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Sets with the Bernstein and generalized Markov properties

by Mirosław Baran and Agnieszka Kowalska (Kraków)

Abstract. It is known that for C∞ determining sets Markov’s property is equivalent
to Bernstein’s property. We are interested in finding a generalization of this fact for sets
which are not C∞ determining. In this paper we give examples of sets which are not C∞

determining, but have the Bernstein and generalized Markov properties.

1. Notation and definitions. Throughout this paper we use the fol-
lowing notation.

Z+ is the set of non-negative integers, Nk is the set of integers which are
greater than or equal to k, BN := {x ∈ RN : |x| =

√
x21 + · · ·+ x2N ≤ 1} is

the Euclidean ball, SN−1 := ∂BN = {(x1, . . . , xN ) ∈ RN : x21+ · · ·+x2N = 1}
is the Euclidean sphere.

For E ⊂ RN set P(E) = {f : E → R : f = P |E for some P in
R[x1, . . . , xN ]}.

We shall see that for the Euclidean sphere SN−1 we have

P(SN−1) = R[x1, . . . , xN−1] + R[x1, . . . , xN−1]xN .
It is easy to check that if F,G ∈ R[x1, . . . , xN−1] + R[x1, . . . , xN−1]xN and
F |SN−1 = G|SN−1 then F = G.

We denote by Pk(E) the space of (the restrictions to E of) polynomials
of degree at most k (k ∈ Z+): Pk(E) = {f ∈ P(E) : deg∗ f ≤ k}, where
deg∗ f = inf{degP : P ∈ R[x1, . . . , xN ] and f = P |E} (see [Sk]).

We shall use the notation x̃ for (x1, . . . , xN−1), where x = (x1, . . . , xN ).
Thus x̃ = πN (x), where πN : RN → RN−1 is the natural projection.

If f : E → R is a bounded function, then

dk(f) := dist(f,Pk(E)) := inf
g∈Pk(E)

{‖f − g‖E}.

Let Ω ⊂ RN and f be a real-valued function defined on a neighbour-
hood of the closure of Ω. We say that f vanishes on Ω to order at most d
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if for any x ∈ Ω there exists α ∈ ZN+ such that |α| ≤ d and Dαf(x) 6= 0
(cf. [G]).

2. Introduction. Markov’s inequality for derivatives of polynomials and
its generalizations are still the object of many investigations. Let us recall
that a compact set E ⊂ RN has Markov’s property if there exist constants
M,m > 0 such that for each polynomial P ∈ P(E) and each i = 1, . . . , N
the following Markov inequality holds:

‖DiP‖E ≤M(degP )m‖P‖E .

By writing E ∈ MN (m,M) we mean that E ⊂ RN has Markov’s property
with constantsM,m > 0. There are many sets which have Markov’s property
(see [P2] and [P3]), but Zerner gave an example of a set for which Markov’s
inequality does not hold (see [Z]). Many authors have tried to determine
when a set has Markov’s property. It is known (see [P1, Remark 3.5]) that
if a compact set E has Markov’s property then it is C∞ determining, which
means that for each function f ∈ C∞(RN ) the following implication holds:
f |E = 0⇒ ∀α ∈ ZN+ Dαf |E = 0.

In 1990, Pleśniak proved an important theorem (see [P1, Theorem 3.3])
that completes previous results obtained by Pawłucki and Pleśniak for a
special class of UPC sets (see [PP]) and provides equivalents of Markov’s
property for C∞ determining sets.

Theorem 2.1 (cf. [P1, Theorem 3.3]). If E is a C∞ determining compact
subset of Rn, then the following statements are equivalent:

(i) E has Markov’s property.
(ii) There exist positive constants M and r such that for every polyno-

mial p of degree at most k ∈ N1, |p(x)| ≤ M‖p‖E if x ∈ Cn and
dist(x,E) ≤ 1/kr.

(ii′) There exist positive constants M and r such that for every polyno-
mial p of degree at most k ∈ N1, |p(x)| ≤ M‖p‖E if x ∈ Rn and
dist(x,E) ≤ 1/kr.

(iii) E has Bernstein’s property: for every function f : E → R, if for each
s > 0, limk→∞ k

s dist(f,Pk(E)) = 0, then there is f̃ ∈ C∞(RN )
such that f̃ |E = f .

