∗ : Rb+2 ×W ∗ → Rm the Nash
map defined as follows: Φ∗(u, x, x′) := (0<j , Φ

∗
j (u, x, x

′), 0>j) if (u, x, x′) ∈
Rb+2×W ∗j . Observe that, for each u ∈ Rb+2, W ∗(u, 1), . . . ,W ∗(u, h) are the
irreducible components of W ∗(u). Moreover, by (3.3),

(3.4) W∗ ⊂ Rb+2 × Ẇ × S`−1 ×O.
Step II. Fix u, v ∈ Rb+2 \ {0} with u 6= v. Suppose W ∗(u) ∼ W ∗(v).

Then there exists j ∈ {1, . . . , h} such that W ∗(u, 1) ∼ W ∗(v, j). In partic-
ular, Z(u, 1) is complex birationally isomorphic to Z(v, j). Bearing in mind
that ωZ(u,1) and ωZ(v,j) are ample, we find that Z(u, 1) and Z(v, j) are also
complex biregularly isomorphic (see [8, p. 170]) and hence c1 = ωrZ(u,1) =

ωrZ(v,j) = cj . It follows that j = 1. This is impossible, because $∗1 is perfectly

parametrized by Rb+2. We have just proved that

W ∗(u) �W ∗(v) for each u, v ∈ Rb+2 \ {0} with u 6= v.

The latter fact implies that the subset H1 of Rb+2 \ {0} consisting of points
u such that W ∗(0) ∼ W ∗(u) contains at most one element. Let S1 be a
sphere of Rb+2 containing {0} and disjoint from H1, let u0 ∈ S1 \ {0}, let
λ1 : Rb+1 → S1 \ {u0} be a biregular isomorphism such that λ1(0) = 0, let
i1 : S1 \ {u0} ↪→ Rb+2 be the inclusion map, let W1 be the fiber product of
i1 ◦ λ1 and $∗, and let Φ1 : Rb+1 ×W ∗ → Rm × Rb+2 be the Nash map
sending (w, x, x′) to (Φ∗(λ1(w), x, x′), λ1(w)). By rearranging coordinates,
we have

W1 = {(w, (x, x′), z, u) ∈ Rb+1 ×W ∗ ×Rm ×Rb+2 | (z, u) = Φ1(w, x, x
′)}.

By (3.4), we infer that

(3.5) W1 ⊂ Rb+1 × Ẇ × S`−1 ×O × S1.

Denote by $1 : W1 → Rb+1 the projection sending (w, x, x′, z, u) to w.
By definition of W1, ($1)

−1(w) is biregularly isomorphic to W ∗(λ1(w)) for
each w ∈ Rb+1 and hence

(3.6) ($1)
−1(w) � ($1)

−1(w′) for each w,w′ ∈ Rb+1 with w 6= w′.

Step III. Set θ := `+m+ b+ 2 and denote by W and X the indetermi-
nates (W1, . . . ,Wb+1) and (X1, . . . , Xn), respectively. Since S`−1 × O × S1
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is projectively closed in Rθ = R` × Rm × Rb+2, (3.5) implies that W1 is
projectively closed in Rb+1 ×Rn ×Rθ with respect to {0} × {0} ×Rθ.

Let W • := ({0} × Ẇ ) ∪ (Rb+1 × (Ẇ \ Reg(Ẇ ))), let K ∈ R[W, X] be a
polynomial whose zero set in Rb+1×Rn is equal to W •, let Σ : Rb+1× Ẇ ×
Rθ → Rb+1×Ẇ×Rθ be the regular map sending (w, x, ξ) to (w, x, ξ·K(w, x))
and let W2 := (W • × {0}) ∪ Σ(W1). By Lemma 2.1, W2 is Zariski closed
in Rb+1 × Ẇ ×Rθ. Let $2 :W2 → Rb+1 be the projection sending (w, x, ξ)
to w. Since the restriction of Σ from (Rb+1 × Ẇ × Rθ) \ (W • × Rθ) into
itself is a biregular isomorphism, we see that ($2)

−1(w) ∼ ($1)
−1(w) for

each w ∈ Rb+1 \ {0}. In this way, by (3.6),

(3.7) ($2)
−1(w) � ($2)

−1(w′) for each w,w′ ∈ Rb+1 \ {0} with w 6= w′.

Moreover, ($2)
−1(0) is equal to {0} × Ẇ × {0} and hence it is biregularly

isomorphic to Ẇ . Define the semialgebraic map Φ2 : Rb+1 × Ẇ → R` ×
Rm+b+2 = Rθ as follows: Φ2(w, x) = 0 if (w, x) ∈ W • and Φ2(w, x) :=
(σ(x) · K(w, x), Φ1(w, x, σ(x)) · K(w, x)) if (w, x) 6∈ W • (see (3.2) for the
definition of σ). By (3.1), the image of σ is contained in S`−1 and hence is
bounded. This ensures that Φ2 is continuous. Moreover, it is evident that
the graph of Φ2 is equal toW2 and the restriction of Φ2 to (Rb+1× Ẇ )\W •
is a Nash map.

Step IV. Let us repeat the argument used in the second half of Step
II. Let H2 be the subset of Rb+1 \ {0} consisting of points w such that
($2)

−1(0) ∼ ($2)
−1(w). By (3.7), H2 contains at most one element. Let S2

be a sphere of Rb+1 containing {0} and disjoint from H2, let w0 ∈ S2 \ {0},
let λ2 : Rb → S2 \ {w0} be a biregular isomorphism such that λ2(0) = 0, and
let i2 : S2 \ {0} ↪→ Rb+1 be the inclusion map, letW3 be the fiber product of
i2 ◦ λ2 and $2. Upon rearranging coordinates, W3 is equal to the subset of
Rb× Ẇ ×Rθ×Rb+1 consisting of points (y, x, ξ, w) such that (w, x, ξ) ∈ W2

and w = λ2(y). Let P :W3 → Rb × Ẇ be the projection sending (y, x, ξ, w)
to (y, x), let W := P−1(Rb ×W ) and let Π : W → Rb and Π ′ : W → W
be the projections sending (y, x, ξ, w) to y and to x, respectively. By con-
struction, W, Π and Π ′ have all the desired properties, that is, Π is a good
semialgebraic real-deformation of W perfectly parametrized by Rb.

Remark 3.1. As an immediate consequence of the preceding proof, we
can add the following property of Π to the statement of Theorem 1.2:

(iv) For every y ∈ Rb, Π−1(y) and W have the same number of irre-
ducible components of maximum dimension, that is, of dimension
dimW .
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