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Abstract. We prove the existence of integral (stable, unstable, center) manifolds of
admissible classes for the solutions to the semilinear integral equation u(t) = U(t, s)u(s)+	t
s
U(t, ξ)f(ξ, u(ξ)) dξ when the evolution family (U(t, s))t≥s has an exponential trichotomy

on a half-line or on the whole line, and the nonlinear forcing term f satisfies the (local or
global) ϕ-Lipschitz conditions, i.e., ‖f(t, x) − f(t, y)‖ ≤ ϕ(t)‖x − y‖ where ϕ(t) belongs
to some classes of admissible function spaces. These manifolds are formed by trajecto-
ries of the solutions belonging to admissible function spaces which contain wide classes
of function spaces like function spaces of Lp type, the Lorentz spaces Lp,q and many
other function spaces occurring in interpolation theory. Our main methods involve the
Lyapunov–Perron method, rescaling procedures, and techniques using the admissibility of
function spaces.

1. Introduction and preliminaries. Consider the semilinear evolu-
tion equation of the form

(1.1)
dx

dt
= A(t)x(t) + f(t, x(t)), t ∈ J,

where J is a subinterval of the real line R, each A(t) is in general an un-
bounded linear operator on a Banach space X for every fixed t ∈ J and
f : J×X → X is a nonlinear operator.

One of important directions of research regarding the asymptotic be-
havior of solutions to (1.1) is to find conditions for this equation to have
an integral manifold (e.g., a stable, unstable, or center manifold). Such re-
sults can be traced back to Hadamard [8], Perron [25, 26], Bogoliubov and
Mitropolsky [3] for the case of matrix coefficients A(t), to Daletskĭı and
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Krein [6] for the case of bounded coefficients acting on Banach spaces, and
to Henry [10] and Sell and You [29] for the case of unbounded coefficients.

There are two main methods to prove the existence of such integral man-
ifolds: the Hadamard and Perron methods. The Hadamard method has been
generalized to the so-called graph transform method which has been used,
e.g., in [1, 11, 20] to prove the existence of invariant manifolds. This is a
powerful method related to complicated choices of the transforms between
graphs representing the manifolds involved. Meanwhile, the Perron method
was extended to the well-known Lyapunov–Perron method. This method is
related to the construction and use of the so-called Lyapunov–Perron equa-
tions (or operators) involving the evolution equations under consideration
to show the existence of integral manifolds. It seems to be more natural to
use the Lyapunov–Perron method to handle the flows or semiflows which are
generated by semilinear evolution equations, since in this case it is conve-
nient to construct such Lyapunov–Perron equations or operators. We refer
the reader to [2, 5, 6, 9, 10, 15, 29] and references therein for more informa-
tion.

To our best knowledge, the most popular conditions for the existence
of integral manifolds are the exponential trichotomy (or dichotomy) of the
linear part dx/dt = A(t)x and the uniform Lipschitz continuity of the non-
linear part f(t, x) with sufficiently small Lipschitz constants (i.e., ‖f(t, x)−
f(t, y)‖ ≤ q‖x − y‖ for q small enough). However, for equations arising
in complicated reaction-diffusion processes, the function f represents the
source of material (or population) which, in many contexts, depends on
time in diversified manners (see [21, Chapt. 11], [22], [31]). Therefore, some-
times one cannot hope to have the uniform Lipschitz continuity of f . Thus,
one tries to extend the conditions on nonlinear parts so that they describe
such reaction-diffusion processes more exactly. Moreover, almost all of the
manifolds considered in the existing literature are formed by trajectories of
solutions bounded on the positive (or negative) half-line. We refer the reader
to [1, 2, 9, 10, 11, 13, 20, 29] and references therein for more on this matter.

Recently, we have obtained exciting results in [13] where we have proved
the existence of a new class of invariant manifolds, namely, invariant man-
ifolds of E-class for (1.1) (see [13, Theorems 3.7, 4.6]). Such manifolds are
formed by trajectories of solutions belonging to the Banach space E which
can be a space of Lp type (1 ≤ p ≤ ∞) or a Lorentz space Lp,q or some func-
tion spaces occurring in interpolation theory (see [13, Definitions 3.3, 4.2]
and [14]). The methods used in [13] are the Lyapunov–Perron method and
the characterization of the exponential dichotomy (obtained in [12]) of evolu-
tion equations in admissible spaces of functions defined on the half-line R+.
The use of admissible spaces has helped us to construct invariant manifolds
of E-class for (1.1) in the case of dichotomic linear parts without using the
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smallness of Lipschitz constants of nonlinear forcing terms in the classical
sense. Instead, the “smallness” is understood as the sufficient smallness of
supt≥0

	t+1
t ϕ(τ) dτ (see the conditions in Theorem 3.9 below).

The purpose of the present paper is to establish the existence of stable,
unstable, and center manifolds of E-class when the linear part of (1.1) has
an exponential trichotomy on the half-line or on the whole line under similar
conditions on the nonlinear term f(t, x) to those in [13], that is, nonuniform
Lipschitz continuity of f : ‖f(t, x) − f(t, y)‖ ≤ ϕ(t)‖x − y‖ for ϕ being a
real and positive function which belongs to an admissible function space
as specified in Definition 2.3 below. Under some conditions on ϕ, we will
prove the existence of center-stable manifolds of E-class for (1.1) provided
that the linear part dx/dt = A(t)x has an exponential trichotomy on a
half-line. Our method is to transform to the case of exponential dichotomy
by some rescaling procedures, and then apply the techniques and results
of [13]. Moreover, using the same method we can also obtain the existence
of unstable and center-unstable manifolds of E-class in the case of dichotomic
and trichotomic linear parts (respectively) for evolution equations defined
on the whole line. Our main results are contained in Theorems 4.2, 6.5, 6.11,
and Corollaries 6.6, 6.12, 6.15. We also illustrate our results in Examples
5.1, 5.2, 5.3, 6.13.

We now recall some notions.

Definition 1.1. Let J be R+ or R. A family {U(t, s)}t≥s, t,s∈J of
bounded linear operators acting on a Banach space X is a (strongly contin-
uous, exponentially bounded) evolution family on J if:

(i) U(t, t) = Id =: I and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s and
t, s, r ∈ J,

(ii) the map (t, s) 7→ U(t, s)x is continuous on ∆ := {(t, s)∈J×J : t≥s}
for every x ∈ X,

(iii) ‖U(t, s)x‖ ≤ Keω(t−s)‖x‖ for all t ≥ s, t, s ∈ J, x ∈ X, and some
fixed constants K,ω.

The notion of an evolution family arises naturally in the theory of well-
posed evolution equations. Namely, if the abstract Cauchy problem{

du(t)
dt = A(t)u(t), t ≥ s, t, s ∈ J,
u(s) = xs ∈ X

(1.2)

is well-posed, then there exists an evolution family (U(t, s))t≥s, t,s∈J such
that the solution of problem (1.2) is given by u(t) = U(t, s)u(s).

For more details on the notion, properties and applications of evolu-
tion families we refer the reader to Pazy [24], Henry [10], and Nagel and
Nickel [23]. For a given evolution family, we have the following concept of
exponential trichotomy on J.
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Definition 1.2. Let J be R+ or R. A given evolution family
(U(t, s))t≥s, t,s∈J on J is said to have an exponential trichotomy on J if there
are three families of projections (Pj(t))t∈J, j = 0, 1, 2, and positive constants
H,α, β with α < β such that:

(i) supt∈J ‖Pj(t)‖ <∞, j = 0, 1, 2,
(ii) P0(t) + P1(t) + P2(t) = I for all t ∈ J, and Pj(t)Pi(t) = 0 for all

j 6= i,
(iii) Pj(t)U(t, s) = U(t, s)Pj(s) for all t ≥ s, t, s ∈ J, j = 0, 1, 2,
(iv) U(t, s)|ImP1(s) and U(t, s)|ImP2(s) are homeomorphisms from

ImP1(s) onto ImP1(t) and from ImP2(s) onto ImP2(t), respecti-
vely, for all t≥s, t, s ∈ J, also we denote the inverse of U(t, s)|ImP1(s)

by U(s, t)| (here s ≤ t),
(v) for all t ≥ s, t, s ∈ J, and x ∈ X, we have

‖U(t, s)P0(s)x‖ ≤ He−β(t−s)‖P0(s)x‖,
‖U(s, t)|P1(t)x‖ ≤ He−β(t−s)‖P1(t)x‖,

‖U(t, s)P2(s)x‖ ≤ Heα(t−s)‖P2(s)x‖.
We then put N := H supt∈J{‖Pj(t)‖ : j = 0, 1, 2}, and call N,H,α, β the
trichotomy constants of this exponential trichotomy.

The evolution family is said to have an exponential dichotomy on J if it
has an exponential trichotomy for which the family of projections P2(t) is
trivial, i.e., P2(t) = 0 for all t ∈ J. In this case, property (i) is a consequence
of the other properties (see [19, Lem. 4.2]). For the dichotomy case, we put
P (t) = P0(t); then P1(t) is simply I − P (t) for all t ∈ J.

2. Function spaces and admissibility. We recall some notions on
function spaces and refer to Massera and Schäffer [18] and Räbiger and
Schnaubelt [27] for concrete applications.

Denote by B the Borel algebra and by λ the Lebesgue measure on R+.
The space L1,loc(R+) of real-valued locally integrable functions on R+ (mod-
ulo λ-nullfunctions) becomes a Fréchet space for the seminorms pn(f) :=	
Jn
|f(t)| dt, where Jn = [n, n+ 1] for each n ∈ N (see [18, Chapt. 2, §20]).
We can now define Banach function spaces:

Definition 2.1. A vector space E of real-valued Borel-measurable func-
tions on R+ (modulo λ-nullfunctions) is called a Banach function space (over
(R+,B, λ)) if:

(1) E is a Banach lattice with respect to a norm ‖·‖E , i.e., (E, ‖·‖E) is a
Banach space, and if ϕ ∈ E and ψ is a real-valued Borel-measurable
function such that |ψ(·)| ≤ |ϕ(·)|, λ-a.e., then ψ ∈ E and ‖ψ‖E
≤ ‖ϕ‖E ,
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(2) the characteristic functions χA belong to E for all A ∈ B of finite
measure, and supt≥0 ‖χ[t,t+1]‖E <∞ and inft≥0 ‖χ[t,t+1]‖E > 0,

(3) E ↪→ L1,loc(R+), i.e., for each seminorm pn of L1,loc(R+) there exists
a number βpn > 0 such that pn(f) ≤ βpn‖f‖E for all f ∈ E.

We then define Banach spaces of vector-valued functions corresponding
to Banach function spaces:

Definition 2.2. Let E be a Banach function space and X be a Banach
space endowed with the norm ‖ · ‖. We set

E := E(R+, X) := {f : R+ → X : f is strongly measurable and ‖f(·)‖ ∈ E}
(modulo λ-nullfunctions) endowed with the norm ‖f‖E :=

∥∥‖f(·)‖
∥∥
E
. One

can easily see that E is a Banach space. We call it the Banach space corre-
sponding to the Banach function space E.