Note that the converse to (iii) follows from Jackson’s inequality for a
cube. The result of [PP] has been extended by Goetgheluck [G], who also
established the following result:

Theorem 2.2 (Goetgheluck’s theorem, [G, Theorem 1]). Let Ω be a bo-
unded subset of RN which has Markov’s property with exponent m, and let
h ∈ C∞(RN ) vanish on Ω to order at most d. Then there exists a positive



Sets with the Bernstein and generalized Markov properties 261

constant C(h,Ω) such that for every k ∈ N1 and P ∈ Pk(Ω) we have

‖P‖Ω ≤ C(h,Ω)kmd‖Ph‖Ω.
This theorem is an important generalization of the classical Schur in-

equality

∀P ∈ C[t] ‖P‖[−1,1] ≤ (degP + 1)‖P (t)
√
1− t2‖[−1,1].

The following inequality is an easy generalization of the Schur inequality
to the Euclidean ball:

(2.1) ∀P ∈ R[x] ‖P‖BN−1 ≤ (degP + 1)‖P (x)
√

1− x2‖BN−1 ,

where x2 = x21 + · · ·+ x2N−1. The above inequality can be verified by taking
Q(t) = P (tu), where x = tu ∈ BN−1, t ∈ [−1, 1] and ‖u‖ = 1. Some versions
of Markov’s and Bernstein’s inequalities for the Euclidean ball have also been
proved in [Sa] and [B]:

∀P ∈ R[x1, . . . , xN−1] ‖DjP‖BN−1 ≤ (degP )2‖P‖BN−1 ,(2.2)

∀P ∈ R[x] ∀x ∈ BN−1 |DjP (x)| ≤
degP√
1− x2

‖P‖BN−1 .(2.3)

3. Generalized Markov property. There are many algebraic subsets
of RN which are not C∞ determining and have Bernstein’s property. Such
sets cannot have Markov’s property, but some of them do have a generalized
Markov property that is defined below.

Definition 3.1. For a compact set E ⊂ RN and a polynomial f ∈ P(E),
we set

‖f‖∗j = ‖f‖E + inf{‖DjF‖E : F ∈ R[x1, . . . , xN ], F |E = f}, j = 1, . . . , N.

Let us observe that ‖f‖∗j is a norm on P(E). Moreover if E is a C∞

determining compact subset of RN then ‖f‖∗j = ‖f‖E + ‖Djf‖E for j in
{1, . . . , N}.

Definition 3.2. We say that a compact set E ⊂ RN has the generalized
Markov property if there exist constantsM,m > 0 such that for each k ∈ N1,
f ∈ Pk(E), j = 1, . . . , N ,

‖f‖∗j ≤Mkm‖f‖E .
We shall see that the Euclidean sphere has this property.

Proposition 3.3. The set E = SN−1 has the generalized Markov prop-
erty with m = 2.

Proof. Let f ∈ Pk(E) with k ∈ N1. Then f(x̃, xN ) = p(x̃) + q(x̃)xN for
some p, q ∈ R[x̃] such that deg p ≤ k and deg q ≤ k− 1. We remark that this
extension of f to all of RN is not necessarily unique.
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Since SN−1 is symmetric, for each f ∈ P(E) we have

‖f‖E = max
x̃∈BN−1

{|p(x̃)|+ |q(x̃)|
√
1− x̃2}.

Set A := max{‖p‖BN−1 , ‖q(x̃)
√
1− x̃2‖BN−1}. Hence

A ≤ ‖f‖E ≤ 2A.

For (x̃, xN ) ∈ E and 1 ≤ j ≤ N − 1 we have

|Djf(x̃, xN )| ≤ ‖Djp(x̃) +Djq(x̃)xN‖E
= max

x̃∈BN−1
{|Djp(x̃)|+ |Djq(x̃)

√
1− x̃2|}.

From (2.2) for f ∈ Pk(E) we obtain

|Djf(x̃, xN )| ≤ k2‖p‖BN−1 + ‖Djq(x̃)
√

1− x̃2‖BN−1 .

Applying (2.3) and (2.1) with x̃ ∈ BN−1 and f ∈ Pk(E) we get

|Djf(x̃, xN )| ≤ k2‖p‖BN−1 + (k − 1)‖q‖BN−1

≤ k2(‖p‖BN−1 + ‖q(x̃)
√

1− x̃2‖BN−1).

