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Finiteness problem for meromorphic
mappings sharing n + 3 hyperplanes of P"(C)

by St Duc QuANG (Hanoi)

Abstract. We prove some finiteness theorems for differential nondegenerate mero-
morphic mappings of C™ into P"(C) which share n + 3 hyperplanes.

1. Introduction. Using the Second Main Theorem of Value Distribu-
tion Theory and Borel’s lemma, R. Nevanlinna [N| proved that for two non-
constant meromorphic functions f and g on the complex plane C, if they
have the same inverse images for five distinct values then f = g, and that
g is a special type of linear fractional transformation of f if they have the
same inverse images, counted with multiplicities, for four distinct values.

In 1981, Drouilhet considered the results of Nevanlinna for higher di-
mensions and differential nondegenerate meromorphic mappings. He proved
the following uniqueness theorem.

THEOREM 1.1 ([Dl Theorem 4.2]). Let f,g: C™ — P"(C) be differential
nondegenerate meromorphic maps with m > n. Let A be a hypersurface of
degree at least n + 4 in P*(C) having normal crossings. Suppose f~1(A) =
g Y(A) as point sets and f and g agree at all points of f~(A) lying in their
common domain of determinacy. Suppose either M = C™ or f and g are
transcendental. Then f = g.

Then a question arises naturally: What about the case where the degree
of Aisn+ 37

We emphasize that for the case of linearly nondegenerate meromorphic
mappings, in the best results available at present, given by Chen—Yan [CY]
and Quang [Q], the authors just considered the case where the hypersurface
A is a union of 2n + 3 hyperplanes in general position. Also their techniques
of proof do not work for less than 2n + 3 hyperplanes.
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The purpose of this paper is to give a positive answer to the above
question in a particular case where the hypersurface A is a union of n + 3
hyperplanes.

Let f be a differential nondegenerate meromorphic mapping of C"™ into
P*(C) (m > n) and let Hy,...,H, be ¢ hyperplanes of P"(C) in general
position. Let d be a positive integer. We denote by G(f, {H;}!_,,d) the set
of all differential nondegenerate meromorphic mappings g of C"™ into P (C)
which satisfy the following two conditions:

(i) min{y?f’Hi)(z),d} = min{v?g’Hi)(z), d} forall 1 <i<gq, zeC™,
(ii) f =g on UL, f~(H)).
We will prove the following.

THEOREM 1.2. Let f be a differential nondegenerate meromorphic map-
pings of C™ into P"(C) (m > n) and let Hy,...,H,t3 be n+ 3 hyperplanes
of P"(C) in general position. Then the set G(f,{H;}!"2,2) contains at most
two elements.

THEOREM 1.3. Let f and Hy,...,Hy3 be as in Theorem [1.2] Assume
that

dim(f_l(Hi)ﬁf_l(Hj))gm—2 forall 1 <i<j<n+3.
If n > 2, then the set G(f, {H;}""3 1) contains at most two elements.

=1

THEOREM 1.4. Let f and Hy, ..., Hy13 be as in Theorem[L.2] Let f1, f2, f3
be in G(f, {H:}732,1). Assume that dim f~'(H, N Uy Hy) < m — 2 and

min{v(s, ,)(2),2} = min{v(y, g,)(2),2} for all 1 < s, t < 3 and 2z €
f7HHy). Then fi = fa or fo= f3 or fs = fi.

2. Preliminaries
(a) For z = (z1,...,2m) € C™, we set ||z]| = (37, |2j1?)!/2 and define
B(r)y={ze€C™:|z| <r}, I'(r)={zeC™:|z|=r},

c -1 = c m—
=Y 1@-0), o=@,

n = dlog| z||? A (ddlog||z])™ .