We now introduce the notion of admissibility:

Definition 2.3. A Banach function space E is called admissible if:

(1) there is a constant M ≥ 1 such that for every compact interval
[a, b] ⊂ R+ we have

(2.1)

b�

a

|ϕ(t)| dt ≤ M(b− a)

‖χ[a,b]‖E
‖ϕ‖E for all ϕ ∈ E,

(2) for ϕ ∈ E the function Λ1ϕ defined by Λ1ϕ(t) :=
	t+1
t ϕ(τ) dτ belongs

to E,
(3) E is T+

τ -invariant and T−τ -invariant, where T+
τ and T−τ are defined,

for τ ∈ R+, by

(2.2)
T+
τ ϕ(t) :=

{
ϕ(t− τ) for t ≥ τ ≥ 0,

0 for 0 ≤ t ≤ τ,
T−τ ϕ(t) := ϕ(t+ τ) for t ≥ 0;

moreover, there are constants N1, N2 such that ‖T+
τ ‖ ≤ N1, ‖T−τ ‖

≤ N2 for all τ ∈ R+.

Example 2.4. Besides the spaces Lp(R+), 1 ≤ p ≤ ∞, and the space

M(R+) :=
{
f ∈ L1,loc(R+) : sup

t≥0

t+1�

t

|f(τ)| dτ <∞
}

with the norm ‖f‖M := supt≥0
	t+1
t |f(τ)| dτ , many other function spaces

occurring in interpolation theory, e.g. the Lorentz spaces Lp,q, 1 < p < ∞,
1 ≤ q <∞ (see [4, Thm. 3 and p. 284], [30, 1.18.6, 1.19.3]) and, more gen-
erally, the class of rearrangement invariant function spaces over (R+,B, λ)
(see [16, 2.a]), are admissible.
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Remark 2.5. If E is an admissible Banach function space then E ↪→
M(R+). Indeed, put β := inft≥0 ‖χ[t,t+1]‖E > 0 (by Definition 2.1(2)). Then
from Definition 2.3(i) we derive

(2.3)

t+1�

t

|ϕ(τ)| dτ ≤ M

β
‖ϕ‖E for all t ≥ 0 and ϕ ∈ E.

Therefore, if ϕ ∈ E then ϕ ∈M(R+) and ‖ϕ‖M ≤ M
β ‖ϕ‖E . We thus obtain

E ↪→M(R+).

We now collect some properties of admissible Banach function spaces
(see [12, Proposition 2.6] and originally [18, 23.V(1)]).

Proposition 2.6. Let E be an admissible Banach function space. Then:

(a) Let ϕ ∈ L1,loc(R+) be such that ϕ ≥ 0 and Λ1ϕ ∈ E, where Λ1 is as
in Definition 2.3(ii). For σ > 0 we define

Λ′σϕ(t) :=

t�

0

e−σ(t−s)ϕ(s) ds, Λ′′σϕ(t) :=

∞�

t

e−σ(s−t)ϕ(s) ds.

Then Λ′σϕ and Λ′′σϕ belong to E. In particular, if supt≥0
	t+1
t ϕ(τ) dτ

<∞ (this will be satisfied if ϕ ∈ E (see Remark 2.5)), then Λ′σϕ and
Λ′′σϕ are bounded. Moreover,

(2.4) ‖Λ′σϕ‖E ≤
N1

1− e−σ
‖Λ1T

+
1 ϕ‖E and ‖Λ′′σϕ‖E ≤

N2

1− e−σ
‖Λ1ϕ‖E

for T+
1 and N1, N2 as in Definition 2.3.

(b) E contains all exponentially decaying functions ψ(t) = e−αt for t ≥ 0
and any fixed constant α > 0.

(c) E contains no exponentially growing functions f(t) := ebt for t ≥ 0
and any fixed constant b > 0.

Remark 2.7. If we replace R+ by an infinite (or half-infinite) interval I
(precisely, I is R, (−∞, t0] or [t0,∞) for any fixed t0 ∈ R), then we have
similar notions of admissible spaces on I:

(1) In Definition 2.3, the translation semigroups T+
τ and T−τ for τ ∈ R+

should be replaced by T+
τ and T−τ defined for τ ∈ I as

(2.5)

T+
τ ϕ(t) :=

{
ϕ(t− τ) for t and t− τ in I,
0 for t ∈ I but t− τ /∈ I,

T−τ ϕ(t) :=

{
ϕ(t+ τ) for t and t+ τ in I,
0 for t ∈ I but t+ τ /∈ I.
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(2) In Proposition 2.6(a), the functions Λ′σ and Λ′′σ should be replaced
by

Λ′σϕ(t) :=

t0�

t

e−σ|t−s|ϕ(s) ds with t0 =∞ if I = R,

Λ′′σϕ(t) :=

{ 	t
−∞ e

−σ|s−t|ϕ(s) ds if I = R or (−∞, t0],	∞
t e−σ|s−t|ϕ(s) ds if I = [t0,∞).

(3) In Proposition 2.6(b)&(c) the functions ψ(t) = e−αt (t ≥ 0, with
fixed α > 0) should be replaced by ψ(t) = e−α|t|, t ∈ I, with fixed
α > 0; and the functions f(t) := ebt (t ≥ 0, with any fixed constant
b > 0) should be replaced by f(t) := eb|t|, t ∈ I, with fixed b > 0.

These notions will be used in Section 6. We denote by EI the admissible func-
tion space of functions defined on I. If I = R+, we simply write E := ER+ .
For a function ϕ defined on the whole line we denote by ϕ|I the restriction
of ϕ to I. It is obvious that if ϕ ∈ ER, then ϕ|I ∈ EI.

Similarly to Definition 2.2, for a Banach function space EI and a Banach
space X with the norm ‖ · ‖ we set

EI := E(I, X) := {f : I→ X : f is strongly measurable and ‖f(·)‖ ∈ EI}

(modulo λ-nullfunctions) endowed with the norm

‖f‖EI :=
∥∥‖f(·)‖

∥∥
EI
.

Then EI is a Banach space called the Banach space corresponding to the
Banach function space EI. Also, if I = R+ we write simply E := ER+ .

Definition 2.8. Let EI be an admissible Banach function space and
denote by S(EI) the unit sphere in EI. Recall that L1 = {g : ı → R : g
is measurable and

	
I |g(t)| dt < ∞}. Consider the set E′I of all measurable

real-valued functions ψ on I such that

ϕψ ∈ L1,
�

I

|ϕ(t)ψ(t)| dt ≤ k for all ϕ ∈ S(EI),

where k depends only on ψ. Then E′I is a normed space with the norm given
by (see [18, Chapt. 2, 22.M])

‖ψ‖E′I := sup
{�
I

|ϕ(t)ψ(t)| dt : ϕ ∈ S(EI)
}

for ψ ∈ E′I.

We call E′I the associate space of EI.

Remark 2.9. Let EI be an admissible Banach function space and E′I
be its associate space. Then, by [18, Chapt. 2, 22.M], the following “Hölder
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inequality” holds:

(2.6)
�

I

|ϕ(t)ψ(t)| dt ≤ ‖ϕ‖EI‖ψ‖E′I for all ϕ ∈ EI, ψ ∈ E′I.

In order to study the integral manifolds of EI-class for semilinear evo-
lution equations we need some restrictions on admissible Banach function
spaces and assume the following hypothesis.

Standing Hypothesis 2.10. We suppose that EI is an admissible Ba-
nach function space such that its associate space E′I is also an admissi-
ble Banach function space. Moreover, we suppose that E′I contains a ν-
exponentially EI-invariant function, that is, a function ϕ ≥ 0 such that, for
a fixed ν > 0, the function

hν(t) := ‖e−ν|t−·|ϕ(·)‖E′I for t ∈ I

belongs to EI. Also, we denote by eν the function eν(t) = e−ν|t|.

Example 2.11. L′p = Lq for 1/p+ 1/q = 1, 1 < p <∞, and L′1 = L∞,
L′∞ = L1.

Besides the above function eν , the functions ϕ = cχ[a,b] for any fixed
constant c > 0 and any finite interval [a, b] ⊂ I are also ν-exponentially
Lp-invariant for any ν > 0. More examples can be seen in Section 5.

In the rest of our paper we will make use of the following assumption.

Assumption 2.12. Let the evolution family (U(t, s))t≥s, t,s∈I have an ex-
ponential dichotomy on I = R+ or R with dichotomy projections (P (t))t∈I
and dichotomy constants N, β > 0. Suppose that ϕ ∈ E′I is a β-exponentially
EI-invariant function whose existence is guaranteed by Standing Hypothe-
sis 2.10.

In the case of infinite-dimensional phase spaces, instead of equation (1.1),
for an evolution family (U(t, s))t≥s, t,s∈I, we consider the integral equation

(2.7) u(t) = U(t, s)u(s) +

t�

s

U(t, ξ)f(ξ, u(ξ)) dξ for a.e. t ≥ s, t, s ∈ I.

We note that, if the evolution family (U(t, s))t≥s, t,s∈I arises from the well-
posed Cauchy problem (1.2), then a function u which satisfies (2.7) for some
given f is called a mild solution of the semilinear problem{

du(t)
dt = A(t)u(t) + f(t, u(t)), t ≥ s, t, s ∈ I,
u(s) = xs ∈ X.

We refer the reader to Pazy [24] for more details on the relation between
classical and mild solutions of evolution equations (see also [7, 17, 29]).
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To obtain the existence of an admissibly integral manifold for (2.7),
besides the exponential dichotomy (or trichotomy) of the evolution family,
we also need the (local) ϕ-Lipschitz properties of the nonlinear term f ,
according to the following definitions in which we suppose as above that I
is R+ or R.

Definition 2.13 (Local ϕ-Lipschitz functions). Let ϕ be a positive func-
tion belonging to EI, and Bρ be the ball Bρ := {x ∈ X : ‖x‖ ≤ ρ}. A function
f : I × Bρ → X is said to belong to the class (M,ϕ, ρ) for some positive
constants M,ρ if

(i) ‖f(t, x)‖ ≤Mϕ(t) for a.e. t ∈ I and all x ∈ Bρ, and
(ii) ‖f(t, x1)−f(t, x2)‖ ≤ ϕ(t)‖x1−x2‖ for a.e. t ∈ I and all x1, x2 ∈ Bρ.

Remark 2.14. If f(t, 0) = 0 then (ii) already implies that f belongs to
the class (ρ, ϕ, ρ).

Definition 2.15 (ϕ-Lipschitz functions). Let ϕ be a positive function
belonging to EI. A function f : I×X→ X is said to be ϕ-Lipschitz if

(i) f(t, 0) = 0 for a.e. t ∈ I,
(ii) ‖f(t, x1)− f(t, x2)‖ ≤ ϕ(t)‖x1−x2‖ for a.e. t ∈ I and all x1, x2 ∈ X.

3. Exponential dichotomy and admissibly stable manifolds
on R+. In this section, we recall preparatory results on R+ obtained in
[13] which will be used in the next sections. In this case, I = R+. For an
evolution family (U(t, s))t≥s≥0 we rewrite the integral equation (2.7) as

(3.1) u(t) = U(t, s)u(s) +

t�

s

U(t, ξ)f(ξ, u(ξ)) dξ for a.e. t ≥ s ∈ R+.

We also denote by (E∞, ‖ · ‖E∞) the Banach space

E∞ := E ∩ L∞(R+, X) with the norm ‖f‖E∞ := max{‖f‖E , ‖f‖∞}.

We refer the reader to [12] for a detailed discussion on the relation between
exponential dichotomy of evolution equations and admissibility of function
spaces.

3.1. Local-stable manifolds of E-class on R+. Throughout this sub-
section we assume that the evolution family (U(t, s))t≥s≥0 has an exponen-
tial dichotomy on R+, and the nonlinear term f is local ϕ-Lipschitz and in
the class (M,ϕ, ρ) as in Definition 2.13.