We conclude that

‖f‖∗j ≤ 3k2‖f‖E , j = 1, . . . , N − 1.

Similarly, by (2.1), we have ‖f‖∗N ≤ 2k‖f‖E , and the assertion follows with
m = 2 and M = 3.

An inspection of the above proof permits one to establish a similar propo-
sition for any subset E of the sphere which is symmetric in the following
sense: for each (x̃, xN ) ∈ E, (x̃,−xN ) is an element of E as well.

Proposition 3.4. Let E ⊂ SN−1 be a symmetric compact set and let
Ẽ = πN (E). If Ẽ ∈ MN−1(m,M), then E has the generalized Markov
property in RN . More precisely, it has the generalized Markov property in
RN with exponent m if Ẽ ⊂ intBN−1, and with exponent 2m otherwise.

Proof. We have P(E) ⊂ R[x1, . . . , xN−1] + R[x1, . . . , xN−1]xN . Let f ∈
Pk(E) and f(x̃, xN ) = p(x̃) + q(x̃)xN . The symmetry of E implies ‖f‖E =

max
x̃∈Ẽ{|p(x̃)|+ |q(x̃)

√
1− x̃2|}. Hence, by Goetgheluck’s theorem, for h(x̃)

= 1− x̃2 and Ω = Ẽ there exists a constant C independent of f such that

‖DNf‖E =
√
‖q2‖

Ẽ
≤
√
C(2k)2m‖q2(x̃)(1− x̃2)‖

Ẽ
≤ C1k

m‖f‖E

with C1 = 2m
√
C. Moreover, if 1 ≤ j ≤ N − 1, then

‖Djf‖E ≤ ‖Djp‖Ẽ + ‖Djq‖Ẽ ≤Mkm(‖p‖
Ẽ
+ ‖q‖

Ẽ
)

≤Mkm(‖p‖
Ẽ
+ C1k

m‖q(x̃)
√
1− x̃2‖

Ẽ
)

≤ 2M max{1, C1}k2m‖f‖E ,
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which yields the generalized Markov property with m′ = 2m and M ′ =
2max{1, 2M, 2MC1, C1}.

If Ẽ ⊂ intBN−1 then by the compactness of Ẽ we obtain

Bmax{‖p‖
Ẽ
, ‖q‖

Ẽ
} ≤ ‖f‖E ≤ 2max{‖p‖

Ẽ
, ‖q‖

Ẽ
}

with 0 < B := min
x̃∈Ẽ
√
1− x̃2 ≤ 1 depending only on E. It follows that

‖DNf‖E = ‖q‖
Ẽ
≤ (1/B)‖f‖E

and for 1 ≤ j ≤ N − 1,

‖Djf‖E ≤ ‖Djp‖Ẽ + ‖Djq‖Ẽ
≤ 2Mkmmax{‖p‖

Ẽ
, ‖q‖

Ẽ
} ≤ (2M/B)km‖f‖E .

This means that E has the generalized Markov property with constants
M ′ = 2max{1, 2M}/B and m.

Let Φ = (Φ1, . . . , ΦN ) : RN → RN be a polynomial automorphism of
degree r.

Proposition 3.5. If E ⊂ RN has the generalized Markov property, then
so does Φ(E).

Proof. Let f ∈ Pk(Φ(E))\{0}. Then there exists G ∈ R[x1, . . . , xN ] such
that degG = k · r and G|E = f ◦ Φ, so f ◦ Φ ∈ Pkr(E). Moreover, since E
has the generalized Markov property, there exist constants M,m > 0 such
that for each x ∈ E and j = 1, . . . , N we have

|DjF (x)| ≤Mkmrm‖f ◦ Φ‖E =Mkmrm‖f‖Φ(E)

for some polynomial F such that F |E = f ◦Φ. Let y ∈ Φ(E) and x = Φ−1(y).
Then

Dj(F ◦ Φ−1)(y) =
N∑
l=1

DlF (x)DjΨl(y),

where Φ−1 = (Ψ1, . . . , ΨN ). Hence

|Dj(F ◦ Φ−1)(y)| ≤Mkmrm‖f‖Φ(E)

N∑
l=1

|DjΨl(y)| ≤M1k
m‖f‖Φ(E),

where M1 = N‖DjΦ
−1‖Φ(E)Mrm. This completes the proof.

Proposition 3.6. If E ⊂ RN has Bernstein’s property, then so does
Z := Φ(E).

