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Admissibly integral manifolds for
semilinear evolution equations

by NGUYEN THIEU Huy (Darmstadt and Hanoi)
and Vu THI Ncoc HA (Hanoi)

Abstract. We prove the existence of integral (stable, unstable, center) manifolds of
admissible classes for the solutions to the semilinear integral equation u(t) = U(¢, s)u(s)+
SZ U(t, &) f(&,u(€)) d§ when the evolution family (U (¢, s))+>s has an exponential trichotomy
on a half-line or on the whole line, and the nonlinear forcing term f satisfies the (local or
global) ¢-Lipschitz conditions, i.e., ||f(t,z) — f(t,y)|| < ¢(t)]|lz — y|| where ¢(t) belongs
to some classes of admissible function spaces. These manifolds are formed by trajecto-
ries of the solutions belonging to admissible function spaces which contain wide classes
of function spaces like function spaces of L, type, the Lorentz spaces L, , and many
other function spaces occurring in interpolation theory. Our main methods involve the
Lyapunov—Perron method, rescaling procedures, and techniques using the admissibility of
function spaces.

1. Introduction and preliminaries. Consider the semilinear evolu-
tion equation of the form

(1.1) ‘C% — AM)a(t) + fb (), teld,

where J is a subinterval of the real line R, each A(t) is in general an un-
bounded linear operator on a Banach space X for every fixed ¢ € J and
f:J x X — X is a nonlinear operator.

One of important directions of research regarding the asymptotic be-
havior of solutions to (L.1]) is to find conditions for this equation to have
an integral manifold (e.g., a stable, unstable, or center manifold). Such re-
sults can be traced back to Hadamard [§], Perron [25] 26], Bogoliubov and
Mitropolsky [3] for the case of matrix coefficients A(t), to Daletskil and
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Krein [6] for the case of bounded coefficients acting on Banach spaces, and
to Henry [10] and Sell and You [29] for the case of unbounded coefficients.

There are two main methods to prove the existence of such integral man-
ifolds: the Hadamard and Perron methods. The Hadamard method has been
generalized to the so-called graph transform method which has been used,
e.g., in [I, 1T, 20] to prove the existence of invariant manifolds. This is a
powerful method related to complicated choices of the transforms between
graphs representing the manifolds involved. Meanwhile, the Perron method
was extended to the well-known Lyapunov—Perron method. This method is
related to the construction and use of the so-called Lyapunov—Perron equa-
tions (or operators) involving the evolution equations under consideration
to show the existence of integral manifolds. It seems to be more natural to
use the Lyapunov—Perron method to handle the flows or semiflows which are
generated by semilinear evolution equations, since in this case it is conve-
nient to construct such Lyapunov—Perron equations or operators. We refer
the reader to [2] 5] 6], 9] 10} 15, 29] and references therein for more informa-
tion.

To our best knowledge, the most popular conditions for the existence
of integral manifolds are the exponential trichotomy (or dichotomy) of the
linear part dx/dt = A(t)x and the uniform Lipschitz continuity of the non-
linear part f(t,z) with sufficiently small Lipschitz constants (i.e., || f(t,x) —
f& )|l < qllr — y| for ¢ small enough). However, for equations arising
in complicated reaction-diffusion processes, the function f represents the
source of material (or population) which, in many contexts, depends on
time in diversified manners (see [21, Chapt. 11], [22], [31]). Therefore, some-
times one cannot hope to have the uniform Lipschitz continuity of f. Thus,
one tries to extend the conditions on nonlinear parts so that they describe
such reaction-diffusion processes more exactly. Moreover, almost all of the
manifolds considered in the existing literature are formed by trajectories of
solutions bounded on the positive (or negative) half-line. We refer the reader
to [11, 2, 9] 10} 1T}, 13} 20, 29] and references therein for more on this matter.

Recently, we have obtained exciting results in [13] where we have proved
the existence of a new class of invariant manifolds, namely, invariant man-
ifolds of E-class for (1.1 (see [13, Theorems 3.7, 4.6]). Such manifolds are
formed by trajectories of solutions belonging to the Banach space £ which
can be a space of L, type (1 < p < oo) or a Lorentz space Ly, ; or some func-
tion spaces occurring in interpolation theory (see [13, Definitions 3.3, 4.2]
and [14]). The methods used in [13] are the Lyapunov—Perron method and
the characterization of the exponential dichotomy (obtained in [12]) of evolu-
tion equations in admissible spaces of functions defined on the half-line R .
The use of admissible spaces has helped us to construct invariant manifolds
of &-class for in the case of dichotomic linear parts without using the
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smallness of Lipschitz constants of nonlinear forcing terms in the classical
sense. Instead, the “smallness” is understood as the sufficient smallness of
SUp;>( SEH ©(7) dr (see the conditions in Theorem [3.9) below).

The purpose of the present paper is to establish the existence of stable,
unstable, and center manifolds of £-class when the linear part of has
an exponential trichotomy on the half-line or on the whole line under similar
conditions on the nonlinear term f (¢, x) to those in [13], that is, nonuniform
Lipschitz continuity of f: ||f(t,z) — f(t,y)|| < @(t)]|z — y|| for ¢ being a
real and positive function which belongs to an admissible function space
as specified in Definition below. Under some conditions on ¢, we will
prove the existence of center-stable manifolds of £-class for provided
that the linear part dx/dt = A(t)xr has an exponential trichotomy on a
half-line. Our method is to transform to the case of exponential dichotomy
by some rescaling procedures, and then apply the techniques and results
of [I3]. Moreover, using the same method we can also obtain the existence
of unstable and center-unstable manifolds of £-class in the case of dichotomic
and trichotomic linear parts (respectively) for evolution equations defined
on the whole line. Our main results are contained in Theorems
and Corollaries We also illustrate our results in Examples
B.1 5.2 .3, [6.13}

We now recall some notions.

DEFINITION 1.1. Let J be Ry or R. A family {U(¢,s)}i>s .55 Of
bounded linear operators acting on a Banach space X is a (strongly contin-
uous, exponentially bounded) evolution family on J if:

(i) U(t,t) =1d =: I and U(t,r)U(r,s) = U(t,s) for all t > r > s and
t,s,r e,
(ii) the map (t,s) — U(t,s)z is continuous on A := {(¢,s)eJxJ: t>s}
for every x € X,
(iil) |U(t,s)z| < Ke*t=9)||z| for all t > s, t,s € J, z € X, and some
fixed constants K, w.

The notion of an evolution family arises naturally in the theory of well-
posed evolution equations. Namely, if the abstract Cauchy problem

Wlt) — A(tyu(t), t>s,t,s€,
u(s) =zs € X

(1.2)

is well-posed, then there exists an evolution family (U(t,s))t>s,tscy such
that the solution of problem is given by u(t) = U(t, s)u(s).

For more details on the notion, properties and applications of evolu-
tion families we refer the reader to Pazy [24], Henry [10], and Nagel and
Nickel [23]. For a given evolution family, we have the following concept of
exponential trichotomy on J.
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DerFINITION 1.2. Let J be Ry or R. A given evolution family
(U(t, s))t>s,t,sey on J is said to have an exponential trichotomy on J if there
are three families of projections (P;(t))«cy, 7 = 0, 1,2, and positive constants
H, o, B with a < 8 such that:

(1) supyes [P < o0, j=0,1,2,

(ii) Po(t) + Pi(t) + Po(t) = I for all t € J, and Pj(t)P;(t) = 0 for all
j # /1:7

(iii) P;(t)U(t,s) =U(t,s)Pj(s) forallt > s, t,s€l, j=0,1,2,

(iv) U(t,8)lmpy sy and U(t,s)|imp,(s) are homeomorphisms from
Im P;(s) onto Im P;(t) and from Im P5(s) onto Im P5(t), respecti-
vely, for all t> s, ¢, s € J, also we denote the inverse of U (t, 5)|m p, (s)
by U(s,t)| (here s <),

(v) forallt > s, t,s €], and z € X, we have

U, s)Po(s)z|| < He™ P Py(s)a]
U (s, ) Pr(8)al| < He PO Py(t)a,
U (¢, 5)Pa(s)al| < He* ™| Py(s)z].

We then put N := H sup;cj{||P;(t)|| : 5 = 0,1,2}, and call N, H,«, 3 the
trichotomy constants of this exponential trichotomy.

The evolution family is said to have an exponential dichotomy on J if it
has an exponential trichotomy for which the family of projections P(t) is
trivial, i.e., P»(t) = 0 for all ¢ € J. In this case, property (i) is a consequence
of the other properties (see [19, Lem. 4.2]). For the dichotomy case, we put
P(t) = Py(t); then Py(t) is simply I — P(t) for all ¢t € J.

2. Function spaces and admissibility. We recall some notions on
function spaces and refer to Massera and Schéffer [I8] and Rébiger and
Schnaubelt [27] for concrete applications.

Denote by B the Borel algebra and by A the Lebesgue measure on R.
The space Lj joc(Ry) of real-valued locally integrable functions on R4 (mod-
ulo A-nullfunctions) becomes a Fréchet space for the seminorms p,(f) =
SJn |f(t)| dt, where J,, = [n,n + 1] for each n € N (see [18, Chapt. 2, §20]).

We can now define Banach function spaces:

DEFINITION 2.1. A vector space E of real-valued Borel-measurable func-
tions on R (modulo A-nullfunctions) is called a Banach function space (over

(B,.5.))) if
(1) Eis a Banach lattice with respect to a norm ||| g, i.e., (E, ||| g) is a
Banach space, and if ¢ € E and v is a real-valued Borel-measurable
function such that [¢(-)] < |o(-)|, A-a.e., then ¢ € E and ||¢| g
< lelle,
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(2) the characteristic functions x4 belong to E for all A € B of finite
measure, and sup> || X(t,t+1)/lr < 00 and infi>o [ X411 l2 > 0,

(3) E = Lijoc(Ry), i.e., for each seminorm p;, of Ly jo.(Ry) there exists
a number (3, > 0 such that p,(f) < B,,||fl|z for all f € E.