Definition 3.1. A set S ⊂ R+ ×X is said to be a local-stable manifold
of E-class for the solutions of equation (3.1) if for every t ∈ R+ the phase
space X splits into a direct sum X = X0(t)⊕X1(t) with positive inclination,
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i.e.,

inf
t∈R+

inf
xi∈Xi(t)

‖xi‖=1, i=0,1

‖x0 + x1‖ > 0,

and if there exist positive constants ρ, ρ0, ρ1 and a family of Lipschitz
continuous mappings

gt : Bρ0 ∩X0(t)→ Bρ1 ∩X1(t), t ∈ R+,

with Lipschitz constants independent of t, such that:

(i) S = {(t, x+gt(x)) ∈ R+×(X0(t)⊕X1(t)) : t ∈ R+, x ∈ Bρ0∩X0(t)},
(ii) St := {x+gt(x) : (t, x+gt(x)) ∈ S} is homeomorphic to Bρ0 ∩X0(t)

for all t ≥ 0,
(iii) to each x0 ∈ St0 there corresponds one and only one solution u(t)

of (3.1) on [t0,∞) such that u(t0) = x0 and the function χ[t0,∞)u(·)
belongs to the ball Bρ := {g ∈ E∞ : ‖g‖E∞ ≤ ρ}.

Let (U(t, s))t≥s≥0 have an exponential dichotomy with projections P (t),
t ≥ 0, and dichotomy constants N, β > 0. We can then define the Green
function on the half-line:

(3.2) G(t, τ) :=

{
P (t)U(t, τ) for t ≥ τ ≥ 0,

−U(t, τ)|[I − P (τ)] for 0 ≤ t < τ.

Thus, we have

(3.3) ‖G(t, τ)‖ ≤ Ne−β|t−τ | for all t 6= τ ≥ 0.

The following lemma taken from [13, Lemma 3.4] gives the form of bounded
solutions of (3.1).

Lemma 3.2. Let Standing Hypothesis 2.10 and Assumption 2.12 be sat-
isfied with I = R+ and let f : R+×Bρ → X belong to the class (M,ϕ, ρ). Let
u(t) be a solution to (3.1) such that, for fixed t0 ≥ 0, the function χ[t0,∞)u(·)
belongs to Bρ. Then for t ≥ t0,

(3.4) u(t) = U(t, t0)v0 +

∞�

t0

G(t, τ)f(τ, u(τ)) dτ

for some v0 ∈ X0(t0) = P (t0)X, where G(t, τ) is the Green function defined
in (3.2).

Moreover, the structure of certain solutions of (3.1) is given in the fol-
lowing theorem taken from [13, Thm. 3.7].

Theorem 3.3. Let the assumptions of Lemma 3.2 be satisfied and put

(3.5) k :=
N

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞).
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Then for any positive numbers ρ and M , if the function f belongs to the
class (M,ϕ, ρ) such that

k < min

{
1,

ρ

2M

}
and N‖hβ‖E < 1,

then for r = ρ/max{2N, 2NN1‖eβ‖E} and t0 ≥ 0, there corresponds to each
v0 ∈ Br ∩ X0(t0) one and only one solution u(t) of (3.1) on [t0,∞) such
that P (t0)u(t0) = v0 and the function χ[t0,∞)u(·) belongs to Bρ. Moreover,
for any two solutions u1(t), u2(t) corresponding to different values v1, v2 ∈
Br ∩X0(t0) we have

(3.6) ‖u1(t)− u2(t)‖ ≤ Cµe−µ(t−t0)‖v1 − v2‖ for t ≥ t0,

where 0 < µ < β + ln(1− k(1− e−β)), and Cµ = N/
(
1− k(1−e−β)

1−e−(β−µ)

)
.

We now recall the first main result about the existence of a local-stable
manifold of E-class obtained in [13, Thm. 3.7].

Theorem 3.4. Under the assumptions of Theorem 3.3, for any ρ > 0
and M > 0, if f belongs to the class (M,ϕ, ρ) such that

k < min

{
1,

ρ

2M

}
and N‖hβ‖E < 1,

where k is defined as in (3.5), then there exists a local-stable manifold S of
E-class for the solutions of (3.1). Moreover, any two solutions u1(t), u2(t)
on the manifold S attract each other exponentially in the sense that there
exist positive constants µ and Cµ independent of t0 ≥ 0 such that

(3.7) ‖u1(t)− u2(t)‖
≤ Cµe−µ(t−t0)‖P (t0)u1(t0)− P (t0)u2(t0)‖ for t ≥ t0.

3.2. Invariant-stable manifolds of E-class on R+. In this subsec-
tion, we recall the results on the existence of an invariant-stable manifold
of E-class obtained in [13, Thm 4.6] under the conditions that the evolu-
tion family (U(t, s))t≥s≥0 has an exponential dichotomy and the nonlinear
function f is ϕ-Lipschitz as in Definition 2.15.

We now give the definition of an invariant-stable manifold of E-class for
the solutions of the integral equation (3.1).

Definition 3.5. A set S ⊂ R+ × X is said to be an invariant-stable
manifold of E-class for the solutions of equation (3.1) if for every t ∈ R+

the phase space X splits into a direct sum X = X0(t)⊕X1(t) with positive
inclination, and if there exists a family of Lipschitz continuous mappings

gt : X0(t)→ X1(t), t ∈ R+,

with Lipschitz constants independent of t, such that:
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(i) S = {(t, x+ gt(x)) ∈ R+ × (X0(t)⊕X1(t)) : t ∈ R+, x ∈ X0(t)},
(ii) St := {x + gt(x) : (t, x + gt(x)) ∈ S} is homeomorphic to X0(t) for

all t ≥ 0,
(iii) to each x0 ∈ St0 there corresponds one and only one solution u(t)

of (3.1) on [t0,∞) such that u(t0) = x0 and the function χ[t0,∞)u(·)
belongs to E ,

(iv) S is invariant under equation (3.1) in the sense that, if u(·) is
a solution of (3.1) on [t0,∞) such that u(t0) = u0 ∈ St0 and
χ[t0,∞)u(·) ∈ E , then u(s) ∈ Ss for all s ≥ t0.

Note that if we identify X0(t) ⊕ X1(t) with X0(t) × X1(t) then we can
write St = graph(gt).

Next, we recall from [13] some related results for later use.

Lemma 3.6 ([13, Lem. 4.3]). Let Assumption 2.12 and Standing Hy-
pothesis 2.10 be satisfied with I = R+. Suppose that f : R+ × X → X is
ϕ-Lipschitz. Let u(t) be a solution to (3.1) such that, for fixed t0 ≥ 0, the
function χ[t0,∞)u(·) belongs to E. Then for t ≥ t0,

(3.8) u(t) = U(t, t0)v0 +

∞�

t0

G(t, τ)f(τ, u(τ)) dτ

for some v0 ∈ X0(t0) = P (t0)X, where G(t, τ) is the Green function defined
by (3.2).

Remark 3.7. Formula (3.8) is called the Lyapunov–Perron equation.
By computing directly, we can see that the converse of Lemma 3.6 is also
true. Hence all solutions of (3.8) satisfy (3.1) for t ≥ t0. Indeed, putting
y(t) =

	∞
t0
G(t, τ)f(τ, u(τ)) dτ we then have

y(t) = −
∞�

t

U(t, τ)|(I − P (τ))f(τ, u(τ)) dτ +

t�

t0

U(t, τ)P (τ)f(τ, u(τ)) dτ

= U(t, t0)
(
−
∞�

t0

U(t0, τ)|(I − P (τ))f(τ, u(τ)) dτ
)

+

t�

t0

U(t, τ)(I − P (τ))f(τ, u(τ)) dτ +

t�

t0

U(t, τ)P (τ)f(τ, u(τ)) dτ

= U(t, t0)y(t0) +

t�

t0

U(t, τ)f(τ, u(τ)) dτ.

It follows that

y(t) = U(t, t0)y(t0) +

t�

t0

U(t, τ)f(τ, u(τ)) dτ for t ≥ t0.
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Let now u(t) be a solution of (3.8). Then u(t) = U(t, t0)v0 + y(t). Thus,

u(t) = U(t, t0)v0 + U(t, t0)y(t0) +

t�

t0

U(t, τ)f(τ, u(τ)) dτ

= U(t, s)(U(s, t0)v0 + y(s))− U(t, s)y(s) + U(t, t0)y(t0)

+

t�

t0

U(t, τ)f(τ, u(τ)) dτ

= U(t, s)u(s)− U(t, s)
(
U(s, t0)y(t0) +

s�

t0

U(s, τ)f(τ, u(τ)) dτ
)

+ U(t, t0)y(t0) +

t�

t0

U(t, τ)f(τ, u(τ)) dτ

= U(t, s)u(s) +

t�

s

U(t, τ)f(τ, u(τ)) dτ.

Hence, u(t) satisfies (3.1) for t ≥ s ≥ t0.

Theorem 3.8 ([13, Thm. 4.5]). Under the assumptions of Lemma 3.6,
if f is ϕ-Lipschitz with N‖hβ‖E < 1, then there corresponds to each v0 ∈
X0(t0) one and only one solution u(t) of (3.1) on [t0,∞) such that P (t0)u(t0)
= v0 and χ[t0,∞)u(·) ∈ E. Moreover, there exist positive constants µ and Cµ
independent of t0 such that for any two solutions u1(t), u2(t) corresponding
to different values v1, v2 ∈ X0(t0) we have

(3.9) ‖u1(t)− u2(t)‖ ≤ Cµe−µ(t−t0)‖v1 − v2‖ for t ≥ t0.

Theorem 3.9 ([13, Thm. 4.6]). Under the assumptions of Theorem 3.8,
if f is ϕ-Lipschitz for ϕ satisfying

N2N1‖eβ‖E‖ϕ‖E′ +N‖hβ‖E < 1,

then there exists an invariant-stable manifold S of E-class for the solutions
of (3.1). Moreover, any two solutions u1(t), u2(t) on S attract each other
exponentially in the sense that there exist positive constants µ and Cµ inde-
pendent of t0 ≥ 0 such that

(3.10)

‖u1(t)− u2(t)‖ ≤ Cµe−µ(t−t0)‖P (t0)u1(t0)− P (t0)u2(t0)‖ for t ≥ t0.

4. Exponential trichotomy and admissibly center-stable mani-
folds on R+. In this section, we will generalize Theorem 3.9 to the case
where (U(t, s))t≥s≥0 has an exponential trichotomy on R+. To do this, we
first make the following assumption.
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Assumption 4.1. Let the evolution family (U(t, s))t≥s, t,s∈I have an ex-
ponential trichotomy on I with constants N,H,α, β (α < β), and projec-
tions (Pj(t))t∈I, j = 0, 1, 2, as in Definition 1.2, and let ϕ ∈ E′I be a β′-
exponentially EI-invariant function where β′ := (β − α)/2.

In this case, we will prove that there exists an invariant-center-stable
manifold of E-class for the solutions of (3.1) if f is ϕ-Lipschitz.

Theorem 4.2. Let Standing Hypothesis 2.10 and Assumption 4.1 be sat-
isfied with I = R+. Suppose that f : R+ ×X→ X is ϕ-Lipschitz such that

N2N1‖eβ′‖E‖ϕ‖E′ +N‖hβ′‖E < 1.