Proof. Let g : Z → R be such that liml→∞ l
sdl(g) = 0 for each s > 0.

Then there exist constants Cs(l) such that liml→∞Cs(l) = 0 and ‖g−pl‖Z ≤
Cs(l)l

−s for some pl ∈ Pl(Z). Hence dlr(g ◦ Φ) ≤ Cs(l)l
−s, which yields
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liml→∞ l
sdlr(g) = 0. For each k ∈ Nr there exists l ∈ Z+ such that rl ≤ k <

r(l + 1) and
dk(g ◦ Φ) ≤ dlr(g ◦ Φ).

From this we have limk→∞ k
sdk(g ◦ Φ) = 0. As E has Bernstein’s property,

there exists G ∈ C∞(RN ) such that G|E = g ◦Φ. Hence G ◦Φ−1 ∈ C∞(RN )
and G ◦ Φ−1|Z = g, and this completes the proof.

We shall need a generalization of Pleśniak’s condition (P) (see [P1, The-
orem 3.3(ii)]), which plays an important role in problems of the existence
of a continuous linear operator extending the traces of C∞ functions on a
compact set E ⊂ RN .

For f ∈ P(E), a ≥ 1 and ε > 0 we define

|f |a,ε = inf{‖F‖Eε : F ∈ R[x1, . . . , xN ], F |E = f, degF ≤ adeg∗ f},

where Eε = {z ∈ RN : dist(z, E) ≤ ε}.

Definition 3.7. We say that a compact set E ⊂ RN satisfies Pleśniak’s
condition (Pσ), σ ≥ 0, if there exist positive constants m,M1,M2 and a
constant a ≥ 1 such that

|f |a,ε ≤M2k
σ‖f‖E if f ∈ Pk(E), ε ≤M1/k

m.

If σ = 0, we denote this condition by (P).

Definition 3.8. For a compact set E ⊂ RN , f ∈ P(E) and n ∈ Z+, we
put

‖f‖n = inf
{
max
|α|≤n

‖DαF‖E : F ∈ R[x1, . . . , xN ], F |E = f
}
.

We say that a set E has the strong generalized Markov property if there exist
constants M,m > 0 such that for each n ∈ Z+ and f ∈ P(E),

‖f‖n ≤M(deg∗ f)
nm‖f‖E .

We have a relation between condition (Pσ) and the strong generalized
Markov property, which is similar to the implication (ii)⇒(i) of [P1].

Proposition 3.9. If a compact set E ⊂ RN satisfies Pleśniak’s condi-
tion (Pσ) then it has the strong generalized Markov property.

Proof. The proof is a slight modification of the proof of (ii′)⇒(i) in [P1].
For x ∈ E, we set

Ik(x) := {z ∈ RN : |zj − xj | ≤M1/(N
1/2km), j = 1, . . . , N} ⊂ Eεk ,

where εk =M1/k
m.
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Let f ∈ Pk(E) and let F ∈ R[x1, . . . , xN ] be such that degF ≤ a deg∗ f
and F |E = f . By the classical Markov inequality for a cube we get

|DαF (x)| ≤ [(a deg∗ f)
2/(M1/(N

1/2(deg∗ f)
m)]|α|‖F‖Ik(x)

≤M |α|3 (deg∗ f)
(m+2)|α|‖F‖Eεk ,

where M3 = a2N1/2/M1. Taking the supremum over all α with |α| ≤ n and
then the infimum over F , from the assumption that E satisfies Pleśniak’s
condition we derive

‖f‖n ≤M2M
n
3 (deg∗ f)

n(m+2)+σ‖f‖E .
Finally, we obtain

‖f‖n ≤M4(deg∗ f)
nm1‖f‖E ,

where the constantM4 is determined by the equivalence of the norms on the
space P1(E), and m1 = m+ 2 + σ + s with s such that M3 ≤ 2s.

The same results can be obtained by taking the following generalizations
of Markov’s property and condition (Pσ).

Definition 3.10. Let E be a compact subset of RN . The set E has the
generalized Markov property (M∗) if:

(a) there exist a linear map Λ : P(E) → R[x1, . . . , xN ] and a constant
a ≥ 1 such that Λ(f)|E = f and degΛ(f) ≤ a deg∗ f ;

(b) there exist constants M,m such that for each f ∈ P(E),

‖DjΛ(f)‖E ≤M(degΛ(f))m‖f‖E , j = 1, . . . , N.