We then define Banach spaces of vector-valued functions corresponding
to Banach function spaces:

DEFINITION 2.2. Let F be a Banach function space and X be a Banach

space endowed with the norm || - ||. We set
E=ER4, X) :={f:Ry - X : f is strongly measurable and || f(-)|| € E}
(modulo A-nullfunctions) endowed with the norm | f|s := H||f()||HE One

can easily see that £ is a Banach space. We call it the Banach space corre-
sponding to the Banach function space E.

We now introduce the notion of admissibility:
DEFINITION 2.3. A Banach function space F is called admissible if:

(1) there is a constant M > 1 such that for every compact interval
[a,b] C Ry we have
b
(2.1) Jlo()]dt <

a

M(b—a)

||X[ b]”E lplle  for all p € E,

(2) for ¢ € E the function Ay defined by A;¢(t) :
to F,
(3) E is T -invariant and T -invariant, where T and T are defined,

for 7 € Ry, by
T (1) ::{go(t—T) fort > 71 >0,
0 foro0<t<rT,
T-p(t) == @(t+7) for t > 0;

T

St-i—l

. () dr belongs

(2.2)

moreover, there are constants Ny, Ny such that ||| < Ny, |7 ||
< Ny forall 7 € Ry.

EXAMPLE 2.4. Besides the spaces L,(R;), 1 < p < oo, and the space

t+1
M(R:) = {1 € Lujoc(®) s sup | |£(r)] dr < oo}
=V ¢

with the norm || f||n := sup;> SEH |f(7)] dr, many other function spaces
occurring in interpolation theory, e.g. the Lorentz spaces L, , 1 < p < oo,
1 < g < oo (see [4, Thm. 3 and p. 284], [30, 1.18.6, 1.19.3]) and, more gen-
erally, the class of rearrangement invariant function spaces over (R4, B, \)
(see [16l 2.a]), are admissible.
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REMARK 2.5. If F is an admissible Banach function space then E —
M(Ry). Indeed, put 3 := infi>0 ||x[,¢+1)l 2 > O (by Definition (2)) Then
from Definition [2.3|(i) we derive

t+1 Y
(2.3) S|ﬂﬂM¢gﬁme for all t >0 and ¢ € E.
t
Therefore, if ¢ € E then ¢ € M(R,) and ||¢||lam < |||/ . We thus obtain
E — M(R,).

We now collect some properties of admissible Banach function spaces
(see [12], Proposition 2.6] and originally [18] 23.V(1)]).

PROPOSITION 2.6. Let E be an admissible Banach function space. Then:
(a) Let ¢ € Li1oc(Ry) be such that ¢ > 0 and Ayp € E, where Ay is as
in Definition[2.3(ii). For o > 0 we define

t [ee)

olt) = (e (s ds,  Alp(t) = | o p(s) ds
0 t

Then Ay and Al belong to E. In particular, if sup;sg Si“ o(T)dr
< 00 (this will be satisfied if ¢ € E (see Remark[2.5))), then AL ¢ and
Ay are bounded. Moreover,

(24) N 4¢lle < AT el and  [|Agells <

1
1—e° 1—e°

A1l

for T}" and N1, Ny as in Definition

(b) E contains all exponentially decaying functions (t) = e~ fort >0
and any fixed constant o > 0.

(c) E contains no exponentially growing functions f(t) := e fort >0
and any fized constant b > 0.

REMARK 2.7. If we replace Ry by an infinite (or half-infinite) interval I
(precisely, I is R, (—o0,tg] or [tg,00) for any fixed ¢ty € R), then we have
similar notions of admissible spaces on I:

(1) In Definition the translation semigroups 7" and T for 7 € Ry
should be replaced by T and 7= defined for 7 € I as

T+<,0(t)::{(p(t_7) fort and t — 7 in I,
i 0 fortelbutt—r1¢l,
{cp(t—{—T) for t and t + 7 in I,

T p(t) =
elt) 0 fortelbutt+r ¢l
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(2) In Proposition [2.6(a), the functions A, and A” should be replaced
by
to
A p(t) = S el =slo(s)ds  with tg = 00 if I = R,
t
1o(t) = { Sioo e ls=ty(s) ds ?f I=TR or (—oo,to),
7 §° el tp(s)ds  if T = [ty,00).

(3) In Proposition [2.6{b)&(c) the functions ¥(t) = e~ (¢t > 0, with
fixed a > 0) should be replaced by ¥(t) = e~ t € I, with fixed
a > 0; and the functions f(t) := e” (t > 0, with any fixed constant
b > 0) should be replaced by f(t) := ebl!l, t € I, with fixed b > 0.

These notions will be used in Section 6. We denote by Ey the admissible func-
tion space of functions defined on I. If I = R4, we simply write E := Eg, .
For a function ¢ defined on the whole line we denote by ¢|r the restriction
of ¢ to I. It is obvious that if ¢ € Eg, then |1 € Ey.

Similarly to Definition for a Banach function space 1 and a Banach
space X with the norm || - || we set

=8, X):={f:1— X : fis strongly measurable and || f(-)|| € Er}
(modulo A-nullfunctions) endowed with the norm

£ lley = [[I1F Ol g,

Then & is a Banach space called the Banach space corresponding to the
Banach function space Ey. Also, if [ = Ry we write simply & := &g, .

DEFINITION 2.8. Let Ej be an admissible Banach function space and
denote by S(FEp) the unit sphere in Ey. Recall that L; = {g : 1 = R : g
is measurable and {; |g(t)|dt < co}. Consider the set Ej of all measurable
real-valued functions v on I such that

e € Ly, \lp®e(t)dt <k forall p € S(E),
I

where k depends only on . Then Ej is a normed space with the norm given
by (see [I8, Chapt. 2, 22.M])

Il := sup{§le(t)(t)ldt : o € S(Ep) ) for v € B,
I
We call Ef the associate space of Ef.

REMARK 2.9. Let Ey be an admissible Banach function space and Ej
be its associate space. Then, by [I8, Chapt. 2, 22.M], the following “Hélder
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inequality” holds:

(2.6) Vo)) dt < |lollzl¢llg forall p € By, ¢ € By.
I

In order to study the integral manifolds of &-class for semilinear evo-
lution equations we need some restrictions on admissible Banach function
spaces and assume the following hypothesis.

STANDING HYPOTHESIS 2.10. We suppose that Ej is an admissible Ba-
nach function space such that its associate space Ej is also an admissi-
ble Banach function space. Moreover, we suppose that Ej contains a v-
exponentially Er-invariant function, that is, a function ¢ > 0 such that, for
a fixed v > 0, the function

hot) = e lo() g fort €

belongs to Ey. Also, we denote by e, the function e, (t) = e Il

ExampLE 2.11. L, = L, for 1/p+1/g=1, 1 <p < oo, and L] = L,
L= L.

Besides the above function e,, the functions ¢ = cx[, for any fixed
constant ¢ > 0 and any finite interval [a,b] C I are also v-exponentially
L,-invariant for any v > 0. More examples can be seen in Section 5.

In the rest of our paper we will make use of the following assumption.

ASSUMPTION 2.12. Let the evolution family (U(¢, s))¢>s, ¢.se1 have an ex-
ponential dichotomy on I = R or R with dichotomy projections (P(t))¢cr
and dichotomy constants N, 3 > 0. Suppose that ¢ € EJ is a S-exponentially
FEr-invariant function whose existence is guaranteed by Standing Hypothe-

sis [2.10

In the case of infinite-dimensional phase spaces, instead of equation (|1.1J),
for an evolution family (U(t, s))¢>s,+ ser, we consider the integral equation

(2.7)  u(t) =U(t, s)u(s) +SU(t,£)f(§,u(£)) d¢ forae. t>s,t,sel

S

We note that, if the evolution family (U(t, s))¢>s,tser arises from the well-
posed Cauchy problem (|1.2]), then a function u which satisfies (2.7)) for some
given f is called a mild solution of the semilinear problem

{ Wt — A(tyu(t) + f(t,u(t), t>s t,s€l

u(s) = x5 € X.

We refer the reader to Pazy [24] for more details on the relation between
classical and mild solutions of evolution equations (see also [7, 17, 29]).
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To obtain the existence of an admissibly integral manifold for (2.7)),
besides the exponential dichotomy (or trichotomy) of the evolution family,
we also need the (local) ¢-Lipschitz properties of the nonlinear term f,

according to the following definitions in which we suppose as above that I
is Ry or R.

DEFINITION 2.13 (Local ¢-Lipschitz functions). Let ¢ be a positive func-
tion belonging to Ly, and B, be the ball B, := {x € X : ||z|| < p}. A function
f:Ix B, = Xis said to belong to the class (M, p, p) for some positive
constants M, p if

(i) [|f(t,2)|| < Mp(t) for a.e. t € I and all z € B, and
(i) ||f(t,z1) = f(t,z2)|| < p(t)]|x1 —2x2| for a.e. t € Tand all 1,22 € B,.

REMARK 2.14. If f(¢,0) = 0 then (ii) already implies that f belongs to
the class (p, ¢, p).

DEFINITION 2.15 (¢-Lipschitz functions). Let ¢ be a positive function
belonging to E7. A function f: 1 x X — X is said to be ¢-Lipschitz if

(i) f(t,0) =0 for a.e. t €1,
(i) [[f(t,x1) = f(t, z2)|| < @(t)||x1 —z2| for a.e. t € Tand all 1,29 € X.