Then there exists an invariant-center-stable manifold C = {(t,Ct) : t ∈ R+

and Ct ⊂ X} of E-class for the solutions of (3.1), with the family (Ct)t≥0
being the graphs of the family of Lipschitz continuous mappings (gt)t≥0 (i.e.,
Ct := graph(gt) = {x + gtx : x ∈ Im(P1(t) + P3(t))} for each t ≥ 0) where

gt : Im(P0(t)+P2(t))→ ImP1(t) has Lipschitz constant l =
N2N1‖eβ′‖E‖ϕ‖E′

1−N‖hβ′‖E
independent of t, such that:

(i) To each x0 ∈ Ct0 there corresponds one and only one solution u(t) of
(3.1) on [t0,∞) such that u(t0) = x0 and the function χ[t0,∞)e

−γ·u(·)
belongs to E, where γ := (α+ β)/2.

(ii) Ct is homeomorphic to X0(t) ⊕ X2(t) for all t ≥ 0, where X0(t) =
P0(t)X and X2(t) = P2(t)X.

(iii) C is invariant under (3.1) in the sense that, if u(t) is the solution
of (3.1) such that u(t0) = x0 ∈ Ct0 and the function χ[t0,∞)e

−γ·u(·)
belongs to E, then u(s) ∈ Cs for all s ≥ t0.

(iv) For any two solutions u1(t), u2(t) on the center-stable manifold C
there exist positive constants µ and Cµ independent of t0 ≥ 0 such
that

‖x(t)− y(t)‖ ≤ Cµe(γ−µ)(t−t0)

× ‖(P0(t0) + P2(t0))x(t0)− (P0(t0) + P2(t0))y(t0)‖

for all t ≥ t0.

Proof. Set P (t) := P0(t) + P2(t) and Q(t) := P1(t) = I − P (t). We
consider the rescaled evolution family

Ũ(t, s)x := e−γ(t−s)U(t, s)x for all t ≥ s ≥ 0, x ∈ X,

where γ := (α+ β)/2.

It is easy to check that (Ũ(t, s))t≥s≥0 is an evolution family on X. We
claim that (Ũ(t, s))t≥s≥0 has an exponential dichotomy with projections
(P (t))t≥0 on the half-line. Indeed, it suffices to verify the estimates in Defi-
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nition 1.2. By the definition of exponential trichotomy we have

‖Ũ(s, t)|Q(t)x‖ ≤ He−(β−γ)(t−s)‖Q(t)x‖ = He−(β−α)(t−s)/2‖Q(t)x‖

for all t ≥ s ≥ 0 and x ∈ X. On the other hand,

‖Ũ(t, s)P (s)x‖ = e−γ(t−s)‖U(t, s)[P0(s) + P2(s)]x‖
≤ He−(γ+α)(t−s)‖P0(s)x‖+He−(γ−α)(t−s)‖P2(s)x‖
≤ He−(β−α)/2(t−s)(‖P0(s)x‖+ ‖P2(s)x‖)
= He−(β−α)(t−s)/2(‖P0(s)(P0(s) + P2(s))x‖

+ ‖P2(s)(P0(s) + P2(s))x‖)

≤ Ne−
(β−α)(t−s)

2 (‖(P0(s) + P2(s))x‖+ ‖(P0(s) + P2(s))x‖)
= 2Ne−(β−α)(t−s)/2‖P (s)x‖

for all t ≥ s ≥ 0 and x∈X (here we use the fact that N := H supt≥0{‖P0(t)‖,
‖P1(t)‖, ‖P2(t)‖} <∞).

We finally obtain the estimate

‖Ũ(t, s)P (s)x‖ ≤ 2Ne−(β−α)(t−s)/2‖P (s)x‖ for all t ≥ s ≥ 0, x ∈ X.

Therefore, (Ũ(t, s))t≥s≥0 has an exponential dichotomy with projections
(P (t))t≥0 and dichotomy constants N ′ := max{H, 2N}, β′ := (β−α)/2 > 0.

Put x̃(t) := e−γtx(t), and define

F : R+ ×X→ X, F (t, x) = e−γtf(t, eγtx) for all t ≥ 0, x ∈ X.

We can easily verify that F is also ϕ-Lipschitz. Thus, we can rewrite (3.1)
as

(4.1) x̃(t) = Ũ(t, s)x̃(s) +

t�

s

Ũ(t, ξ)F (ξ, x̃(ξ)) dξ for a.e. t ≥ s ≥ 0.

Hence, by Theorem 3.9, if

N2N1‖eβ′‖E‖ϕ‖E′ +N‖hβ′‖E < 1

then there exists an invariant-stable manifold C of ER-class for the solutions
of (4.1). Returning to (3.1), by using the relation x(t) := eγtx̃(t), we can
easily verify the properties of C stated in (i)–(iv).

Remark 4.3. In case the evolution family has an exponential trichotomy
and the nonlinear term f satisfies the local ϕ-Lipschitz condition (i.e., f is of
class (M,ϕ, ρ)) with f(t, 0) = 0 and the positive function ϕ ∈ E satisfying
k < min

{ ρ
2M , 1

}
and N‖hβ′‖E < 1 (here k is defined as in (3.5)), then in a

similar way, using the results in Subsection 3.1, we can obtain the existence
of a local-center-stable manifold of E-class for the solutions of (3.1), that is,
a set C ⊂ R+ ×X such that there exist positive constants ρ, ρ0, ρ1 and a
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family of Lipschitz continuous mappings

gt : Bρ0 ∩ Im(P0(t) + P2(t))→ Bρ1 ∩ ImP1(t), t ∈ R+,

with Lipschitz constants independent of t, satisfying:

(i) C = {(t, x+ gt(x)) ∈ R+ × (Im(P0(t) + P2(t))⊕ ImP1(t)) : t ∈ R+,
x ∈ Bρ0 ∩ Im(P0(t) + P2(t))},

(ii) Ct := {x + gt(x) : (t, x + gt(x)) ∈ C} is homeomorphic to Bρ0 ∩
Im(P0(t) + P2(t)) for all t ≥ 0,

(iii) to each x0 ∈ Ct0 there corresponds one and only one solution u(t) of
(3.1) on [t0,∞) such that u(t0) = x0 and χ[t0,∞)e

−γ·u(·) ∈ E , where
γ := (α+ β)/2.

(iv) for any two solutions u1(t), u2(t) on the local-center-stable manifold
C there exist positive constants µ and Cµ independent of t0 ≥ 0
such that

(4.2) ‖x(t)− y(t)‖ ≤ Cµe(γ−µ)(t−t0)

× ‖(P0(t0) + P2(t0))x(t0)− (P0(t0) + P2(t0))y(t0)‖
for all t ≥ t0.

5. Examples. In this section, we give some concrete examples to illus-
trate our abstract results. Let us start from a semilinear equation that has
an autonomous linear part perturbed by a nonautonomous nonlinear forcing
term, to show that, even in this simple case, our result is new.

Example 5.1. Consider the evolution equation

(5.1)
dx(t)

dt
= Ax(t) + f(t, x),

where A is a sectorial operator whose spectrum σ(A) decomposes into the
disjoint sets {λ ∈ σ(A) : Reλ < 0}, {λ ∈ σ(A) : Reλ > 0}, and {λ ∈ σ(A) :
Reλ = 0} such that σ(A)∩ iR consists of finitely many points. Then A is the
generator of an analytic semigroup (T (t))t≥0. We define the evolution family
U(t, s) := T (t − s) for all t ≥ s ≥ 0. We claim that it has an exponential
trichotomy with appropriate projections. By the spectral mapping theorem
for analytic semigroups, for fixed t0, the spectrum of T (t0) splits into disjoint
sets σ0, σ1, σ2, where σ0 ⊂ {|z| < 1}, σ1 ⊂ {|z| > 1}, σ2 ⊂ {|z| = 1} with
σ2 consisting of finitely many points. Next, we let P0 = P0(t0), P1 = P1(t0),
P2 = P2(t0) be the Riesz projections corresponding to the spectral sets
σ0, σ1, σ2, respectively. Clearly, P0, P1, P2 commute with T (t) for all t ≥ 0.

Obviously, P0+P1+P2 = I and PiPj = 0 for i 6= j, and there are positive
constants M, δ such that ‖T (t)|P0X‖ ≤ Me−δt for all t ≥ 0. Furthermore,
let Q := P1 + P2 = I − P0 and consider the strongly continuous semigroup
(TQ(t))t≥0 on ImQ, where TQ(t) := T (t)Q. Since σ1 ∪ σ2 = σ(TQ(t0)), we
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can extend (TQ(t))t≥0 to a group (TQ(t))t∈R in ImQ. As is well-known in
semigroup theory, there are positive constants K,α, γ (with α as small as
we wish; we may let α < γ) such that

‖TQ(−t)|P1X‖ = ‖(TQ(t)|P1X)−1‖ ≤ Ke−γt for all t ≥ 0,

‖TQ(t)|P2X‖ ≤ Keα|t| for all t ∈ R.

Summing up, the evolution family (U(t, s))t≥s≥0 has an exponential tri-
chotomy with projections Pj , j = 0, 1, 2, and positive constants N,α, β,
where

β := min{δ, γ}, N := max{K,M}.

Putting β′ := (β − α)/2 we find that, if f is ϕ-Lipschitz for some positive
function ϕ ∈ E′ which is β′-exponentially E-invariant and

N2N1‖eβ′‖E‖ϕ‖E′ +N‖hβ′‖E < 1,

then there exists an admissibly center-stable manifold of E-class for mild
solutions of (5.1), i.e., of

x(t) = T (t− s)x(s) +

t�

s

T (t− ξ)f(ξ, x(ξ)) dξ for all t ≥ s ≥ 0.

The next examples give concrete samples of ϕ.

Example 5.2. For a fixed n ∈ N∗, consider the equation

wt(x, t) = wxx(x, t) + n2w(x, t) + ϕ(t) sin(w(x, t)),

0 < x < π, t ≥ 0,(5.2)

w(0, t) = w(π, t) = 0, t ≥ 0,

where the step function ϕ(t) is defined for fixed constants c > 1 and b > 0
by

(5.3) ϕ(t) =

{
bm if t ∈

[
2m+1

2 − 1
ecm ,

2m+1
2 + 1

ecm

]
for m = 1, 2, . . . ,

0 otherwise.

Here, the values of ϕ can be very large but we still have ϕ ∈ Lq (for 1 ≤
q < c) since we can estimate ‖ϕ‖Lq as follows:

‖ϕ‖Lq =
( ∞∑
m=1

(2m+1)/2+1/ecm�

(2m+1)/2−1/ecm
bqmq dτ

)1/q
=

( ∞∑
m=1

2bqmq

ecm

)1/q

≤
( ∞∑
m=1

2bqe(q−c)m
)1/q

=
21/qb

(1− eq−c)1/q
.

Note that in this case, N1 = N2 = 1.
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We define X := L2[0, π], and let A : X ⊃ D(A) → X be defined by
A(y) = y′′ + n2y, with

D(A) = {y ∈ X : y and y′ are absolutely continuous, y′ ∈ X,

y(0) = y(π) = 0}.
Equation (5.2) can now be rewritten as

du

dt
= Au+ f(t, u) for u(t) = w(·, t)

where f : R+ ×X→ X with f(t, u) = ϕ(t) sin(u) for ϕ as in (5.3).
It can be seen [7] that A is the generator of an analytic semigroup

(T (t))t≥0.
Since σ(A) = {−1+n2,−4+n2, . . . , 0,−(1+n)2 +n2, . . . }, applying the

spectral mapping theorem for analytic semigroups we get

σ(T (t)) = etσ(A) = {et(n2−1), et(n
2−4), . . . , et((n−1)

2−n2)}

∪ {1} ∪ {e−t((1+n)2−n2), e−t((2+n)
2−n2), . . . }.