The set E has the strong generalized Markov property (M∗s) if it fulfils
both condition (a) and

(c) there exist constants M1,m1 such that for each f ∈ P(E),

‖DαΛ(f)‖E ≤M1(degΛ(f))
|α|m1‖f‖E , α ∈ ZN+ .

The set E satisfies condition (P∗σ) (for some σ ≥ 0) if it fulfils (a) and

(d) there exist constants m2,M2,M3 > 0 such that

‖Λ(f)‖Eε ≤M2k
σ‖f‖E for f ∈ Pk(E), ε ≤M3k

−m2 , k ∈ N2.

Proposition 3.11. We have (P∗σ)⇔ (M∗s)⇒ (M∗).
Proof. The implication (M∗s)⇒(M∗) is obvious. The equivalence (P∗σ)

⇔(M∗s) can be proved as in [P1]. Assume (P∗σ). Let x ∈ E. For k ∈ N1, we
define

Ik(x) := {z ∈ RN : |zj − xj | ≤M3/(N
1/2km2)} ⊂ Eεk ,

where M3, m2 are the constants from condition (P∗σ) and εk =M3/k
m2 . Let

f ∈ P(E). By the classical Markov inequality for a cube we have

|DαΛ(f)(x)| ≤
[
(degΛ(f))2/

(
M3/(N

1/2(degΛ(f))m2)
)]|α|‖Λ(f)‖IdegΛ(f)(x).
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By a similar argument to that of the previous proof, we get

|DαΛ(f)(x)| ≤M2N
|α|/2M

−|α|
3 (degΛ(f))(m2+2)|α|+σ‖f‖E

≤M4(degΛ(f))
(m2+2+s)|α|+σ‖f‖E ,

where the constant M4 is determined by the equivalence of the norms on
P1(E), and s is a constant such that N1/2M−13 ≤ 2s. We can take M1 =M4

and m1 = m2 + 2 + s+ σ.
Assume now that (M∗s) holds. Let f ∈ Pk(E). For z ∈ RN , there exists

x ∈ E such that dist(z, E) = dist(z, x). By Taylor’s formula we get

Λ(f)(z) =
∑
|α|≤k

(DαΛ(f)(x)/α!)(z − x)α.

By the assumption on δ := dist(z, E), we obtain

|Λ(f)(z)|≤M1‖f‖E
∑
|α|≤k

(adeg∗ f)
|α|m1δ|α|/α!≤M1‖f‖E

k∑
l=0

[N(ak)m1δ]l/l!.

Hence for δ ≤ 1/(ak)m1 we have

|Λ(f)(z)| ≤M1‖f‖E
k∑
l=0

N l/l! ≤M1e
N‖f‖E .

We can take m2 = m1, M3 = 1/am1 and M2 =M1e
N .

4. Markov’s and Bernstein’s properties for subsets of algebraic
sets. In this section we consider the sets of the form

V = {(x̃, xN ) ∈ RN : x2N = Q(x̃)},
where Q ∈ R[x1, . . . , xN−1] is such that Q−1([0,+∞)) 6= ∅ and degQ ≤ d.
For symmetric subsets of this kind, we shall prove some theorems which
correspond to the propositions of the previous section.

Theorem 4.1. Let E ⊂ V be a compact symmetric set and let Ẽ =
πN (E). If Ẽ ∈ M(m,M), then E has the generalized Markov property with
respect to RN .

Proof. Observe that

Pl(E) ⊂ Rd1l[x1, . . . , xN−1] + Rd1l−1[x1, . . . , xN−1]xN ,
where d1 = [d/2] + 1. Indeed, if f ∈ P(E) and deg∗ f = l, then there exists
F ∈ R[x1, . . . , xN ] such that F |E = f and degF = l. Since E ⊂ V, we
have x2N = Q(x̃). Hence F (x̃, xN ) = p(x̃) + q(x̃)xN for (x̃, xN ) ∈ E, where
deg p ≤ dl/2 and deg q ≤ dl/2 − 1. We define F∗(x̃, xN ) := p(x̃) + q(x̃)xN
for (x̃, xN ) ∈ E.