Denote by Mer(C™) the set of all meromorphic functions on C™. A di-
visor E on C™ is given by a formal sum E = > p,X,, with {X,} is
a locally family of distinct irreducible analytic hypersurfaces in C™ and
py € Z. We define the support of E by Supp(FE) = Ul/;éO X,. Sometimes we
identify the divisor E with the function E(z) from C™ into Z defined by

E(2) =2 x5l
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Let k be a positive integer or +00. We define the divisor E@ by

k .
E[>l = Z min{p,, k}X,.
,U»zz>t
and the truncated counting function to level k of E by

(k]
k n (tv E)
N[>t](r, E):= S %dt (1 <r<o0),
1
where
E[fg o iftm>2,
(K] Supp(E)NB(t)
no;(t, F) =
>i(h E) s EM(z) if m = 2.
|2|<t

We omit ¥ (resp. +;) if k = +oo (resp. t = 0).

An analytic hypersurface F of C" may be considered as a reduced divi-
sor; we then denote by N(r, E) its counting function.

For two divisors F1, E2, we define the divisor min{E;, F»} by setting

min{E1, E2}(z) = min{E1(z), E2(z) }.

(b) Let F' be a nonzero holomorphic function on C™. For a multiindex
a = (aq,...,qy,) of nonnegative integers, we set |a| = a3 + -+ + ay;, and
DOF = 9l*lF /9% 21 - - - 0% 2,,. We define the zero divisor of F as follows:

% (a) = max{p : D*F(a) = 0 for all a with |a| < p}.

Let ¢ be a nonzero meromorphic function on C™. For each a € C™, we
choose nonzero holomorphic functions F and G on a neighborhood U of a
such that ¢ = F/G on U and dim(F~1(0) NG~1(0)) < m — 2 and we define
the zero (resp. pole) divisor of ¢ by Vg(a) = 1%(a) (resp. vy(a) = v2(a))
and v,(a) = v9(a) — vX(a).

© ©
We have the following Jensen formula:
(2.1) N(r, Q) = N(r,vr) = | logleln— | logleln.
I(r) (1)

For convenience, we will write N,,(r) and NL’th(r) for N(r, I/g) and Ngﬂt] (r, Vg)
respectively.

We denote by Mcm the field of all meromorphic functions on C™.

(c) Let f be a meromorphic mapping of C™ into P"(C), (m > n). We
say that f is differential nondegenerate if df has maximal rank. For any

homogeneous coordinates (wg : --- : wy,) of P*(C), we take a reduced rep-
resentation f = (fo : --+ : fn), which means that each f; is a holomorphic
function on C™ and f(z) = (fo(2) : --- : fu(2)) outside the analytic set

I(f) :=={z: fo(z) = -+ = fu(z) = 0} of codimension > 2.
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Denote by 2 the Fubini-Study form of P"(C). The characteristic func-
tion of f (with respect to §2) is defined by

dt

T

1 B(t)
By Jensen’s formula we have
(2.2) Ty(r)= | loglfln+o0(1),
I(r)
where || f|| = max{|fol,. .., [fnl}-

(d) For a meromorphic function ¢ on C™, the prozimity function m(r, )
is defined by

m(r,p) = | log™|g|n,
I'(r)

where log™ 2z = max{logz,0} for x > 0. The Nevanlinna characteristic
function is defined by

T(r,¢) = N(r,v) +m(r, ¢).
If we regard ¢ as a meromorphic mapping of C™ into P!(C), then
Typ(r) =T(r,¢) + O(1).

(e) Let H be a hyperplane in P"(C) given by H ={aowo + - - - + apwy, =0},
where (ag,...,an) # (0,...,0). We set (f,H) = Y 1", a;fi;. We define the
proximity function of f with respect to H by

SI-1H Sl -11H
st = | tog UL,y o AL LEL,
r(r) ’ () ’
where || H|| = (37 |ail*)'/?.

THEOREM 2.1 (The first main theorem). Let f : C™ — P™(C) be a mero-
morphic mapping and H be a hyperplane in P (C). Assume that f(C™) ¢ H.
Then

(2.3) Ty(r) = N(r, I/?f’H)) +myg(r, H) +0O(1) (r>1).