3. Exponential dichotomy and admissibly stable manifolds
on R,. In this section, we recall preparatory results on R, obtained in
[13] which will be used in the next sections. In this case, I = R. For an
evolution family (U(t, s))t>s>0 we rewrite the integral equation as

(3.1)  w(t)=U(t,s)u(s) + S Ut,&)f(&u())dE for ae. t >seR,.

S

We also denote by (€, || - ||..) the Banach space
Exo = EN LRy, X) with the norm || flle., := max{||flle, | flloo}

We refer the reader to [12] for a detailed discussion on the relation between
exponential dichotomy of evolution equations and admissibility of function
spaces.

3.1. Local-stable manifolds of £-class on R,. Throughout this sub-
section we assume that the evolution family (U(¢,s))i>s>0 has an exponen-
tial dichotomy on R, and the nonlinear term f is local ¢-Lipschitz and in
the class (M, ¢, p) as in Definition [2.13]

DEFINITION 3.1. A set S C Ry x X is said to be a local-stable manifold
of £-class for the solutions of equation (3.1 if for every ¢ € Ry the phase
space X splits into a direct sum X = X(¢)® X (t) with positive inclination,
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ie.,
inf inf lzo + x1]| > 0,
teR4 ziEXi(t)
llzill=1,i=0,1

and if there exist positive constants p, pg, p1 and a family of Lipschitz
continuous mappings

g ZBpomXO(t) _>Bp1 le(t), t€R+,
with Lipschitz constants independent of ¢, such that:

(i) S={(t,z+g(z)) € R x(Xo(t)®X1(t)) : t € Ry, & € BpyNXo(t)},
(ii) S¢:={x+g(x): (t,x+g(z)) € S} is homeomorphic to B,, N Xo(t)
for all £ > 0,
(iii) to each zg € Sy, there corresponds one and only one solution w(t)
of on [tg, o0) such that u(tg) = ro and the function X, oo)u(-)
belongs to the ball B, := {g € £« : ||g]le.. < p}-

Let (U(t, s))t>s>0 have an exponential dichotomy with projections P(t),
t > 0, and dichotomy constants N, > 0. We can then define the Green
function on the half-line:

(3.2) G(t,T) — {P(t)U(tﬂ') fort>72>0,
~U(t, )L = P(r)] for0<t<r.

Thus, we have

(3.3) |G(t, )| < Ne Plt=ml for all ¢ #+7>0.

The following lemma taken from [I3, Lemma 3.4] gives the form of bounded

solutions of ({3.1]).

LEMMA 3.2. Let Standing Hypothesis and Assumption be sat-
isfied with 1 = Ry and let f : Ry x B, — X belong to the class (M, ¢, p). Let
u(t) be a solution to (3.1) such that, for fired to > 0, the function X, oo\u(-)
belongs to B,. Then fort > to,

(3.4) u(t) = Ut to)vo + | G(t,7) f(r,u(r)) dr

to
for some vg € Xo(to) = P(to)X, where G(t,T) is the Green function defined
in B2).

Moreover, the structure of certain solutions of (3.1]) is given in the fol-
lowing theorem taken from [13, Thm. 3.7].

THEOREM 3.3. Let the assumptions of Lemma[3.2] be satisfied and put

N

(3.5) k:= m(

N[ AT @lloo + Nal| A1) o0)-
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Then for any positive numbers p and M, if the function f belongs to the
class (M, p, p) such that

k< min{l, 2';\)4} and Nlhg|g <1,
then for r = p/ max{2N,2N Ni||eg||g} and tog > 0, there corresponds to each
vo € By N Xo(to) one and only one solution u(t) of on [tg,00) such
that P(to)u(to) = vo and the function Xy, oo\u(-) belongs to B,. Moreover,
for any two solutions uy(t),ua(t) corresponding to different values vy, vy €
B, N Xo(to) we have

(3.6) lur (t) = ua(t)]| < Cue ™ lor —val| - for t > to,
where 0 < p < B+1In(1 — k(1 —e?)), and C, = N/(1 — %)

We now recall the first main result about the existence of a local-stable
manifold of £-class obtained in [13, Thm. 3.7].

THEOREM 3.4. Under the assumptions of Theorem for any p > 0
and M > 0, if f belongs to the class (M, p, p) such that

' P
k<mm{1,2M} and N|lhg|lg <1,

where k is defined as in , then there exists a local-stable manifold S of
E-class for the solutions of (3.1). Moreover, any two solutions i (t), us(t)
on the manifold S attract each other exponentially in the sense that there
exist positive constants 1 and C), independent of to > 0 such that

(3.7 ua(®) —ua2(t)||
< Cpe M| P(tg)uy (to) — Plto)ua(to)|  fort > to.

3.2. Invariant-stable manifolds of £-class on R.. In this subsec-
tion, we recall the results on the existence of an invariant-stable manifold
of E-class obtained in [I3| Thm 4.6] under the conditions that the evolu-
tion family (U(¢,s))i>s>0 has an exponential dichotomy and the nonlinear
function f is (-Lipschitz as in Definition [2.15

We now give the definition of an invariant-stable manifold of £-class for
the solutions of the integral equation ([3.1)).

DEFINITION 3.5. A set S C Ry x X is said to be an invariant-stable
manifold of £-class for the solutions of equation if for every t € R,
the phase space X splits into a direct sum X = X(t) ® X1 (¢) with positive
inclination, and if there exists a family of Lipschitz continuous mappings

g+ Xo(t) » Xa(t), teRy,
with Lipschitz constants independent of ¢, such that:
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(1) S={(t,z+g(x)) € Ry x (Xo(t) & X1(t)) : t € Ry, x € Xo(¢)},

(i) St :={z+ ge(z) : (t,z + g+(z)) € S} is homeomorphic to Xo(t) for

allt >0,

(iii) to each zg € Sy, there corresponds one and only one solution w(t)

of on [tg, o0) such that u(tg) = ro and the function X, oo)u(-)
belongs to &,

(iv) S is invariant under equation in the sense that, if u(-) is

a solution of on [tg,00) such that u(ty) = up € Sy, and
X[to,00)U(+) € &, then u(s) € S for all s > .

Note that if we identify Xo(¢) @ Xi(¢) with Xo(¢) x X;i(¢) then we can
write S; = graph(g;).

Next, we recall from [13] some related results for later use.

LEMMA 3.6 ([13, Lem. 4.3]). Let Assumption and Standing Hy-
pothesis be satisfied with 1 = R. Suppose that f : Ry x X — X s
p-Lipschitz. Let u(t) be a solution to such that, for fized tg > 0, the
function X, 0)u(-) belongs to £. Then for t > to,

oo
(3.8) u(t) = Ult,to)vo + | G(t,7) f(r,u(r))dr

to
for some vg € Xo(to) = P(to)X, where G(t,T) is the Green function defined
by .

REMARK 3.7. Formula is called the Lyapunov—Perron equation.
By computing directly, we can see that the converse of Lemma [3.6] is also

true. Hence all solutions of (3.8 satisfy (3.1) for t > t¢¢. Indeed, putting
y(t) = §p G(t,7)f(r,u(r)) dT we then have

o] t
y(t) ==\ Ut 7) (I = P() f(r,u(r))dr +  U(t,7)P(7) f (7, u(r)) dr
t

to

= Ut to) (= | Ulto, ) (I = P(r) f(r.u(r) dr )

+ Ut 7)(I = P(0) f(r,u(r)) dr + \ U(t,7)P(r) f(r,u(r)) dT
= U(t.to)y(to) + \ U(t, ) f(r,u(r)) dr.

to

It follows that
t

y(t) = U(t,to)y(to) + S U(t,7)f(r,u(r))dr fort > to.

to
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Let now u(t) be a solution of (3.8). Then u(t) = U(t, to)vo + y(t). Thus,
u(t) = U(t, to)vo + U(t, to)y(to) + § U(t,7)f(r,u(r)) dr
= U(t,s)(U(s, to)vo + y(s)) —tOU(t, s)y(s) + U(t, to)y(to)
+ 5 U(t,7)f(r,u(r)) dr

= U(t, s)u(s) = U(t, ) (Uls, to)y(to) + § Us,7)f (7, u(r)) dr)
+U(t,to)y(to) + | Ut 7)f(ru(r)) dr

to
t

= U(t, s)u(s) + \U(t,7) f(r,u(7)) dr.

Hence, u(t) satisfies (3.1]) for t > s > .

THEOREM 3.8 ([13, Thm. 4.5]). Under the assumptions of Lemma
if f is p-Lipschitz with N||hg||g < 1, then there corresponds to each vy €
Xo(to) one and only one solution u(t) of on [tg, 00) such that P(ty)u(to)
=vo and Xji,00)U(+) € . Moreover, there exist positive constants p and C),
independent of to such that for any two solutions uy(t),us(t) corresponding
to different values vi,va € Xo(to) we have

(3.9) Jur (t) — ua(t)|| < Cue ™70 |luy —wa|  for t > to.
THEOREM 3.9 ([I3, Thm. 4.6]). Under the assumptions of Theorem 3.8
if [ is p-Lipschitz for ¢ satisfying
N2Nilesllellelle + Nllhglle < 1,

then there exists an invariant-stable manifold S of £-class for the solutions
of (.1). Moreover, any two solutions ui(t),us(t) on S attract each other
exponentially in the sense that there exist positive constants p and C,, inde-
pendent of tog > 0 such that

(3.10)
lur(t) = ua ()| < Cue™#10)|| P(to)ur (to) — P(to)ua(to)l|  for t > to.

4. Exponential trichotomy and admissibly center-stable mani-
folds on R.. In this section, we will generalize Theorem to the case
where (U(t,s))t>s>0 has an exponential trichotomy on Ry. To do this, we
first make the following assumption.
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ASSUMPTION 4.1. Let the evolution family (U(t,s)):>s, +,sc1 have an ex-
ponential trichotomy on I with constants N, H,«, 5 (o < (), and projec-
tions (Pj(t))er, j = 0,1,2, as in Definition and let p € Ef be a -
exponentially Ej-invariant function where 8’ := (5 — a)/2.