Since E is symmetric, we get ‖F∗‖E = max
x̃∈Ẽ{|p(x̃)|+ |Q(x̃)|1/2|q(x̃)|}.
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Applying Goetgheluck’s theorem to Q and Ẽ we find that there exists a
constant C > 0 such that, for each R ∈ R[x̃] with degR > 0,

‖R‖
Ẽ
≤ C(degR)md‖Q ·R‖

Ẽ
.

Setting R(x̃) = q2(x̃) for deg q > 0 gives

(4.1) ‖q‖
Ẽ
≤ C1(deg q)

md/2‖ |Q|1/2q‖
Ẽ

with C1 = 2md/2
√
C.

It remains to estimate the derivative DNF∗. We have

‖DNF∗‖E ≤ C2l
md/2‖ |Q|1/2q‖

Ẽ
≤ C2l

md/2‖F∗‖E ,

where C2 = C1d
md/2
1 . Moreover, for 1 ≤ j ≤ N − 1 we have

DjF∗(x̃, xN ) = Djp(x̃) +Djq(x̃)xN .

Hence, since E is symmetric and Ẽ has Markov’s property, there exists a
constant C3 such that

‖DjF∗‖E ≤ C3l
mmax{‖p‖

Ẽ
, ‖q‖

Ẽ
}.

Now, by condition (4.1),

‖DjF∗‖E ≤ C4l
m+md/2max{‖p‖

Ẽ
, ‖ |Q|1/2q‖

Ẽ
} ≤ C4l

m(1+d/2)‖F∗‖E
with C4 = C3max{C2, 1}. Therefore

‖f‖∗j ≤ C5(deg∗ f)
m(1+d/2)‖f‖E for j = 1, . . . , N,

where C5 = 1 +max{C2, C4}. This completes the proof.

Theorem 4.2. Let V be as above, and let E be a compact symmetric
subset of V. Let Ẽ be the projection of E onto RN−1. If Ẽ has Bernstein’s
property, then so does E.

Proof. We have

Pk(E) ⊂ Rd1k[x1, . . . , xN−1] + Rd1k−1[x1, . . . , xN−1]xN ,
where d1 = [d/2] + 1.

Let g : E → R be such that for each s > 0 one has

lim
k→∞

ksdk(g) = 0.

Then g ∈ C(E). Fix k ∈ N. There exist pk ∈ Rdk[x̃] and qk ∈ Rdk−1[x̃] such
that

dk(g) = sup
(x̃,xN )∈E

|g(x̃, xN )− pk(x̃)− qk(x̃)xN |.

We are going to show that (pk(x̃))k∈N and (qk(x̃))k∈N are Cauchy se-
quences in C(Ẽ). Let n, l ∈ N. We have

‖pn(x̃) + qn(x̃)xN − pl(x̃)− ql(x̃)xN‖E ≤ 2max{dn(g), dl(g)}.
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Since E is symmetric,

‖pn − pl‖Ẽ ≤ 2max{dn(g), dl(g)}.

On the other hand, by Goetgheluck’s theorem,

‖qn − ql‖Ẽ ≤ C6max{n, l}md/2‖(qn − ql)|Q|1/2‖Ẽ
≤ 2C6max{n, l}md/2max{dn(g), dl(g)}

with C6 = C1d
md/2
1 . Hence for l = n+ 1 we have

‖qn − qn+1‖Ẽ ≤ C7n
md/2dn(g) = O(1/n2),

where C7 = C62
md/2+1. For n < l we get

‖qn − ql‖Ẽ ≤
l−1∑
k=n

‖qk − qk+1‖Ẽ = O(1/n).

In a similar way we show that

‖pn − pl‖Ẽ = O(1/n).

By the completeness of C(Ẽ), there exist g1, g2 ∈ C(Ẽ) such that

g(x̃, xN ) = g1(x̃) + g2(x̃)xN ,

where
g1(x̃) = lim

n→∞
pn(x̃), g2(x̃) = lim

n→∞
qn(x̃).

Letting l→∞, for each s > 0 we obtain

‖g1 − pn‖Ẽ ≤ 2dn(g) = o(n−s) and ‖g2 − qn‖Ẽ = o(n−s).

Then for n = [k/d] we have

dk(g1) ≤ ‖g1 − p[k/d]‖Ẽ = o(k−s) and dk(g2) ≤ ‖g2 − q[k/d]‖Ẽ = o(k−s).