One can easily see that the nonlinear forcing term f is ϕ-Lipschitz. Note
that we may choose δ = γ = 1 independent of n and α < 1. Then β = 1,
and β′ = (1 − α)/2 is small, so that our next estimates are valid. We now
compute hβ′ and estimate its norm. By Standing Hypothesis 2.10,

hβ′(t) =
(∞�

0

e−qβ
′|t−τ |ϕq(τ) dτ

)1/q
(5.4)

=
( [t]∑
m=1

(2m+1)/2+1/ecm�

(2m+1)/2−1/ecm
e−qβ

′(t−τ)bqmq dτ

+
∞∑

m=[t]+1

(2m+1)/2+1/ecm�

(2m+1)/2−1/ecm
e−qβ

′(τ−t)bqmq dτ
)1/q

,

where [t] is the integer part of t. Using the facts that 1 ≤ ex for x ≥ 0,
and eX − 1 ≤ 9X for 0 ≤ X ≤ 2, we can estimate the first sum in (5.4) as
follows:

[t]∑
m=1

(2m+1)/2+1/ecm�

(2m+1)/2−1/ecm
e−qβ

′(t−τ)bqmq dτ

=
bqe−qβ

′t

qβ′

[t]∑
m=1

eqβ
′(2m+1)/2(e2qβ

′/ecm − 1)mq

eqβ′/ecm

≤ bqe−qβ
′t

qβ′

[t]∑
m=1

18qβ′eqβ
′(2m+1)/2+mq

ecm
=

18bqeqβ
′/2e−qβ

′t

1− eq+qβ′−c
.
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The second sum in (5.4) can be estimated by

∞∑
m=[t]+1

(2m+1)/2+1/ecm�

(2m+1)/2−1/ecm
e−qβ

′(τ−t)bqmq dτ

=
bq

qβ′

∞∑
m=[t]+1

e−qβ
′te2qβ

′te−qβ
′(2m+1)/2(e2qβ

′/ecm − 1)mq

eqβ′/ecm

≤ bqe−qβ
′/2e−qβ

′t

qβ′

∞∑
m=[t]+1

18qβ′eqβ
′m+mq

ecm
=

18bqe−qβ
′/2e−qβ

′t

1− eq+qβ′−c
.

Therefore,

hβ′(t) ≤
(

18bq

1− eq+qβ′−c

)1/q

(eqβ
′/2 + e−qβ

′/2)1/qe−β
′t for all t ≥ 0.

Hence, hβ′ ∈ Lp and

‖hβ′‖Lp <
b · 181/q

(pβ′)1/p(1− eq+qβ′−c)1/q
(eqβ

′/2 + e−qβ
′/2)1/q.

Therefore, using the conclusions in Example 5.1 we deduce that, if

(5.5)
21/qN2b

(β′p)1/p(1− eq−c)1/q

+
bN · 181/q

(pβ′)1/p(1− eq+qβ′−c)1/q
(eqβ

′/2 + e−qβ
′/2)1/q < 1,

then there exists a center-stable manifold of Lp-class for mild solutions
of (5.2).

Example 5.3. For a fixed n ∈ N∗, consider the equation

wt(x, t) = a(t)[wxx(x, t) + n2w(x, t)] + ϕ(t) sin(w(x, t)),

0 < x < π, t ≥ 0,(5.6)

w(0, t) = w(π, t) = 0, t ≥ 0,

where ϕ is defined as in (5.3), while a(·) ∈ L1,loc(R+) satisfies γ1 ≥ a(t) ≥
γ0 > 0 for fixed γ0, γ1 and a.e. t ≥ 0.

We put X := L2[0, π], and let A : X ⊃ D(A)→ X be defined by A(y) =
y′′ + n2y, with

D(A) = {y ∈ X : y and y′ are absolutely continuous, y′ ∈ X,

y(0) = y(π) = 0}.
Putting A(t) := a(t)A, we can now rewrite (5.6) as

du

dt
= A(t)u+ f(t, u) for u(t) = w(·, t)

where f : R+ ×X→ X with f(t, u) = ϕ(t) sin(u).
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As in the above examples, A is a sectorial operator and generates an an-
alytic semigroup (T (t))t≥0, and σ(A) satisfies the conditions as in Examples
5.1 and 5.2. Therefore, A(t) “generates” the evolution family (U(t, s))t≥s≥0
defined by

U(t, s) = T
(t�
s

a(τ) dτ
)
.

Arguing as in Examples 5.1 and 5.2 we see that the analytic semigroup
(T (t))t≥0 has an exponential trichotomy with projections Pk (k = 0, 1, 2)
and trichotomy constants N,α, β where α is as small as required. Moreover:

(i) ‖T (t)|P0X‖ ≤ Ne−βt,
(ii) ‖T (−t)|P1X‖ = ‖(T (t)|P1X)−1‖ ≤ Ne−βt,

(iii) ‖T (t)|P2X‖ ≤ Neαt,

for all t ≥ 0. From this, it is straightforward to check that (U(t, s))t≥s≥0 has
an exponential trichotomy with projections Pk (k = 0, 1, 2) and trichotomy
constants N, βγ0, αγ1, by the following estimates:

‖U(t, s)|P0X‖ =
∥∥∥T(t�

s

a(τ) dτ
)∣∣∣
P0X

∥∥∥ ≤ Ne−βγ0(t−s),
‖U(s, t)|‖ = ‖(U(t, s)|P1X)−1‖ =

∥∥∥T(− t�

s

a(τ) dτ
)∣∣∣
P1X

∥∥∥ ≤ Ne−βγ0(t−s),
‖U(t, s)|P2X‖ =

∥∥∥T(t�
s

a(τ) dτ
)∣∣∣
P2X

∥∥∥ ≤ Neαγ1(t−s),
for all t ≥ s ≥ 0. By Theorem 4.2, if (5.5) holds, then there exists a center-
stable manifold of Lp-class for mild solutions of (5.6).

6. Admissibly unstable manifolds for equations defined on the
whole line. We now consider the case where (U(t, s))t≥s and f are defined
on the whole line. That is, we will consider the integral equation

(6.1) x(t) = U(t, s)x(s) +

t�

s

U(t, ξ)f(ξ, x(ξ)) dξ for a.e. t ≥ s.

As in Section 1, the solutions of (6.1) are the mild solutions of the equation

dx

dt
= A(t)x+ f(t, x), t ∈ R, x ∈ X,

where A(t), t ∈ R, are (in general) unbounded operators in X, which are
coefficients of the well-posed Cauchy problem
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du(t)
dt = A(t)u(t), t ≥ s,
u(s) = xs ∈ X,

whose solutions are given by x(t) = U(t, s)x(s) as mentioned in the Intro-
duction. In this case, admissibly (local- or invariant-) stable manifolds on R
are defined and their existence is proved in a similar way to the case of
equations defined on R+ (see [13, Thm. 4.7]). Therefore, we will focus on
admissibly unstable manifolds which are defined below.

6.1. Local-unstable manifolds of ER-class. We shall prove the ex-
istence of an admissibly local-unstable manifold under the conditions that
(U(t, s))t≥s has an exponential dichotomy and f is local ϕ-Lipschitz and in
the class (M,ϕ, ρ) for a suitable positive function ϕ ∈ E′R.

Definition 6.1. A set U ⊂ R×X is said to be a local-unstable manifold
of ER-class for the solutions of (6.1) if for every t ∈ R the phase space X
splits into a direct sum X = X0(t) ⊕ X1(t) with positive inclination, and if
there exist positive constants ρ, ρ0, ρ1 and a family of Lipschitz continuous
mappings

ht : Bρ0 ∩X1(t)→ Bρ1 ∩X0(t), t ∈ R,
with Lipschitz constants independent of t, such that

(i) U = {(t, x+ ht(x)) ∈ R× (X1(t)⊕X0(t)) : x ∈ Bρ0 ∩X1(t)},
(ii) Ut := {x+ht(x) : (t, x+ht(x)) ∈ U} is homeomorphic to Bρ0∩X1(t)

for all t ∈ R,
(iii) to each x0 ∈ Ut0 there corresponds one and only one solution x(t)

of (6.1) such that x(t0) = x0 and the function χ(−∞,t0]x(·) belongs
to the ball Bρ in E∞R := ER ∩ L∞.

Let (U(t, s))t≥s have an exponential dichotomy with projections P (t),
t ∈ R, and dichotomy constants N, β > 0. Then we can define the Green
function as follows:

(6.2) G(t, τ) :=

{
P (t)U(t, τ) for t ≥ τ,
−U(t, τ)|[I − P (τ)] for t < τ.

Thus, we have

(6.3) ‖G(t, τ)‖ ≤ Ne−β|t−τ | for all t 6= τ.

We now prove the existence of a local-unstable manifold of ER-class. To
do that, we first find the form of the solutions of (6.1) which belong to
admissible spaces on (−∞, t0]. We denote by ‖ · ‖∞ the sup-norm.

Lemma 6.2. Let Standard Hypothesis 2.10 and Assumption 2.12 be sat-
isfied with I = R. Suppose that f : R × Bρ → X belongs to the class
(M,ϕ, ρ). Let x(t) be a solution of (6.1) such that for some fixed t0 the
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function χ(−∞,t0]x(·) belongs to Bρ. Then for t ≤ t0,

(6.4) x(t) = U(t, t0)|v1 +

t0�

−∞
G(t, τ)f(τ, x(τ)) dτ

for some v1 ∈ X1(t0) = (I − P (t0))X, where G(t, τ) is the Green function
defined as in (6.2).

Proof. Let

(6.5) y(t) :=

t0�

−∞
G(t, τ)f(τ, x(τ)) dτ for all t ≤ t0.

Then the function y(·) is bounded. Indeed, by estimates of the Green func-
tion G and of f we have

‖y(·)‖∞ ≤
t0�

−∞
Ne−β|t−τ |‖f(τ, x(τ))‖ dτ

≤ NM
[ t�

−∞
e−β(t−τ)ϕ(τ) dτ +

t0�

t

eβ(t−τ)ϕ(τ) dτ
]

(2.4)

≤ NM

[
N1‖Λ1ϕ‖∞ +N2‖Λ1T

+
1 ϕ‖∞

1− e−β

]
<∞.

Next, by computing directly we verify that y(·) satisfies the integral equation

(6.6) y(t0) = U(t0, t)y(t) +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ for all t ≤ t0.

Indeed, substituting y from (6.5) to the right-hand side of (6.6) we obtain

U(t0, t)y(t) +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ

= U(t0, t)

t0�

−∞
G(t, τ)f(τ, x(τ)) dτ +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ

= U(t0, t)

t�

−∞
U(t, τ)P (τ)f(τ, x(τ)) dτ

− U(t0, t)

t0�

t

U(t, τ)|(I − P (τ))f(τ, x(τ)) dτ +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ
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=

t�

−∞
U(t0, τ)P (τ)f(τ, x(τ)) dτ

−
t0�

t

U(t0, t)U(t, τ)|(I − P (τ))f(τ, x(τ)) dτ +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ

=

t0�

−∞
U(t0, τ)P (τ)f(τ, x(τ)) dτ =

t0�

−∞
G(t0, τ)f(τ, x(τ)) dτ = y(t0);

here we use the fact that U(t0, t)U(t, τ)|(I −P (τ)) = U(t0, τ)(I −P (τ)) for
all t ≤ τ ≤ t0. Thus,

y(t0) = U(t0, t)y(t) +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ.