In this case, we will prove that there exists an invariant-center-stable
manifold of £-class for the solutions of (3.1)) if f is p-Lipschitz.

THEOREM 4.2. Let Standing Hypothesis and Assumption[d1] be sat-
isfied with I = R4.. Suppose that f: Ry x X — X is p-Lipschitz such that

N2Nillegllellelle + Nlhglle < 1.

Then there exists an invariant-center-stable manifold C = {(t,Cy) : t € Ry

and C; C X} of E-class for the solutions of (3.1)), with the family (Cy)i>0

being the graphs of the family of Lipschitz continuous mappings (g¢)e>o0 (i.e.,

C; := graph(g;) = {x + gz : * € Im(Py(t) + P5(t))} for each t > 0) where
2

gt : Im(Py(t) + Pa(t)) — Im Py (t) has Lipschitz constant | = al Ti%ﬁ'h'sllll:“y

independent of t, such that:

(i) To each xg € Cy, there corresponds one and only one solution u(t) of
on [to, 00) such that u(to) = wo and the function X, cye” " u(")
belongs to £, where v := (o + B3)/2.

(ii) C; is homeomorphic to Xo(t) ® Xa(t) for all t > 0, where Xo(t) =
P()(t)X and Xg(t) = PQ (t)X

(iii) C is invariant under in the sense that, if u(t) is the solution
of such that u(to) = zo € Cy, and the function X, ocye” " u(")
belongs to £, then u(s) € Cy for all s > ty.

(iv) For any two solutions wuy(t),us(t) on the center-stable manifold C
there exist positive constants p and C,, independent of to > 0 such
that

l(t) = y(8)|| < Cuer 1)
x [[(Po(to) + Pa(to))z(to) — (Polto) + Pa(to))y(to)]l
for allt > ty.
Proof. Set P(t) := Py(t) + Po(t) and Q(t) := Pi(t) = I — P(t). We
consider the rescaled evolution family
Ut,s)x = e Ut s)r  forallt>s>0,z€ X,

where v := (a + ) /2.
It is easy to check that (U(t,s))i>s>0 is an evolution family on X. We

claim that (U(t, s))t>s>0 has an exponential dichotomy with projections
(P(t))e>0 on the half-line. Indeed, it suffices to verify the estimates in Defi-
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nition [I.2] By the definition of exponential trichotomy we have
1T (s, 8, Q)| < He™ P12 Q(t)z]| = He™ P2 Q(#)a
forallt > s > 0 and z € X. On the other hand,
(¢, 5)P(s)x]| = e U(t, 5)[Po(s) + Pas)]a|
< Hem 00| Py (s)a|| + He~ 0= =)|| Py(s)a
< He™ B 2E=9) (| Py(s)a|| + || Pa(s)z]))
= Hem O =92(|| Py(s) (Po(s) + Pa(s))z]|
+ [[P2(s)(Fo(s) + Pa(s))x])

< Nem 2 (|(Po(s) + Pa(s))al| + [ (Pols) + Pals))z])
= 2Ne (B~ (t=9)/2) p(s) |

forallt > s > 0 and z € X (here we use the fact that N := H sup,>{||FPo(t)|,
[P, [[1P2(0)]]} < o0).
We finally obtain the estimate

|U(t, s)P(s)z|| < 2Ne~F==9)/2|P(s)z|| forallt>s >0,z € X.

Therefore, (U(t,s)):>s>0 has an exponential dichotomy with projections
(P(t))i>0 and dichotomy constants N’ := max{H,2N}, ' := (8—«)/2 > 0.
Put #(t) := e x(t), and define

F:RyxX—= X, F(tx)=e "f(t,ez) forallt>0, zc X

We can easily verify that F' is also ¢-Lipschitz. Thus, we can rewrite ((3.1)
as
~ t ~
(4.1) z(t) = U(t, s)x(s) +SU(t,§)F(§,5E(§)) d¢ forae. t>s>0.
S

Hence, by Theorem if
N2Nilleg |lellelle + Nlhg e <1

then there exists an invariant-stable manifold C of Eg-class for the solutions

of (4.1). Returning to (3.1)), by using the relation x(t) := €% (t), we can
easily verify the properties of C stated in (i)—(iv). =

REMARK 4.3. In case the evolution family has an exponential trichotomy
and the nonlinear term f satisfies the local ¢-Lipschitz condition (i.e., f is of
class (M, ¢, p)) with f(¢,0) = 0 and the positive function ¢ € E satisfying
k < min{54-,1} and N||hg||r < 1 (here k is defined as in (3.5))), then in a
similar way, using the results in Subsection 3.1, we can obtain the existence
of a local-center-stable manifold of E-class for the solutions of , that is,
a set C C Ry x X such that there exist positive constants p, pg, p1 and a
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family of Lipschitz continuous mappings
gt = Bpy NIm(Po(t) + Po(t)) — B,y NIm P (t), teRy,
with Lipschitz constants independent of ¢, satisfying;:

(i) C={(t,x+ g(x)) € Ry x (Im(Py(t) + Po(t)) ®Im Py (t)) : t € Ry,
x € B,y NIm(Py(t) + Pa(t))},

(ii) Ct == {z + ge(x) : (t,z + gi(x)) € C} is homeomorphic to By, N
Im(Py(t) + Pa(t)) for all t > 0,

(iii) to each zg € Cy, there corresponds one and only one solution u(t) of
(3-1) on [to, 00) such that u(to) = zo and x[1,,00)e " u(-) € &€, where
v:i=(a+pB)/2.

(iv) for any two solutions u;(t), u2(t) on the local-center-stable manifold
C there exist positive constants ;1 and C, independent of 5 > 0
such that

(4.2) =) —y(@®)|] < CpeOrmli=to)
x [|(Po(to) + P2(to))x(to) — (Polto) + Pa(to))y(to)ll
for all t > .

5. Examples. In this section, we give some concrete examples to illus-
trate our abstract results. Let us start from a semilinear equation that has
an autonomous linear part perturbed by a nonautonomous nonlinear forcing
term, to show that, even in this simple case, our result is new.

ExAMPLE 5.1. Consider the evolution equation
dx(t)
dt
where A is a sectorial operator whose spectrum o(A) decomposes into the
disjoint sets {\ € 0(A) : ReA <0}, {\ € 6(A) : ReA > 0}, and {\ € 0(4) :
Re\ = 0} such that o(A)NiR consists of finitely many points. Then A is the
generator of an analytic semigroup (7(t))+>0. We define the evolution family
U(t,s) :==T(t —s) for all t > s > 0. We claim that it has an exponential
trichotomy with appropriate projections. By the spectral mapping theorem
for analytic semigroups, for fixed ¢, the spectrum of T'(t¢) splits into disjoint
sets 09,01, 02, where o9 C {|z| < 1}, o1 C {|z] > 1}, 02 C {|z| = 1} with
o9 consisting of finitely many points. Next, we let Py = Py(tg), P1 = Pi(to),
P, = Py(tp) be the Riesz projections corresponding to the spectral sets
00,01, 09, respectively. Clearly, Py, P;, P, commute with 7T'(¢) for all ¢ > 0.

Obviously, Py+ P+ P, = I and P;P; = 0 for ¢ # j, and there are positive
constants M, § such that ||T(t)|p,x|| < Me™® for all t > 0. Furthermore,
let Q := Py 4+ P> =1 — Py and consider the strongly continuous semigroup
(To(t))e=o0 on Im Q, where Tg(t) := T'(t)Q. Since o1 U oy = o(T(to)), we

(5.1)

— Az(t) + f(t,2),
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can extend (T(t))i>0 to a group (Tg(t))ier in Im Q. As is well-known in
semigroup theory, there are positive constants K, a,y (with « as small as
we wish; we may let o < 7y) such that
1T (=8 x| = [I(To(®)]px) | < Ke™* for all ¢ >0,

ITo ()| px|| < Ke for all ¢ € R.
Summing up, the evolution family (U(t,s))i>s>0 has an exponential tri-
chotomy with projections Pj, j = 0,1,2, and positive constants N, «, 3,
where

B :=min{d,~v}, N :=max{K,M}.

Putting 8" := (8 — «)/2 we find that, if f is p-Lipschitz for some positive
function ¢ € E’ which is f’-exponentially E-invariant and

N2Ni|legllellellz + Nlhglle < 1,

then there exists an admissibly center-stable manifold of £-class for mild

solutions of (5.1)), i.e., of

2(t) =T(t - s)z(s) + | T(t - O f(& 2(¢))de  forallt > s> 0.