Since Ẽ has Bernstein’s property, there exist G1, G2 ∈ C∞(RN−1) such that
G1|Ẽ = g1 and G2|Ẽ = g2. Define G(x̃, xN ) := G1(x̃) + G2(x̃)xN . Then
G ∈ C∞(RN ) and G|E = g, and this completes the proof.

Theorem 4.3. Let V, E and Ẽ satisfy the assumptions of Theorem 4.1.
If Ẽ ∈M(m,M), then E has the strong generalized Markov property.

Proof. Let as above

f ∈ Pk(E) ⊂ Rd1k[x1, . . . , xN−1] + Rd1k−1[x1, . . . , xN−1]xN
and F (x̃, xN ) = p(x̃) + q(x̃)xN . It is sufficient to estimate ‖DαF‖E for
α = (β, 0) and α = (β, 1) with |β| ≤ dk.
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Let us first examine ‖D(β,1)F‖E . From (4.1), since Ẽ ∈ M(m,M), for
k ≥ 2 we have

‖D(β,1)F‖E ≤M |β|(d1k)|β|m‖q‖Ẽ ≤ C1M
|β|(d1k)

|β|m+dm/2‖q|Q|1/2‖
Ẽ

≤ C1M
|β|d
|β|m1

1 k|β|m1‖f‖E ≤ C1k
|β|m2‖f‖E ,

where m1 = m + dm/2 > m and m2 = m1 + s > m1 with s such that
Mdm1

1 < 2s. Since E is compact and symmetric, there exists a constant
A such that ‖D(β,0)F‖E ≤ Amax{‖Dβp‖

Ẽ
, ‖Dβq‖

Ẽ
}. In a similar way, for

k ≥ 2 we get

‖D(β,0)F‖E ≤ AM |β|(d1k)|β|mmax{‖p‖
Ẽ
, ‖q‖

Ẽ
}

≤ B1M
|β|(d1k)

|β|m+dm/2max{‖p‖
Ẽ
, ‖q|Q|1/2‖

Ẽ
}

≤ B1k
|β|m2‖f‖E ,

where B1 = Amax{1, C1} and m1, m2 are defined above.
On the other hand, if k = 1, then for |β| > 1 we have Dβp = Dβq = 0,

so there exists a constant B2 such that E has the strong generalized Markov
property with exponent m2.

Theorem 4.4. Let V, E and Ẽ satisfy the assumptions of Theorem 4.1.
If Ẽ has Markov’s property in RN−1, then E satisfies condition (Pσ) with
σ = md/2, where m is the constant of Markov’s inequality for Ẽ.

Proof. Since Ẽ has Markov’s property, it satisfies condition (P) with
some constants m,M1,M2 (see [P1]). With the notation of Definition 3.7,
letting M1 decrease and M2 increase we obtain

|f |d,εk ≤ C1max{‖p‖
Ẽεk

, ‖q‖
Ẽεk
} ≤ C1M2max{‖p‖

Ẽ
, ‖q‖

Ẽ
}

≤ C2k
md/2‖f‖E ,

and the theorem follows.

Remark 4.5. From the proofs of Theorems 4.3 and 4.4 we get even
more: the sets under consideration satisfy conditions (M∗), (M∗s) and (P∗σ)
of Definition 3.10.

Example 4.6. One can provide other examples of sets having the (strong)
generalized Markov property, Bernstein’s property or satisfying condition (P)
by considering algebraic sets of the form

V = {(x1, . . . , xN ) ∈ RN : x2j = Qj(xm+1, . . . , xN ) for j = 1, . . . ,m},

where Qj (j = 1, . . . ,m) are polynomials such that Q−1j ([0,+∞)) 6= ∅ and
m ≤ N .

Example 4.7. We can also take images of symmetric subsets of V from
Example 4.6 under polynomial automorphisms Φ=(Φ1, . . . , ΦN ) : RN→RN .
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Open problems

1) Do the sets x3 + y3 = 1 and x4 + y4 = 1 have the generalized Markov
property?

2) Are the generalized Markov property of Definition 3.2 and the gener-
alized Markov property (M∗) equivalent?

3) It is obvious that a set with the strong generalized Markov property
also has the generalized Markov property. Does the converse hold? An answer
may bring a solution to the following problem.

4) By Theorem 2.1, Markov’s property is equivalent to Bernstein’s prop-
erty for C∞ determining sets. One can ask whether there is equivalence
between the strong generalized Markov property and Bernstein’s property
for subsets of semialgebraic sets.
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