On the other hand,

x(t0) = U(t0, t)x(t) +

t0�

t

U(t0, τ)f(τ, x(τ)) dτ.

Therefore x(t0)− y(t0) = U(t0, t)[x(t)− y(t)].
We need to prove that x(t0)−y(t0) ∈ (I−P (t0))X. Applying the operator

P (t0) to the expression x(t0)− y(t0) = U(t0, t)[x(t)− y(t)], we have

‖P (t0)[x(t0)− y(t0)]‖ = ‖U(t0, t)P (t)[x(t)− y(t)]‖
≤ Ne−β(t0−t)‖P (t)‖ ‖x(t)− y(t)‖.

Since supt∈R ‖P (t)‖ < ∞ and ‖x(t) − y(t)‖ ≤ ‖x(·)‖∞ + ‖y(·)‖∞ < ∞,
letting t→ −∞ we obtain

‖P (t0)[x(t0)− y(t0)]‖ = 0.

This means that v1 := x(t0) − y(t0) ∈ (I − P (t0))X = X1(t0), finishing the
proof.

Remark 6.3. By computing directly in a similar way to Remark 3.7,
we can see that the converse of Lemma 6.2 is also true. Thus all solutions
of (6.4) satisfy (6.1) for s ≤ t ≤ t0.

Lemma 6.4. Under the assumptions of Lemma 6.2, for any positive num-
bers ρ and M , if f belongs to the class (M,ϕ, ρ) such that

N

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞+N2‖Λ1ϕ‖∞) < min

{
1,

ρ

2M

}
and N‖hβ‖E < 1,

then for r = ρ/max{2N, 2NN1‖eβ‖ER} and t0 ∈ R, there corresponds to
each v1 ∈ Br ∩X1(t0) one and only one solution u(t) of (6.1) on (−∞, t0]
such that (I − P (t0))u(t0) = v1 and the function χ(−∞,t0]u(·) belongs to Bρ.
Moreover, there exist positive constants µ and Cµ independent of t0 such that
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for any two solutions u1(t), u2(t) corresponding to different values v1, v2 ∈
Br ∩X1(t0) we have

(6.7) ‖u1(t)− u2(t)‖ ≤ Cµe−µ(t0−t)‖v1 − v2‖ for t ≤ t0.

Proof. For v1 ∈ Br ∩ X1(t0) we will prove that the transformation T
defined by

(Tx)(t) =

{
U(t, t0)|v1 +

	t0
−∞G(t, τ)f(τ, x(τ)) dτ for t ≤ t0,

0 for t > t0,

acts from Bρ into Bρ and is a contraction. Indeed, for x(·) ∈ Bρ we have
‖f(t, x(t))‖ ≤Mϕ(t); therefore, putting

y(t) =

{
U(t, t0)|v1 +

	t0
−∞G(t, τ)f(τ, x(τ)) dτ for t ≤ t0,

0 for t > t0,

we obtain

(6.8) ‖y(t)‖ ≤ Ne−β|t−t0|‖v1‖+NM

t0�

−∞
e−β|t−τ |ϕ(τ) dτ.

It now follows from the admissibility of L∞ that y(·) ∈ L∞(R, X) and

‖y(·)‖∞ ≤ N‖v1‖+
NM

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞).

Using the fact that ‖v1‖ ≤ ρ
2N and

N

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞) <

ρ

2M
,

we therefore obtain ‖y(·)‖∞ ≤ ρ.

It follows from (6.8) and the admissibility of ER that y(·) ∈ ER and

‖y(·)‖ER ≤ NN1‖v1‖ ‖eβ‖ER +
NM

1− e−β
(N1‖Λ1T

+
1 (ϕ)‖ER +N2‖Λ1ϕ)‖ER) ≤ ρ

Hence the transformation T acts from Bρ to Bρ. We now estimate

‖Tx(t)− Ty(t)‖ ≤
∞�

−∞
‖G(t, τ)‖ ‖f(τ, x(τ))− f(τ, y(τ))‖ dτ

≤ N
∞�

0

e−β|t−τ |ϕ(τ) dτ ‖x(·)− y(·)‖∞.

Therefore,

(6.9) ‖Tx− Ty‖∞ ≤
N

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞)‖x− y‖∞.
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On the other hand,

‖Tx(t)− Ty(t)‖ ≤
∞�

−∞
‖G(t, τ)‖ ‖f(τ, x(τ))− f(τ, y(τ))‖ dτ

≤ N
∞�

0

e−β|t−τ |ϕ(τ)‖x(τ)− y(τ)‖ dτ.

Since ‖x(·) − y(·)‖ ∈ ER and e−β|t−·|ϕ(·) ∈ E′R, by “Hölder’s inequality”
(2.6) we obtain

‖Tx(t)− Ty(t)‖ ≤ N‖e−β|t−·|ϕ(·)‖E′R‖ ‖x(·)− y(·)‖‖ER = Nhβ(t)‖x− y‖ER .

By Standing Hypothesis 2.10 we then see that hβ(·) ∈ ER, and hence

(6.10) ‖Tx− Ty‖ER ≤ N‖hβ‖ER‖x− y‖ER .
Putting l = max

{
N‖hβ‖ER ,

N
1−e−β (N1‖Λ1T

+
1 ϕ‖∞ + N2‖Λ1ϕ‖∞)

}
, by (6.9)

and (6.10) we obtain ‖Tx − Ty‖E∞R ≤ l‖x − y‖E∞R . It follows from the as-
sumptions that l < 1. Hence, T : Bρ → Bρ is a contraction.

Thus, there exists a unique z(·) ∈ Bρ such that Tz = z. By definition
of T we know that z is a solution of (6.4) for t ≤ t0, and by Remark 6.3
it is a solution of (6.1) for all s ≤ t ≤ t0. By Lemma 6.2 and Remark
6.3, u(·) := z(−∞,t0] is the unique solution of (6.1) for t ≤ t0 such that
χ(−∞,t0]u(·) belongs to Bρ.

The estimate (6.7) can be proved in the same way as in [13, Thm. 3.6].

From Lemmata 6.2, 6.4 and using the same arguments as in [13, Thm. 3.8]
we obtain the existence of an admissible local-unstable manifold:

Theorem 6.5. Under the assumptions of Lemma 6.4, for any ρ>0 and
M > 0, if the function f belongs to the class (M,ϕ, ρ) such that

(6.11)
k :=

N

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞) < min

{
1,

ρ

2M

}
,

N‖hβ‖E < 1,

then there exists a local-stable manifold U of ER-class for the solutions of
(6.1). Moreover, any two solutions u1(t), u2(t) on U attract each other ex-
ponentially in the sense that there exist positive constants µ and Cµ inde-
pendent of t0 ∈ R such that

(6.12) ‖u1(t)− u2(t)‖
≤ Cµe−µ(t0−t)‖P (t0)u1(t0)− P (t0)u2(t0)‖ for t ≤ t0.

Proof. The proof is similar to that of [13, Thm. 3.7], replacing R+ by R
and using the structure of solutions as in Lemmata 6.2 and 6.4. We just note
that the family (ht)t∈R of Lipschitz mappings determining the local-unstable
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manifold of ER-class is defined by

ht : Br ∩X1(t)→ Bρ/2 ∩X0(t), ht(y) =

t�

−∞
G(t, s)f(s, x(s)) ds

for r = ρ/max{2N, 2NN1‖eβ‖ER} and y ∈ Br ∩ X1(t), where x(·) is the
unique solution in E∞(−∞,t] of (6.1) on (−∞, t] satisfying (I − P (t))x(t) = y

(the existence and uniqueness of x(·) is obtained in Lemma 6.4). Further-
more, the Lipschitz constant of ht is kN

1−k < 1, the same as that of gt deter-
mining the local-stable manifold of ER-class (see [13, Thm. 3.7]).

From the existence of local-stable and local-unstable manifolds of ER-
class for (6.1) defined on the whole line we derive the following important
corollary which describes the geometric picture of solutions to (6.1).

Corollary 6.6. Under the assumptions of Lemma 6.4, for any ρ > 0
and M > 0, if f belongs to the class (M,ϕ, ρ) such that

k < min

{
ρ

2M
, 1,

1

M max{2N, 2NN1‖eβ‖E}

}
and N‖hβ‖ER < 1,

where k is defined as in (6.11), then there exist a local-stable manifold S
and a local-unstable manifold U of E-class for the solutions of (6.1) having
the following properties:

(a) For each t0, St0 ∩Ut0 contains the unique element vt0.
(b) The solution u0(t) of (6.1) with initial condition u0(t0) = vt0 belongs

to the ball Bρ in E∞R .
(c) The solutions u(t) of (6.1) satisfying u(t0) ∈ St0 exponentially

approach u0(t) as t → ∞ and exponentially recede from u0(t) as
t→ −∞.

(d) The solutions u(t) of (6.1) satisfying u(t0) ∈ Ut0 exponentially ap-
proach u0(t) as t → −∞ and exponentially recede from u0(t) as
t→∞.

Proof. (a) The condition x ∈ St0 ∩Ut0 is equivalent to the existence of
w ∈ Bρ0 ∩X0(t0) and y ∈ Bρ0 ∩X1(t0) such that x = w + gt0w = ht0y + y,
where gt0 and ht0 are members of the families (gt)t∈R of Lipschitz continu-
ous mappings determining S and (ht)t∈R determining U, respectively. Then
w − ht0y = y − gt0w ∈ X0(t0) ∩X1(t0) = {0}. It follows that w = ht0y and
y = gt0w. Therefore, w = ht0(gt0w) = (ht0 ◦ gt0)w. We now estimate gt0w
for w ∈ Bρ0 ∩X0(t0) by using the formula (see [13, eq. (22)])

(6.13) gt0(w) =

∞�

t0

G(t0, s)f(s, x(s)) ds,

where w ∈ Bρ0 ∩ X0(t0) and x(·) is the unique solution in Bρ of (6.1) on
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[t0,∞) satisfying P (t0)x(t0) = w (the existence and uniqueness of x(·) is
obtained in Theorem 3.3). Note that ρ0 = 1/max{2N, 2NN1‖eβ‖E}. By
(6.13) we have

‖gt0(w)‖ ≤
∞�

t0

‖G(t0, s)‖ ‖f(s, x(s))‖ ds ≤ NM
∞�

t0

e−β|t0−s|ϕ(s) ds

≤ NM

1− e−β
(N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞)

= kM <
1

max{2N, 2NN1‖eβ‖E}
= ρ0

(since k < 1/(M max{2N, 2NN1‖eβ‖E})). Hence, gt0 : Bρ0 ∩ X0(t0) →
Bρ0 ∩X1(t0). Similarly, ht0 : Bρ0 ∩X1(t0)→ Bρ0 ∩X0(t0). It follows that

ht0 ◦ gt0 : Bρ0 ∩X0(t0)→ Bρ0 ∩X0(t0).

As gt0 and ht0 are both Lipschitz continuous with the same Lipschitz
constant kN

1−k < 1 (see Theorem 6.5 and [13, proof of Thm. 3.8]), ht0 ◦ gt0 is
a contraction. Thus, there exists a unique w0 such that w0 = (ht0 ◦ gt0)w0.
Putting vt0 = w0 + gt0w0 we find that vt0 is the unique element of St0 ∩Ut0 .

Property (b) is a consequence of the definitions of the local-stable and
local-unstable manifolds of ER-class.

Properties (c) and (d) follow from (3.7) and (6.12), respectively.

6.2. Invariant-unstable manifolds of ER-class. In this subsection we
consider the existence of an admissibly invariant-unstable manifold under
the conditions that the evolution family has an exponential dichotomy, and
the nonlinear term f is ϕ-Lipschitz continuous.