S
The next examples give concrete samples of .
EXAMPLE 5.2. For a fixed n € N*, consider the equation
wi (2, 1) = Wy (2, 1) + nw(z, t) + (1) sin(w(, 1)),
(5.2) O<z<mt>0,
w(0,t) =w(m,t) =0, t>0,

where the step function ¢(t) is defined for fixed constants ¢ > 1 and b > 0
by

63) ol = {

Here, the values of ¢ can be very large but we still have ¢ € L, (for 1 <
q < c) since we can estimate |||z, as follows:

bm ifté[m%l—eclm,Q%Jrleeclm] form=1,2,...,

0 otherwise.

oo (2m—+1)/24+1/ec™

e8] 1/
||90HLq = (Z S b dT)l/q _ <Z Qli;nq> q

m=1 (2m+1)/2—1/e™ m=1

> —am\ V4 2l/qp
< (o) 2

Note that in this case, N1 = Ny = 1.
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We define X := L3[0,7], and let A : X D D(A) — X be defined by
A(y) = y" + n?y, with

D(A) ={y € X:y and 9/ are absolutely continuous, y’ € X,
y(0) = y(m) = 0}.
Equation (5.2) can now be rewritten as
du

= Aut fltw) for u(t) = w( 1

where f: Ry x X — X with f(¢t,u) = ¢(t) sin(u) for ¢ as in (5.3).
It can be seen [7] that A is the generator of an analytic semigroup
(T'(t))e=0-
Since 0(A) = {—1+n?,—4+n?,...,0,—(1+n)?+n?, ...}, applying the
spectral mapping theorem for analytic semigroups we get
J(T(t)) _ eta(A) _ {et(nQ—l)’ et(n2—4)’ o €t((n—l)Q—nZ)}

U {1} U {e—t((1+n)2—n2), 6—1?((2—&—11)2—n2)7 o }

One can easily see that the nonlinear forcing term f is ¢-Lipschitz. Note
that we may choose § = v = 1 independent of n and o < 1. Then 8 = 1,
and ' = (1 — «)/2 is small, so that our next estimates are valid. We now
compute hg and estimate its norm. By Standing Hypothesis [2.10]

T / 1/
(5.4)  hp(t) = (g e~ 1t=7] 54 (1) dT) !
0
[ (2m+1)/2+1/ec™
= (Z S e~ 9B t=T) a4 g
m=1 (2m+1)/2—1/ec™
oo (2m+41)/241/ec™ ) 1/q
+ Y | eyt ar)
m=[t]4+1 (2m+1)/2—1/ec™
where [t] is the integer part of t. Using the facts that 1 < e® for z > 0,
and eX — 1 < 9X for 0 < X < 2, we can estimate the first sum in (5.4) as
follows:
t] (2m+1)/2+41/ec™
Z S e~ (t=T) a9 dr
m=1(2m+1)/2—1/e™
ple—ab't i e 2m+1)/2(2a8' /e _ 1)ma
= qﬁl —~ 6qﬁ//ecm
[t

ple—aB't ] 18¢[3'eah' 2m+1)/24mq  18pa¢48' /2 —ab"t
< J—

— / cm - _ pq+qB—c
qp = e 1-—e
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The second sum in (5.4)) can be estimated by

co  (2m+1)/241/ec™
Z S e~ ("= 47
m=[t]4+1 (2m+1)/2—1/ec™

b i e~ 1P'te2aB't = aB' (2mA1) /20248’ /e _ 1) pa
- 7/ qﬁl/ecm

9 m=[t]+1 €

ble=9F'[2g=aB't 2 18qBe?P'mtma 18ple—9F/2¢—aP't
- ap’ 2 ecm T 1 eatafe

m=[t]+1
Therefore,

18bq 1/q / 2 ! 2 1 !
hlgl (t) S <1q+q,3’—c> (eqﬁ/ + €_qﬁ / ) /qe_ﬁ t fOI' all ¢ Z 0.
— €

Hence, hg € L, and
1
b- 184 (eqﬂ’/2 + e—qﬂ’/2)1/q
(pB)1/P(1 — eatab’—c)1/q ’
Therefore, using the conclusions in Example we deduce that, if
2Y/aN2p
(V{1 — ci-)i/a
bN - 181/4
T @B et
then there exists a center-stable manifold of L,-class for mild solutions
of (5.2).
ExaMpPLE 5.3. For a fixed n € N*, consider the equation
wi(, 1) = a(t)[wea (2, t) + n*w (@, )] + o(t) sin(w(z, 1)),
(5.6) O<zx<m t>0,
w(0,t) = w(m,t) =0, t >0,
where ¢ is defined as in (5.3)), while a(-) € Ljjoc(Ry) satisfies v1 > a(t) >
~v0 > 0 for fixed 9,71 and a.e. t > 0.

Wezput X := Ls[0, 7], and let A: X D D(A) — X be defined by A(y) =
y" + n?y, with

sz, <

(5.5)

(e99'2 4 =08 /2)a < q,

D(A) ={y € X:y and ¢/ are absolutely continuous,y’ € X,

y(0) = y(m) = 0}.
Putting A(t) := a(t)A, we can now rewrite as
CC%‘ ~ A+ () for u(t) = w(- 1)
where f: Ry x X — X with f(¢t,u) = ¢(t) sin(u).
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As in the above examples, A is a sectorial operator and generates an an-
alytic semigroup (7'(t))+>0, and o(A) satisfies the conditions as in Examples
and Therefore, A(t) “generates” the evolution family (U(, s))t>s>0
defined by

t

Ult,s) = T(ga(f) dT).

Arguing as in Examples and we see that the analytic semigroup
(T'(t))t>0 has an exponential trichotomy with projections Py (k = 0,1,2)
and trichotomy constants IV, a;, 8 where « is as small as required. Moreover:

) [17()]px] < Ne™P,
(i) [7(=t)lpxll = [(T(B)]px) ' < NemP,
(iii) [7(t)|px]l < Ne,

for all ¢ > 0. From this, it is straightforward to check that (U(t, s))t>s>0 has
an exponential trichotomy with projections Py (k = 0,1,2) and trichotomy
constants N, Bvg, ay1, by the following estimates:

‘ < Ne—ﬁvo(t—s)’

U, s)|pox|l = T(SQ(T) dT) PoX

H < Ne—B’YO(t—S)7

0G0l = 10 e = |7(=amyar)|

NU(t, )| px|l = T(§ a(T) dT)

‘ < Neom(t=s)
poxll = ’

for all t > s > 0. By Theorem if (5.5)) holds, then there exists a center-
stable manifold of L,-class for mild solutions of ([5.6]).

6. Admissibly unstable manifolds for equations defined on the
whole line. We now consider the case where (U(t, s)):>s and f are defined
on the whole line. That is, we will consider the integral equation

(6.1) z(t) =U(t,s)z(s) + S Ut,§)f(&x(§))dE  for ae. t > s.

s

As in Section 1, the solutions of (6.1)) are the mild solutions of the equation

%:A(t)x—kf(t,x), teR, zeX,

where A(t), t € R, are (in general) unbounded operators in X, which are
coefficients of the well-posed Cauchy problem
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WO — Atyu(t), t>s,
u(s) =z € X,

whose solutions are given by x(t) = U(t, s)x(s) as mentioned in the Intro-
duction. In this case, admissibly (local- or invariant-) stable manifolds on R
are defined and their existence is proved in a similar way to the case of
equations defined on Ry (see [13, Thm. 4.7]). Therefore, we will focus on
admissibly unstable manifolds which are defined below.

6.1. Local-unstable manifolds of £r-class. We shall prove the ex-
istence of an admissibly local-unstable manifold under the conditions that
(U(t,s))t>s has an exponential dichotomy and f is local ¢-Lipschitz and in
the class (M, ¢, p) for a suitable positive function ¢ € Ef.

DEFINITION 6.1. A set U C R x X is said to be a local-unstable manifold
of Er-class for the solutions of if for every ¢t € R the phase space X
splits into a direct sum X = Xy(t) @ Xi(t) with positive inclination, and if
there exist positive constants p, pg, p1 and a family of Lipschitz continuous
mappings
h ZBpOﬂXl(t) *)Bpl ﬂXQ(t), t e R,

with Lipschitz constants independent of ¢, such that

(i) U=A{(t,z+ h(x)) € Rx (Xi(t) ® Xo(t)) : © € Byy N X1 (t)},
(i) Ug = {z+hi(x): (t,z+hi(x)) € U} is homeomorphic to B,y NX1 ()
for all t € R,
(iii) to each zp € Uy, there corresponds one and only one solution x(t)
of such that z(t9) = o and the function x(_u 4,2 (-) belongs
to the ball B, in £g° := &g N L.

Let (U(t,s))t>s have an exponential dichotomy with projections P(t),
t € R, and dichotomy constants IV, 3 > 0. Then we can define the Green
function as follows:

(6.2) G(t,7) == {P(t)U(t, T) for t > 7,
’ ~U(t,m)|[I - P(r)] fort<r.

Thus, we have

(6.3) |G, 7)) < Ne P71 for all t # 7.

We now prove the existence of a local-unstable manifold of Eg-class. To
do that, we first find the form of the solutions of (6.1) which belong to
admissible spaces on (—o0,tp]. We denote by || - ||~ the sup-norm.

LEMMA 6.2. Let Standard Hypothesis and Assumption be sat-
isfied with 1 = R. Suppose that f : R x B, — X belongs to the class
(M,p,p). Let x(t) be a solution of (6.1) such that for some fized to the
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function x(_og 10)7(+) belongs to B,. Then for t < to,

to
(6.4) 2(t) = Ult,to)v1 + | G(t,7)f(r,2(7)) dr
for some v1 € Xi(to) = (I — P(to))X, where G(t,T) is the Green function
defined as in (6.2)).

Proof. Let
to
(6.5) y(t) == | G(t,7)f(r,(r))dr forall t <to.

Then the function y(-) is bounded. Indeed, by estimates of the Green func-
tion G and of f we have

to
ly( oo <\ Ne P71 (7, 2(7))|| dr
- t to
NM[ S e_B(t_T)cp(T) dr + S eﬁ(t_T)cp(T) dT}
t

—00

IN

2.

2.4)
<

+
NM[Nlll/h(PHoo + No|| A1 T} @!!oo] o

1—e P
Next, by computing directly we verify that y(-) satisfies the integral equation

(6.6) y(to) = Ulto, t)y(t) + S Ulto, 7)f(r,x(7))dr for all t < tp.