Definition 6.7. A set U ⊂ R × X is said to be an invariant-unstable
manifold of ER-class for the solutions of (6.1) if for every t ∈ R the phase
space X splits into a direct sum X = X0(t)⊕X1(t) with positive inclination,
and if there exists a family of Lipschitz continuous mappings

gt : X1(t)→ X0(t), t ∈ R,
with Lipschitz constants independent of t, such that

(i) U = {(t, x+ gt(x)) ∈ R× (X1(t)⊕X0(t)) : x ∈ X1(t)},
(ii) Ut := {x+ gt(x) : (t, x+ gt(x)) ∈ U} is homeomorphic to X1(t) for

all t ∈ R,
(iii) to each x0 ∈ Ut0 there corresponds one and only one solution x(t)

of (6.1) such that x(t0) = x0 and the function χ(−∞,t0]x(·) belongs
to ER.

(iv) U is invariant under (6.1) in the sense that if x(·) is a solution of
(6.1) such that x(t0) ∈ Ut0 and the function χ(−∞,t0]x(·) belongs
to ER, then x(t) ∈ Ut for all t ≤ t0.
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As in the previous subsection (Lemma 6.2), we can find the form of the
solutions of (6.1) which belong to admissible spaces on (−∞, t0]:

Lemma 6.8. Let Standing Hypothesis 2.10 and Assumption 2.12 be sat-
isfied with I = R. Suppose that f : R × X → X is ϕ-Lipschitz. Let x(t),
t ≤ t0, be a solution of (6.1) such that χ(−∞,0]x(·) belongs to ER. Then for
t ≤ t0,

(6.14) x(t) = U(t, t0)|v1 +

t0�

−∞
G(t, τ)f(τ, x(τ)) dτ

for some v1 ∈ X1(t0) = (I − P (t0))X, where G(t, τ) is the Green function
(6.2).

Proof. Put y(t) :=
	t0
−∞ G(t, τ)f(τ, x(τ)) dτ for t ≤ t0 and y(t) = 0 for

t > t0. Since f is ϕ-Lipschitz, using (6.3) we obtain

‖y(t)‖ ≤ N
∞�

−∞
e−β|t−τ |ϕ(τ)‖z(τ)‖ dτ for t ≤ t0.

Using the “Hölder inequality” (2.6) it now follows that

‖y(t)‖ ≤ ‖e−β|t−·|ϕ(·)‖E′R‖z‖ER .

By Standing Hypothesis 2.10, the function hβ(t) = ‖e−β|t−·|ϕ(·)‖E′R belongs

to ER. Therefore, by Banach lattice properties, y(·) ∈ ER and

‖y(·)‖ER ≤ ‖hβ‖ER‖z‖ER .

By similar calculations to those in the proof of Lemma 6.2 we can see that

y(t0) = U(t0, t)y(t) +

t0�

t

U(t, s)f(s, x(s)) ds for t ≤ t0.

Since x(t) is a solution of (6.1) we obtain

x(t0)− y(t0) = U(t0, t)(x(t)− y(t)) for t ≤ t0.

Putting now v1 = x(t0)−y(t0) and applying the operator P (t0) to the above
expression we have

‖P (t0)[x(t0)−y(t0)]‖ = ‖U(t0, t)P (t)[x(t)−y(t)]‖ ≤ Ne−β(t0−t)‖x(t)−y(t)‖.

So ‖x(t)− y(t)‖ ≥ Neβ(t0−t)‖P (t0)[x(t0)− y(t0)]‖. Since (x(·)− y(·))|(−∞,t0]
belongs to E(−∞,t0] and the function eβ(t0−t), t ≤ t0, does not belong to
E(−∞,t0], the admissibility of E(−∞,t0] shows that P (t0)[x(t0) − y(t0)] = 0.
Therefore, v1 := x(t0)−y(t0) ∈ X1(t0). Finally, since x(t) = U(t, t0)|v1+y(t)
for t ≤ t0, the equality (6.14) follows.
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Remark 6.9. By computing directly in a similar way to Remark 3.7,
we can see that the converse of Lemma 6.8 is also true. Hence all solutions
of (6.14) satisfy (6.1) for t ≤ t0.

Similarly to Lemma 6.4 we have the following lemma which describes
the existence and uniqueness of certain bounded solutions.

Lemma 6.10. Under the assumptions of Lemma 6.8, let f : R× X→ X
be ϕ-Lipschitz such that N‖hβ‖ER < 1. Then there corresponds to each
v1 ∈ X1(t0) one and only one solution x(t) of (6.1) on (−∞, t0] such that
(I − P (t0))x(t0) = v1 and the function χ(−∞,0]x(·) belongs to ER.

Proof. For each t0 ∈ R and v1 ∈ X1(t0) we will prove that the transfor-
mation T defined by

(Tx)(t) =

{
U(t, t0)|v1 +

	t0
−∞G(t, τ)f(τ, x(τ)) dτ for all t ≤ t0,

0 for all t > t0,

acts from ER into ER and is a contraction.

Indeed, for x(·) ∈ ER we have ‖f(t, x(t))‖ ≤ ϕ(t)‖x(t)‖, and therefore,
putting

y(t) =

{
U(t, t0)|v1 +

	∞
t0
G(t, τ)f(τ, x(τ)) dτ for t ≤ t0,

0 for t > t0,

we have

‖y(t)‖ ≤ Ne−β|t0−t|‖v1‖+NM

∞�

−∞
e−β|t−τ |ϕ(τ)‖x(τ)‖ dτ for all t ∈ R.

Putting eβ(t) := e−β|t|, t ∈ R, and using the “Hölder inequality” (2.6) we
see that

‖y(t)‖ ≤ N‖v1‖(T+
t0
eβ)(t) + ‖e−β|t−·|ϕ(·)‖E′R‖x‖ER for all t ∈ R.

By Standing Hypothesis 2.10, the function hβ(t) = ‖e−β|t−·|ϕ(·)‖E′R belongs

to ER. Therefore, by Banach lattice properties, y(·) ∈ ER and

‖y(·)‖ER ≤ NN1‖v1‖ ‖eβ‖ER + ‖hβ‖ER‖x‖ER .

Hence, the transformation T acts from ER into ER.

It follows from the estimates of G and f that

‖T (x)− T (y)‖∞ ≤
t0�

−∞
‖G(t, τ)‖ ‖f(τ, x(τ))− f(τ, y(τ))‖ dτ

≤ N
∞�

−∞
e−β|t−τ |ϕ(τ)‖x(τ)− y(τ)‖ dτ.
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Since ‖x(·)− y(·)‖ ∈ ER and e−β|t−·|ϕ(·) ∈ E′R, by (2.6) we obtain

‖Tx(t)− Ty(t)‖ ≤ N‖e−β|t−·|ϕ(·)‖E′R‖ ‖x(·)− y(·)‖‖ER = Nhβ(t)‖x− y‖ER
for all t ∈ R. Since hβ ∈ ER, we then have

‖Tx− Ty‖ER ≤ N‖hβ‖ER‖x− y‖ER .
Hence, if N‖hβ‖ER < 1, we conclude that T : ER → ER is a contraction with
contraction constant k = N‖hβ‖ER .

By the Banach contraction mapping theorem, the lemma follows.

From Lemmata 6.8 and 6.10, using the same arguments as in [13, Thm. 4.6]
we now obtain the existence of an invariant-unstable manifold of ER-class:

Theorem 6.11. Under the assumptions of Lemma 6.8, suppose that f :
R×X→ X is ϕ-Lipschitz such that NN1‖eβ‖ER‖ϕ‖E′R +N‖hβ‖ER < 1. Then
there exists an invariant-unstable manifold U of ER-class for the solutions
of (6.1). Moreover, for any two solutions x1(·) and x2(·) belonging to U, we
have

‖x1(t)− x2(t)‖ ≤ Ce−µ(t0−t)‖(I − P (t0))x1(t0)− (I − P (t0))x2(t0)‖
for all t ≤ t0, where C, µ are positive constants independent of t0, x1(·) and
x2(·).

Proof. The proof is similar to that of [13, Thm. 4.6], replacing R+ by
R and using the structure of bounded solutions as in Lemmata 6.8, 6.10.
We just note that the family (ht)t∈R of Lipschitz mappings determining the
unstable manifold is defined by

ht : X1(t)→ X0(t), ht(y) =

t�

−∞
G(t, s)f(s, x(s)) ds

for y ∈ X1(t), where x(·) is the unique solution in E(−∞,t] of (6.1) on (−∞, t]
satisfying (I−P (t))x(t) = y (the existence and uniqueness of x(·) is obtained
in Lemma 6.10).

Using similar arguments to those for Corollary 6.6, we easily obtain the
following corollary, which describes the relations of solutions of (6.1) with
initial values lying on the invariant-stable or invariant-unstable manifolds
and the solution lying on the intersection of the two manifolds.

Corollary 6.12. Under the assumptions of Lemma 6.8, let f be ϕ-
Lipschitz such that NN1‖eβ‖ER‖ϕ‖E′R +N‖hβ‖ER < 1. Then there exist an
invariant-stable manifold S and an invariant-unstable manifold U of ER-
class for the solutions of (6.1) having the following properties:

(a) For each t0, St0 ∩Ut0 contains the unique element vt0.
(b) The solution u0(t) of (6.1) with initial condition u0(t0) = vt0 belongs

to ER.
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(c) The solutions u(t) of (6.1) satisfying u(t0) ∈ St0 exponentially ap-
proach u0(t) as t → ∞ and exponentially recede from u0(t) as t →
−∞.

(d) The solutions u(t) of (6.1) satisfying u(t0) ∈ Ut0 exponentially ap-
proach u0(t) as t → −∞ and exponentially recede from u0(t) as
t→∞.

We illustrate our results on the existence of invariant-stable and invar-
iant-unstable manifolds by the following example.

Example 6.13. We consider the problem

(6.15)


∂
∂tu(t, x) =

∑n
k,l=1Dk(akl(t, x)Dlu(t, x))

+ δu(t, x) + ϕ(t) sin(u(t, x)), t ≥ s, x ∈ Ω,∑n
k,l=1 nk(x)akl(t, x)Dlu(t, x) = 0, t ≥ s, x ∈ ∂Ω,

u(s, x) = f(x), x ∈ Ω.
Here Dk := ∂/∂xk and Ω is a bounded domain in RN with smooth boundary
∂Ω oriented by outer unit normal vectors n(x). The coefficients ak,l(t, x) ∈
Cµb (R, L∞(Ω)), µ > 1/2, are supposed to be real, symmetric, and uniformly
elliptic in the sense that

n∑
k,l=1

akl(t, x)vkvl ≥ η|v|2 for all t ∈ R, a.e. x ∈ Ω

and some constant η > 0. Also, the constant δ is defined by δ := −1
2ηλ,

where λ < 0 denotes the largest negative eigenvalue of the Neumann Lapla-
cian ∆N on Ω.

Finally, the step function ϕ(t) is defined for fixed constants c > 1 and
b > 0 by

(6.16)

ϕ(t) =

{
b|m| if t ∈

[
2m+1

2 − 1
ecm ,

2m+1
2 + 1

ecm

]
for m = ±1,±2, . . . ,

0 otherwise.

Here, we note that the values of ϕ can be very large, however, by computing
as in Example 5.2, we still have ϕ ∈ Lq (for 1 ≤ q < c) and

‖ϕ(τ)‖Lq ≤
41/qb

(1− eq−c)1/q
.