Indeed, substituting y from (6.5 to the right-hand side of we obtain

to

Ulto,t)y(t) + | Ulto, 7) f(r,2(r)) dr

= U(to, t) S G(t,7)f(r,z(7))dr + S Ulto, ) f(r,x(1))dr

=Ul(to,t) | Ut 7)P(7)f(r,2(r))dr
to to
— Ulto,t) \ U(t,7)(I = P(1))f(r, (7)) dr + | Ulto, 7) f (7, (7)) dr
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= | Ulto,7)P(7)f(7,2(7)) dr

- S Ulto,)U(t,7)|(I — P(7)) f(r,2(7)) dr + S Ulto, 7)f(r,x(1))dr
to to
= | Ulto,)P(r)f(r,2(r))dr = | Glto,7)f(7,2(r))dr = y(to);

here we use the fact that U(to,t)U(t, 7)(I — P(7)) = U(to, 7)(I — P(7)) for
all t <7 <ty. Thus,
to

y(to) = Ulto, )y(t) + | Uto, 7) f(7,2(7)) dr.

¢
On the other hand,
to

x(to) = Ulto, ) (t) + | Ulto, 7) f(r,2(7)) dr.
Therefore z(to) — y(to) = Ul(to, t)[x(t) — y(t)].
We need to prove that z(tg) —y(to) € (I—P(to))X. Applying the operator
P(tp) to the expression z(ty) — y(to) = Ulto, t)[x(t) — y(t)], we have

y(t
1P (to)[z(to) — y(to)lll = [|U (to, t) P(t)[(t) — y(#)]]
< Ne PUD| P(@)|| [l2() — y(t)])
Since supeg [|P(t)]| < oo and [lz(t) — y(@)|| < [[2()llec + y()llee < o0,
letting t — —oo we obtain
1P (t0)[x(to) — y(to)]]| = 0.

This means that vy := z(tg) — y(to) € (I — P(to))X = X1(to), finishing the
proof. =

REMARK 6.3. By computing directly in a similar way to Remark
we can see that the converse of Lemma is also true. Thus all solutions

of (6.4]) satisfy (6.1)) for s <t < tp.

LEMMA 6.4. Under the assumptions of Lemmal[6.2], for any positive num-
bers p and M, if f belongs to the class (M, ¢, p) such that

N
1—¢e B
then for r = p/max{2N,2NNi|leg||g,} and ty € R there corresponds to
each v1 € B, N X1 (tg) one and only one solution u(t) of . on (—o0,to]
such that (I — P(to))u(to) = v1 and the function X(_oo,u(-) belongs to B,.
Moreover, there exist positive constants ji and C\, independent of ty such that

(VAT el Nl Al < mind 1,554 and Nl < 1.
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for any two solutions ui(t),uz(t) corresponding to different values vi,ve €

B, N X1 (tp) we have

(6.7) ur (t) — ua(t)|| < Ce 0= |luy — vy fort < to.

Proof. For v1 € B, N Xi(tg) we will prove that the transformation T

defined by

(Tz)(t) = { Ult,to)jor +§° G(t, ) f(r,a(r))dr for t < to,

0 for t > t,

acts from B, into B, and is a contraction. Indeed, for z(-) € B, we have

I|f(t,z(t))|| < Mo(t); therefore, putting
y(t) = { Ut to)jon + 12, Gt m) f(ra(r) dr - for ¢ < to,

0 for t > tg,
we obtain
to
(6.8) ly()]| < Ne P=ljog|| + N | e Tl (r) dr.
—o0
It now follows from the admissibility of L, that y(-) € Loo(R, X) and

NM
ly( oo < Nllorll + =5 (NI TT @lloo + Nof| A1p]loc).

Using the fact that [|v1| < 5% and
N
1_cB
we therefore obtain ||y(-)||e < p.
It follows from and the admissibility of Fr that y(-) € Eg and

(NI ¢lloo + Nelldrlloe) < 557

N
T (ML (@)l + Nal| 410) | 52)

Hence the transformation 7" acts from B, to B,. We now estimate

ly(llex < NNl[oal llesll s +

(e o]

ITz(t) = Ty < | 1GEDIf (row(r) = fry(m)] dr

—0o0
o0

< N { e Pmlo(r) dr |2 () - y ()l
0

Therefore,

(6.9) |Te - Tyl <

—5 (MM T oo + N[ A1gllos) 12 = ylloo.

<p
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On the other hand,

I1Tz(t) = Ty@)| < | IGEDIIf (r2(7)) = f(r.y(r)] dr
< N e Pl (r) |z (r) — y(7)|| dr.
0

Since ||z(-) — y(-)|| € Er and e Pl—lp(.) € Ef, by “Hélder’s inequality”
(2.6) we obtain

T2 (t) = Ty (@)l < Nlle o )llgy | l2() = yOlll e = Nhg(®)]lz = ylle,.-
By Standing Hypothesis we then see that hg(-) € Er, and hence
(6.10) 1Tz = Tyllex < Nlihslzelle = ylle-

Putting | = max{N|hg||g,, %(N:[HAITTCPHOO + No||A1¢llso) }, by
and we obtain [Tz — Ty|lee < l[|z — yllgge. It follows from the as-
sumptions that [ < 1. Hence, T': B, — B, is a contraction.

Thus, there exists a unique z(-) € B, such that Tz = 2. By definition
of T" we know that z is a solution of for t < tg, and by Remark
it is a solution of for all s < t < ty. By Lemma and Remark
u() = 2(—oo,,) i the unique solution of for t < to such that
X(—oo,t0]u() belongs to B),.

The estimate can be proved in the same way as in [13, Thm. 3.6]. =

From Lemmata and using the same arguments as in [13, Thm. 3.8]
we obtain the existence of an admissible local-unstable manifold:

THEOREM 6.5. Under the assumptions of Lemma[6.4], for any p>0 and
M >0, if the function f belongs to the class (M, ¢, p) such that

N p
k= —— (N || AT No|| A < mind 1. -
(6.11) 1_67,3( 114 1 ©lloo + No||A10]l00) mm{ ’QM}’
Nlhglle <1,

then there exists a local-stable manifold U of Er-class for the solutions of
(6.1). Moreover, any two solutions ui(t),us(t) on U attract each other ex-
ponentially in the sense that there exist positive constants u and C,, inde-
pendent of tg € R such that

(6.12)  lur(t) — ua(?)]|
< e M| P(to)us (to) — P(to)ua(to)||  fort < to.

Proof. The proof is similar to that of [I3, Thm. 3.7], replacing R} by R
and using the structure of solutions as in Lemmata[6.2] and [6.4. We just note
that the family (hy)er of Lipschitz mappings determining the local-unstable
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manifold of &r-class is defined by
t
he: BN X1(t) = BN Xo(t), hi(y)= | G(t,9)f(s,2(s))ds
—00

for r = p/max{2N,2NNi|leg| .} and y € B, N X;(t), where z(:) is the
unique solution in £, of (6.1) on (—o0, t] satistying (I — P(t))z(t) =y
(the existence and uniqueness of z(-) is obtained in Lemma [6.4). Further-
more, the Lipschitz constant of h; is % < 1, the same as that of g; deter-
mining the local-stable manifold of Eg-class (see [13, Thm. 3.7]). =

From the existence of local-stable and local-unstable manifolds of &Eg-
class for (6.1) defined on the whole line we derive the following important
corollary which describes the geometric picture of solutions to (6.1)).

COROLLARY 6.6. Under the assumptions of Lemma for any p > 0
and M >0, if f belongs to the class (M, p, p) such that
P 1
2M° 7 M max{2N,2N Ni|leg|| g}
where k is defined as in , then there exist a local-stable manifold S

and a local-unstable manifold U of E-class for the solutions of (6.1) having
the following properties:

k< min{ } and Nlhg|g, <1,

(a) For each tg, Sy, N Uy, contains the unique element vy, .

(b) The solution ug(t) of with initial condition ug(to) = vy, belongs
to the ball B, in E°.

(¢) The solutions u(t) of satisfying u(ty) € Sy, exponentially
approach uo(t) as t — oo and exponentially recede from ugy(t) as
t — —oo.

(d) The solutions u(t) of satisfying u(to) € Uy, exponentially ap-
proach ug(t) as t — —oo and exponentially recede from ug(t) as
t — oo.

Proof. (a) The condition = € Sy, N Uy, is equivalent to the existence of

w € By, N Xo(to) and y € By, N X1 (o) such that z = w + gryw = hyyy + v,
where g¢;, and h;, are members of the families (g;)ier of Lipschitz continu-
ous mappings determining S and (h;);er determining U, respectively. Then
w — hyyy =y — gryw € Xo(to) N X1(to) = {0}. It follows that w = hyyy and
y = gy, w. Therefore, w = hy, (gi,w) = (hey © g1, )w. We now estimate g, w
for w € By, N Xo(tp) by using the formula (see [I3] eq. (22)])

o0
(6.13) gio(w) = | Glto, )£ (5, 2(5)) ds,

to

where w € B,; N Xo(to) and z(-) is the unique solution in B, of (6.1) on
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[to, 00) satisfying P(tg)z(tgp) = w (the existence and uniqueness of x(-) is
obtained in Theorem [3.3). Note that pg = 1/max{2N,2NNi|les|/z}. By
(6.13]) we have

o0 o0

lgzo (W)l < § 1G (0, $)I1 1 £ (s, 2(5))[| ds < NM | e o=lo(s) ds
to to
NM
< T NIlIATT plloo + Na[ A16]|oc)
1
=kM < 20

max{2N, 2NN [lesz}

(since k& < 1/(Mmax{2N,2N Ni|leg|r})). Hence, g1, : By, N Xo(to) —
B,Oo N Xy (to). Similarly, hto : Bpo N X3 (to) — Bpo N Xo(to). It follows that

Ity © gt - By, N Xo(to) — By, N Xo(to).

As g4, and hy, are both Lipschitz continuous with the same Lipschitz
constant £ < 1 (see Theorem H and [I3], proof of Thm. 3.8]), h¢, © g, is
a contraction. Thus, there exists a unique wg such that wg = (hy, © g, )wo.
Putting vy, = wo + g1, wo we find that v, is the unique element of Sy, N Uy,.

Property (b) is a consequence of the definitions of the local-stable and
local-unstable manifolds of Er-class.

Properties (¢) and (d) follow from (3.7) and (6.12)), respectively. =

6.2. Invariant-unstable manifolds of £g-class. In this subsection we
consider the existence of an admissibly invariant-unstable manifold under
the conditions that the evolution family has an exponential dichotomy, and
the nonlinear term f is p-Lipschitz continuous.

DEFINITION 6.7. A set U C R x X is said to be an invariant-unstable
manifold of Er-class for the solutions of (6.1)) if for every ¢ € R the phase
space X splits into a direct sum X = Xo(t) @ X (¢) with positive inclination,
and if there exists a family of Lipschitz continuous mappings

gt :Xl(t) —)Xg(t), t eR,
with Lipschitz constants independent of ¢, such that
() U={(t,z+g:(r)) € Rx(Xi(t) @ Xo(t)) : & € Xa ()},
(i) Uy :={z+ g(z) : (t,x + g¢(x)) € U} is homeomorphic to X;(t) for
all t € R,
(iii) to each xp € Uy, there corresponds one and only one solution x(t)
of (6.1 such that x(tg) = xo and the function x(_o ¢, 2(-) belongs
to (C;R.
(iv) U is invariant under (6.1) in the sense that if z(-) is a solution of
(6.1) such that x(tg) € Uy, and the function X(_s 4,7 (-) belongs
to &g, then z(t) € Uy for all ¢ < ty.
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As in the previous subsection (Lemma , we can find the form of the
solutions of (6.1)) which belong to admissible spaces on (—o0, ty]:

LEMMA 6.8. Let Standing Hypothesis and Assumption be sat-
isfied with T = R. Suppose that f : R x X — X is p-Lipschitz. Let x(t),
t < to, be a solution of (6.1) such that X )2(-) belongs to Eg. Then for
t < tO}

to
(6.14) 2(t) = Ult,to)1 + | Gt,7)f(r,2(7)) dr

—00
for some v1 € Xi(to) = (I — P(to))X, where G(t,T) is the Green function
(6-2).

Proof. Put y(t) := St_‘)oo G(t,7)f(r,z(7))dr for t < ty and y(t) = 0 for
t > to. Since f is ¢-Lipschitz, using (6.3) we obtain

[e.@]
Lyl < N | eBmlp@s(r)dr for t < to.

—00

Using the “Holder inequality” (12.6)) it now follows that
ly1 < e o)l gy |21l -

By Standing Hypothesis the function hg(t) = |]e_mt_'|cp(~)||% belongs
to Er. Therefore, by Banach lattice properties, y(-) € &g and

lyOller < Nl B ll2]l -
By similar calculations to those in the proof of Lemma 6.2 we can see that
to
y(to) = Ulto, t)y(t) + | U(t, 5)f(s,2(s))ds  for t <.
¢

Since z(t) is a solution of (6.1)) we obtain
x(to) — y(to) = Ulto, t)(x(t) —y(t)) fort <tyo.

Putting now v; = x(ty) —y(to) and applying the operator P(ty) to the above
expression we have

1P (to) [2(t0) —y(to)lll = U (to, ) P(#) (t) =y (D]l < Ne= 0 [lz(t) —y(2)]].

So [l (t) —y(t)|| = NeP0=D| P(to)[z(to) —y(to)]|l. Since (x(-) = y(-))l(~oo,to]
belongs to £ 4, and the function ePllo=t) ¢ < ¢, does not belong to
E(_1o]> the admissibility of E(_, ) shows that P(to)[z(to) — y(to)] = 0.
Therefore, vy := x(tg) —y(to) € X1(to). Finally, since z(t) = U(t, to)v1+y(t)
for t < ty, the equality follows. =
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REMARK 6.9. By computing directly in a similar way to Remark 3.7,
we can see that the converse of Lemma [6.8] is also true. Hence all solutions

of (6.14)) satisfy (6.1]) for ¢ < ¢g.

Similarly to Lemma we have the following lemma which describes
the existence and uniqueness of certain bounded solutions.

LEMMA 6.10. Under the assumptions of Lemma[6.8], let f : R x X — X
be @-Lipschitz such that N|hgllg, < 1. Then there corresponds to each
v1 € Xi(to) one and only one solution x(t) of on (—oo, tg] such that
(I — P(to))z(to) = v1 and the function X (oo 0x(-) belongs to Eg.

Proof. For each ty € R and v; € Xj(tp) we will prove that the transfor-
mation 1" defined by

to
(Tz)(t) = { Ut to)jor + §2° G(t,7) f(r,x(7)) dr  for all t < to,
0 for all ¢ > to,

acts from &g into &g and is a contraction.

Indeed, for z(-) € Er we have || f(t,z(t))| < ¢(t)]|z(t)], and therefore,
putting

y(t) = { Ut to)jor + §p, G(t, 7) f(1, (7)) dr for t < to,

0 for t > ty,
we have
o
ly@)|| < Ne ooy || + NM | e P=7lo(r)|la(r)||dr  for all t € R.
— o0

Putting eg(t) := e Pl ¢ € R, and using the “Holder inequality” we
see that

ly@)I < Nloill(Tfep)(®) + e o) gy Il for all € R.

By Standing Hypothesis the function hg(t) = ||e_ﬁ|t_'|go(-)\|% belongs
to Eg. Therefore, by Banach lattice properties, y(-) € Ep and

ly()llee < NNllvill llesllze + 17l 22| 2
Hence, the transformation 1" acts from &g into &g.
It follows from the estimates of G and f that

IT@) = TW)lee < | IGE D) (7,2(7)) = f(ry(m)] dr
<N | o) |2 (r) = y(7)| dr.

—00
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Since ||l2(-) — y(-)|| € Eg and e PI*=lp(.) € Ef, by ([2.6) we obtain

IT2(t) = Ty < Nle o) lg | 2() =yl s = Nha@®)|z =yl
for all ¢ € R. Since hg € Er, we then have
1Tz = Tyllez < Nlhgll el —ylle-

Hence, if N||hg||g, < 1, we conclude that T': &g — &g is a contraction with
contraction constant k = N||hg| .
By the Banach contraction mapping theorem, the lemma follows. =

From Lemmata and using the same arguments as in [13, Thm. 4.6]
we now obtain the existence of an invariant-unstable manifold of Eg-class:

THEOREM 6.11. Under the assumptions of Lemmal[6.8] suppose that f :
Rx X — X is ¢-Lipschitz such that NNi|[eg|| g ||¢l|lm, + N kgl g < 1. Then
there exists an invariant-unstable manifold U of Er-class for the solutions
of . Moreover, for any two solutions x1(-) and x2(-) belonging to U, we
have

l1(#) = 2a(t)|| < Ce™#OD|[(I = P(to))a1(to) — (I = Plto))z2(to)]

for all t < ty, where C, p are positive constants independent of ty, x1(-) and
xg()

Proof. The proof is similar to that of [I3, Thm. 4.6], replacing Ry by
R and using the structure of bounded solutions as in Lemmata
We just note that the family (h;)ier of Lipschitz mappings determining the
unstable manifold is defined by

t
he: X1(t) = Xo(t),  hu(y) = | G(t,5)f(s,2(s)) ds
—00

for y € X1(t), where z(-) is the unique solution in &_ . of (6.1)) on (—oo, ]
satisfying (I —P(t))z(t) = y (the existence and uniqueness of z(-) is obtained

in Lemma . m

Using similar arguments to those for Corollary we easily obtain the
following corollary, which describes the relations of solutions of with
initial values lying on the invariant-stable or invariant-unstable manifolds
and the solution lying on the intersection of the two manifolds.

COROLLARY 6.12. Under the assumptions of Lemma let f be -
Lipschitz such that NNi|leg|| gl ¢l gz, + Nlhsllg. < 1. Then there exist an
mmwvariant-stable manifold S and an tnvariant-unstable manifold U of Eg-
class for the solutions of having the following properties:

(a) For each tog, Sy, N Uy, contains the unique element vy, .
(b) The solution ug(t) of (6.1]) with initial condition ug(to) = vy, belongs
to ER.
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(c¢) The solutions u(t) of (6.1)) satisfying u(to) € Sy, exponentially ap-
proach ug(t) as t — oo and exponentially recede from ug(t) as t —
—00.

(d) The solutions u(t) of (6.1)) satisfying u(to) € Uy, exponentially ap-
proach ug(t) as t — —oo and exponentially recede from ug(t) as
t — oo.

We illustrate our results on the existence of invariant-stable and invar-
iant-unstable manifolds by the following example.

EXAMPLE 6.13. We consider the problem

srut, x) =325 -1 Dilaw(t, 2) Diu(t, x))

+ ou(t,x) + o(t) sin(u(t,z)), t>s, z€ 2,
227121 ng(x)ag (t,x)Dyu(t,x) =0, t>s, x € I,
u(s,z) = f(x), ze€f
Here Dy, := 0/0x), and {2 is a bounded domain in RY with smooth boundary
012 oriented by outer unit normal vectors n(z). The coeflicients ax(t,z) €
Cl'(R, Los(£2)), 1 > 1/2, are supposed to be real, symmetric, and uniformly
elliptic in the sense that

n
Z ap(t, x)vpy; > nlv?  forallt € R, ae. z € 2
k=1

(6.15)

and some constant 1 > 0. Also, the constant § is defined by § := —%n)\,
where A < 0 denotes the largest negative eigenvalue of the Neumann Lapla-
cian Ay on (2.

Finally, the step function ¢(t) is defined for fixed constants ¢ > 1 and
b > 0 by

(6.16)

oty = {00 € (250 o 0 ] o =122,

0 otherwise.