We now choose the Hilbert space X = L2(Ω) and define the operators
C(t) via the standard scalar product in X as

〈C(t)f, g〉 = −
n∑

k,l=1

�

Ω

aklDkf(x)Dlg(x) dx

with D(C(t)) = {f ∈ W 2,2(Ω) :
∑n

k,l=1 nk(x)akl(t, x)Dlf(x) = 0, x ∈ ∂Ω}.
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We then write (6.15) as an abstract Cauchy problem{ d
dtu(t, ·) = A(t)u(t, ·) + F (t, u(t, ·)), t ≥ s ≥ 0,

u(s, ·) = f ∈ X,
where A(t) := C(t) + δ and F : R+ × X → X defined by F (t, f)(x) :=
ϕ(t) sin(f(x)) for (t, f) ∈ R+ ×X, with ϕ defined as in (6.16).

By Schnaubelt [28, Chapt. 2, Theorem 2.8, Example 2.3], the operators
A(t) generate an evolution family having an exponential dichotomy with
dichotomy constants N and β, provided that the Hölder constants of ak,l
are sufficiently small. Also, the dichotomy projections P (t), t ∈ R, satisfy
supt∈R ‖P (t)‖ ≤ N.

We now easily see that F is ϕ-Lipschitz for ϕ ∈ Lq as above. In this
space, the constants N1 and N2 in Definition 2.3 are both 1. Note that we
may choose β to be small, so that our estimates on hβ(t) are valid.

Similarly to Example 5.2, we can estimate

hβ(t) =
( ∞�
−∞

e−qβ|t−τ |ϕq(τ) dτ
)1/q

by

hβ(t) ≤ b · 361/qeβ/2e−β|t|

(1− eq−c+qβ)1/q
for all t ∈ R.

Hence, hβ ∈ Lp and

‖hβ‖Lp ≤
b · 361/qeβ/2

(pβ)1/p(1− eq−c+qβ)1/q
.

Here, 1/p+ 1/q = 1, and p =∞ if q = 1.
Therefore, by Theorems 6.11 and 3.9 (precisely, its counterpart on R), if

(6.17)
2(1+q)/qN2b

(βp)1/p(1− eq−c)1/q
+

bN · 361/qeβ/2

(pβ)1/p(1− eq−c+qβ)1/q
< 1,

then there exist an invariant-unstable manifold U and an invariant-stable
manifold S of Lp-class for the mild solutions of (6.15).

6.3. Invariant-center-unstable manifolds of ER-class. Using Theo-
rem 6.11 and rescaling procedures similar to Theorem 4.2 to transform the
trichotomy case to the dichotomy case, we can easily obtain the existence
of an invariant-center-unstable manifold of ER-class:

Theorem 6.14. Let Assumption 4.1 and Standing Hypothesis 2.10 be
satisfied with I = R and suppose that f : R+ ×X→ X is ϕ-Lipschitz with

N2N1‖eβ′‖ER‖ϕ‖E′R +N‖hβ′‖ER < 1.

Then there exists an invariant-center-unstable manifold Cu = {(t,Cu
t ) :

t ∈ R+ and Cu
t ⊂ X} of ER-class for the solutions of (6.1), with the family
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(Cu
t )t∈R being the graphs of the family of Lipschitz continuous mappings

(ht)t∈R (i.e., Cu
t := graph(ht) = {x+ htx : x ∈ Im(P1(t) + P2(t))} for each

t ∈ R) where ht : Im(P1(t) + P2(t))→ ImP0(t) has Lipschitz constant

l =
N2N1‖eβ′‖ER‖ϕ‖E′R

1−N‖hβ′‖ER

independent of t, such that:

(i) to each x0 ∈ Cu
t0 there corresponds one and only one solution

u(t) of (6.1) on (−∞, t0] such that u(t0) = x0 and the function
χ(−∞,t0]e

γ·u(·) belongs to ER, where γ := (α+ β)/2.
(ii) Cu

t is homeomorphic to X1(t) ⊕ X2(t) for all t ∈ R, where X1(t) =
ImP1(t) and X2(t) = ImP2(t),

(iii) Cu is invariant under (6.1) in the sense that if u(t) is the solution
of (6.1) such that u(t0) = x0 ∈ Cu

t0 and the function χ(−∞,t0]e
γ·u(·)

belongs to ER, then u(s) ∈ Cu
s for all s ≤ t0,

(iv) for any two solutions u1(t), u2(t) on the center-unstable manifold
Cu there exist positive constants µ and Cµ independent of t0 ∈ R
such that

(6.18) ‖x(t)− y(t)‖ ≤ Cµe(γ−µ)(t0−t)

×‖(P1(t0) +P2(t0))x(t0)− (P1(t0) +P2(t0))y(t0)‖,
for all t ≤ t0.

Note that an invariant-center-stable manifold of ER-class on the whole
line is defined and its existence is proved in the same way as in the case of
R+ (see Theorem 4.2).

From the existence of invariant-center-stable and center-unstable man-
ifolds of ER-class for (6.1) defined on the whole line we have the following
important corollary describing the behavior of solutions to (6.1).

Corollary 6.15. Under the assumptions of Theorem 6.14, suppose that
f is ϕ-Lipschitz with

(6.19) N2N1‖eβ′‖ER‖ϕ‖E′R + (
√

2− 1)N‖hβ′‖ER <
√

2− 1.

Then there exist an invariant-center-stable manifold C and an invariant-
center-unstable manifold Cu of ER-class for the solutions of equation (6.1)
having the following properties:

(a) For each t0 ∈ R, Ct0 ∩Cu
t0 is homeomorphic to X2(t0) = P2(t0)X.

(b) The solution u0(t) of (6.1) with initial condition u0(t0) ∈ Ct0 ∩Cu
t0

satisfies e−γ|·|u0(·) ∈ ER, where γ := (α+ β)/2.
(c) For the solution u(t) of (6.1) satisfying u(t0) ∈ Ct0 the function

e−γtu(t) exponentially approaches e−γtu0(t) as t → ∞, and eγtu(t)
exponentially recedes from eγtu0(t) as t→ −∞.
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(d) For the solution u(t) of (6.1) satisfying u(t0) ∈ Cu
t0 the function

eγtu(t) exponentially approaches eγtu0(t) as t → −∞, and e−γtu(t)
exponentially recedes from e−γtu0(t) as t→∞.

Proof. (a) Let us first prove that for each z ∈ X2(t) there exists a unique
w ∈ X0(t)⊕X2(t) such that w = ht(z + gt(w)) + z, where gt and ht are the
members of the Lipschitz mapping families (gt)t∈R and (ht)t∈R determining
the invariant-center-stable and invariant-center-unstable manifolds, respec-
tively. Indeed, the mapping

L : X0(t)⊕X2(t)→ X0(t)⊕X2(t), y 7→ ht(z + gt(y)) + z,

satisfies

‖Ly1 − Ly2‖ = ‖ht(z + gt(y1))− ht(z + gt(y2))‖

≤
N2N1‖eβ‖ER‖ϕ‖E′R

1−N‖hβ‖ER

‖gt(y1)− gt(y2)‖ ≤ l2‖y1 − y2‖,

where l =
N2N1‖eβ‖ER‖ϕ‖E′R

1−N‖hβ‖ER
is the Lipschitz constant of gt and ht.

Since l <
√

2 − 1 < 1 we see that L is a contraction. Let w be its
unique fixed point. Then w is the unique element in X0(t)⊕X2(t) such that
w = ht(z + gt(w)) + z.

Define now D : X2(t) → Ct ∩Cu
t by D(z) = w + gt(w), where w is the

unique element in X0(t)⊕ X2(t) such that w = ht(z + gt(w)) + z. Then we
have w+ gt(w) = z+ gt(w) + ht(z+ gt(w)) ∈ Ct ∩Cu

t . The uniqueness of w
implies that D is a well-defined mapping.

We next prove the surjectivity of D. For x ∈ Ct ∩ Cu
t there are u ∈

X0(t) ⊕ X2(t) and v ∈ X1(t) ⊕ X2(t) such that x = u + gt(u) = v + ht(v).
Then u − ht(v) = v − gt(u) ∈ (X0(t) ⊕ X2(t)) ∩ (X1(t) ⊕ X2(t)) = X2(t).
Therefore, there is a z ∈ X2(t) such that u − ht(v) = v − gt(u) = z. It
follows that u−ht(z+ gt(u)) = z. As shown above, this relation means that
Dz = u+ gt(u) = x. Consequently, D is surjective.

We now prove that D is a Lipschitz mapping. Indeed, by the definition
of D we have D(z1) = w1 + gt(w1) and D(z2) = w2 + gt(w2) for w1 and w2

being the unique solutions in X0(t)⊕X2(t) of w1 = ht(z1 + gt(w1)) + z1 and
w2 = ht(z2 + gt(w2)) + z2, respectively. Then

(1− l)‖w1 − w2‖ ≤ ‖D(z1)−D(z2)‖
=
∥∥z1 + ht(z1 + gt(w1)) + gt(w1)

−
(
z2 + ht(z2 + gt(w2)) + gt(w2)

)∥∥
≤ ‖z1 − z2‖+ l‖z1 − z2‖+ l‖gt(w1)− gt(w2)‖

+ ‖gt(w2)− gt(w2)‖
≤ (1 + l)‖z1 − z2‖+ l(l + 1)‖w2 − w2‖.
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Therefore, ‖D(z1) − D(z2)‖ ≤ (1 + l)‖z1 − z2‖ + l(l+1)
1−l ‖D(z1) − D(z2)‖.

Thus, ‖D(z1) − D(z2)‖ ≤ 1−l2
2−(1+l)2 ‖z1 − z2‖; note that 2 − (1 + l)2 > 0

since l <
√

2− 1. Hence, D is a Lipschitz mapping with Lipschitz constant
1−l2

2−(1+l)2 . It follows that D is continuous and injective. As shown above,

D is surjective, therefore it is bijective. The inverse D−1 of D is defined as
D−1 : Ct ∩Cu

t → X2(t) with D−1(w + gt(w)) = z if z = w − ht(z + gt(w)).

We next prove that D−1 is also a Lipschitz mapping. Indeed, for x1 =
w1 + gt(w1) and x2 = w2 + gt(w2) belonging to Ct ∩Cu

t we have

‖D−1x1 −D−1x2‖ = ‖z1 − z2‖
≤
∥∥w1 − ht(z1 + gt(w1))−

(
w2 − ht(z2 + gt(w2))

)∥∥
≤ ‖w1 − w2‖+ l‖z1 − z2‖+ l2‖w1 − w2‖
= (1 + l2)‖w1 − w2‖+ l‖D−1x1 −D−1x2‖

≤ 1 + l2

1− l
‖w1 + gt(w1)− w2 − gt(w2)‖

+ l‖D−1x1 −D−1x2‖

=
1 + l2

1− l
‖x1 − x2‖+ l‖D−1x1 −D−1x2‖.

Therefore, ‖D−1x1 −D−1x2‖ ≤ 1+l2

(1−l)2 ‖x1 − x2‖. Hence, D−1 is also a Lip-

schitz mapping. It follows that D is a homeomorphism, and so Ct ∩Cu
t is

homeomorphic to X2(t) for all t ∈ R.

Property (b) follows from the definitions of the invariant-center-stable
and invariant-center-unstable manifolds.

Properties (c) and (d) are consequences of the inequalities (4.2) and
(6.18), respectively.
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293.

[24] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential
Equations, Springer, 1983.
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