Here, we note that the values of ¢ can be very large, however, by computing
as in Example 5.2, we still have ¢ € L, (for 1 < ¢ < ¢) and

41/ap
(1 —et—c)l/a’

We now choose the Hilbert space X = Ly(f2) and define the operators
C(t) via the standard scalar product in X as

n

(Ct)f,9)=— Z S ar Dy f(2) Dig(x) d

k=10
with D(C(t)) = {f € W22(02) : > k=1 nk(@)a(t,2)Di f(x) = 0, x € 002}.

le(mr, <
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We then write as an abstract Cauchy problem
{ fru(t.) = Au(t, ) + F(tu(t, ), t=s>0,
'LL(S, ) =feX,
where A(t) := C(t) +d and F : Ry x X — X defined by F(t, f)(x) :=
o(t)sin(f(x)) for (¢, f) € Ry x X, with ¢ defined as in (6.16)).

By Schnaubelt [28, Chapt. 2, Theorem 2.8, Example 2.3], the operators
A(t) generate an evolution family having an exponential dichotomy with
dichotomy constants N and 3, provided that the Hoélder constants of ag
are sufficiently small. Also, the dichotomy projections P(t), t € R, satisfy
supycp [ P(1)] < N.

We now easily see that F'is o-Lipschitz for ¢ € L, as above. In this
space, the constants N7 and Ny in Definition are both 1. Note that we
may choose  to be small, so that our estimates on hg(t) are valid.

Similarly to Example 5.2, we can estimate
o0

nat) = ( § e =7lg(r) ar) 1/4

—0o0

by
b 361/2e8/2c—Blt

hg(t) < 1= c-crah)i/a for all t € R.

Hence, hg € L, and
b-361/ae8/2

pﬁ)l/p(1 — eqchrqﬁ)l/q‘
Here, 1/p+1/¢=1,and p= o0 if ¢ = 1.

Therefore, by Theorems and (precisely, its counterpart on R), if

o(l+a)/a N2p bN - 361/4e8/2
(5p)1/p(1 — eq—c)l/q + (pﬁ)l/p(l — eq—c+qﬁ)1/q <
then there exist an invariant-unstable manifold U and an invariant-stable
manifold S of L,-class for the mild solutions of .

1hsllz, < (

(6.17) 1,

6.3. Invariant-center-unstable manifolds of £r-class. Using Theo-
rem and rescaling procedures similar to Theorem to transform the
trichotomy case to the dichotomy case, we can easily obtain the existence
of an invariant-center-unstable manifold of Er-class:

THEOREM 6.14. Let Assumption [.1] and Standing Hypothesis [2.10] be
satisfied with 1 =R and suppose that f : Ry x X — X is p-Lipschitz with

N2Nilleg |l mellollg + Nl |5, < 1.

Then there exists an invariant-center-unstable manifold C* = {(t,C}) :
t € Ry and CP C X} of Er-class for the solutions of (6.1)), with the family
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(C)ter being the graphs of the family of Lipschitz continuous mappings
(ht)ter (i.e., Cf = graph(h;) = {& + hyx : @ € Im(P1(¢) + Pa(t))} for each
t € R) where hy : Im(Py(t) + Pa(t)) — Im Po(t) has Lipschitz constant
_ N2Nilegllgellolls
1— NHhﬁ’”ER

independent of t, such that:

(i) to each T9 € Ct there corresponds one and only one solution
) of (6.1} . on (—oo,tg] such that u(ty) = xo and the function
X( Ooto}e “u(+) belongs to Er, where v := (a+ ) /2.

(ii) C}* is homeomorphic to Xi(t) ® Xa(t) for all t € R, where X;i(t) =
Im Py (t) and X2(t) = Im Ps(t),

(iii) C" is invariant under in the sense that if u(t) is the solution
of such that u(ty) = w0 € C}j and the function X(—oo o7 u(*)
belongs to Er, then u(s) € CY for all s < to,

(iv) for any two solutions wuy(t),u2(t) on the center-unstable manifold
CY there exist positive constants p and C), independent of tg € R
such that

(6.18)  [lz(t) — y(t)]| < Cpelr =)o)
X [[(P1(to) + Pa(to))z(to) — (Pi(to) + Pa(to))y(to)ll;
for all t < ty.

Note that an invariant-center-stable manifold of Er-class on the whole
line is defined and its existence is proved in the same way as in the case of
R (see Theorem (4.2)).

From the existence of invariant-center-stable and center-unstable man-
ifolds of Er-class for defined on the whole line we have the following
important corollary describing the behavior of solutions to .

COROLLARY 6.15. Under the assumptions of Theorem|6.14], suppose that
f s p-Lipschitz with

(6.19) N2Nillegllgellelz + (V2 = DN|hg ||, < V2 - 1.

Then there exist an invariant-center-stable manifold C and an invariant-
center-unstable manifold C* of Egr-class for the solutions of equation (6.1))
having the following pmpertz’es:

(a) For each ty € R, Cto is homeomorphic to Xa(to) = Pa(tg)X.

(b) The solution ug(t) of (6.1} ) with initial condition ug(to) € Cy, N CY
satisfies e g (-) € SR, where 7= (a+B)/2.

(c) For the solution u(t) of satisfying u(to) € Cy, the function
e u(t) exponentially approaches e ug(t) as t — oo, and eVu(t)
exponentially recedes from eug(t) as t — —oo.
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(d) For the solution u(t) of (6.1) satisfying u(to) € C{ the function
eVtu(t) exponentially approaches e ug(t) ast — —oo, and e u(t)
exponentially recedes from e Vug(t) as t — oc.

Proof. (a) Let us first prove that for each z € Xa(¢) there exists a unique
w € Xo(t) ® Xa(t) such that w = hy(z + g¢(w)) + z, where g; and h; are the
members of the Lipschitz mapping families (g¢):cr and (hy)iecr determining
the invariant-center-stable and invariant-center-unstable manifolds, respec-
tively. Indeed, the mapping

L:Xo(t) ® Xao(t) = Xo(t) ® Xo(t), y— h(z+g:(y)) + 2,
satisfies

ILyr — Lya|l = he(z + g:(y1)) — ha(z + gu(y2))

N2N1llesll zllell e
< R lge(v1) — ge(2) || < Pllyr — w2l
1 — N|hg| g

2
al ]Zl_lffiliﬂit;”% is the Lipschitz constant of g; and h;.

Since | < v2 —1 < 1 we see that L is a contraction. Let w be its
unique fixed point. Then w is the unique element in Xy(¢) @ X2(t) such that
w = h(z + ge(w)) + 2.

Define now D : X3(t) — C, N C by D(z) = w + ¢g;(w), where w is the
unique element in Xy (t) @ Xa(t) such that w = hy(z + g¢(w)) + z. Then we
have w + gi(w) = z + gi(w) + he(z + ge(w)) € C, N C}. The uniqueness of w
implies that D is a well-defined mapping.

We next prove the surjectivity of D. For x € C; N C} there are u €
Xo(t) ® Xo(t) and v € Xy(t) @ Xa(t) such that x = u + gi(u) = v + hy(v).
Then u — hy(v) = v — gi(u) € (Xo(t) @ Xao(t)) N (X1(t) & Xa(t)) = Xo(t).
Therefore, there is a z € Xa(f) such that v — h(v) = v — gi(u) = 2. It
follows that uw— h:(z + g¢+(u)) = 2. As shown above, this relation means that
Dz = u + g;(u) = z. Consequently, D is surjective.

We now prove that D is a Lipschitz mapping. Indeed, by the definition
of D we have D(z1) = w1 4 g¢(w1) and D(22) = wa + g¢(w2) for wy and wy
being the unique solutions in Xo(t) & Xa(t) of w1 = hy(2z1 + ge(w1)) + 21 and
wy = hy(z2 + gi(w2)) + 22, respectively. Then

(1 = Dflwr — wal| < [|D(21) — D(22)||
= Hzl + hi(z1 + ge(wi)) + ge(wr)
— (22 + hu(22 + ge(w2)) + ge(w2)) ||
<z = 22|l + 1|21 — 22l + [ ge(w1) — ge(w2)]|
+ llg¢(w2) — ge(w2) ||
< (L + D[z — 2ol + 1T + 1) Jwz — wa.

where [ =
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Therefore, [D(z1) = D(z)[| < (1+1)]|z1 — 2 + LE2D(z1) — D(z)].

Thus, [|D(21) — D(20)|| < 5=ghgzllz1 — zl; note that 2 — (14 1)2 > 0

sin062l < v/2 — 1. Hence, D is a Lipschitz mapping with Lipschitz constant
%. It follows that D is continuous and injective. As shown above,
D is surjective, therefore it is bijective. The inverse D~! of D is defined as
D 1:C:NCH — Xo(t) with DY w + gi(w)) = 2 if 2 = w — he(2 + ge(w)).

We next prove that D~! is also a Lipschitz mapping. Indeed, for z; =
w1 + g¢(wy) and x9 = wa + g¢(w2) belonging to C; N C} we have

D™ 21 = D™ || = |21 — 2]
< le — he(z1 + ge(w1)) — (w2 = (22 +gt(w2)))H

< Jhwy = wall + 1|21 = 22| + 2wy — wall
= (1+)|lwy — wa|| + D™ 21 — D™ ||

1412
< 11 w1 + gi(w1) — w2 — gi(w2)|
+ 1Dtz — Dy
14102 _ _
= =1 H.Tl —:15'2” +l||D 13?1 -D 1$2||.

Therefore, [|[D~tz; — D las|| < %Hm — x5]|. Hence, D! is also a Lip-
schitz mapping. It follows that D is a homeomorphism, and so C; N C}! is
homeomorphic to Xa(t) for all ¢ € R.

Property (b) follows from the definitions of the invariant-center-stable
and invariant-center-unstable manifolds.

Properties (¢) and (d) are consequences of the inequalities (4.2) and
(6.18), respectively. =
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