THEOREM 2.2 (Lemma on logarithmic derivative). Let f be a nonzero
meromorphic function on C™. Then

D(f
m(r, JE )) =O(log" Ty(r)) (a€Z?).

As usual, “|| P” means the assertion P holds for all € (1, 00) off a finite
Lebesgue measure subset of (1,00).

Let {H;}!_, be q hyperplanes in P"(C). They are said to be in general
position if (V;_o H;; = 0 for any 1 <ig < --- < i, < gq.

(2.4)
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We now state the known result on the Second Main Theorem for differ-
ential nondegenerate meromorphic mappings.

THEOREM 2.3 (Carlson-Griffiths [CG|, Shiffman [Sh], Noguchi [Ng|,
Drouilhet [D]). Let f be a differential nondegenerate meromorphic map-
ping of C™ into P"(C) (m > n). Let {H;}!_, be q hyperplanes in P"(C) in
general position. Then

I (g —n—1)Ts(r) < NU(r, £ A) + o(T4(r)),
where A is the divisor Y | H;.

3. Some lemmas. Let f be a differential nondegenerate meromorphic
mapping of C™ into P*(C) (m > n) and let Hy,..., Hy be ¢ hyperplanes
in P*(C) in general position. For each g € G(f, {H;}1_,1), it is easy to see
that if ¢ > n 4+ 2 then

1(g) = (o~ "(H) = () f~"(H) = 1(f).
=1

=1

Let fi,fo, f3 € G(f,{H;}}_{,1). Assume that each f; has a reduced
representation

fo= (o frn) (1<k<3).
We now introduce some notations which will be used throughout this

paper.
We denote by A;;, B;; the hypersurfaces in C™ defined by

Ajj = U {a: irreducible hypersurface C f~(H;) N f~1(H;)},
Bi; = U {av irreducible hypersurface C f~1(H;) \ f~1(H;)}.

We set T(r) := S5 _, Ty, (7).
For each ¢ = (cg, ...,c,) € C"1\ {0}, we denote by H, the hyperplane
{cowo + * -+ + cpwy,, = 0} and put
(fi, He) = Zcifki (1<k<3).
i=0
Fori e {1,...,q}, let

Vi = ((f1, Hy), (f2, Hi), (f3, Hi)) € M.
We write

o VirVjif (fr, Hi) _ (fo, Hi) _ (f3, Hi)

(fi,Hy)  (fo, Hy)  (f3,Hj)

otherwise we write V; %V,
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e V; ~ Vj if there exists a permutation {k,t,s} of {1,2,3} so that

(kale _ (ftaHZ) # (fs,Hz)
(fk‘aH]) (ft7H]) (fsaH])’
L (fuH) , (fe Hi) |, (fs. Hi) |, (fi, H)
[ ] 4 - if .
Vi ij 1 (fl?H]) ?é (f?vH]) ?é (f3>Hj) # (fl:Hj)
We decompose the set of indices {1, ..., ¢} into disjoint sets as follows:
(i) {1,...,¢} =L U---UIL,
(3.1) (i) Vim Vjforalli,jel (1<t<k),

(ili) Vi Vjforallie I, je I, (1 <t<s<k).

We set I({H;}{_1; f1, f2, f3) = k, the number of sets in the above partition
of {1,...,q}.

LEMmMA 3.1. Ifq >n+2 and I(fl,fg,fg) < 2 then f1 = f2 = f3.

Proof. If I( f1, f2, f3) = 1, then the conclusion is clear. Now suppose that
I(f1, f2, f3) = 2 and f1 # fo.

Let I, I> be two disjoint sets in the partition of {1,...,¢} as in (3.1).
By changing the indices if necessary, we may assume that Iy = {1,...,l}
and Ip = {l+1,...,q}, where | < ¢— 1. If fI; =1 > n+ 1 then fi; = fo,
contrary to assumption. Therefore [ < n.

Without loss of generality, we may assume that the hyperplanes H; (1 <
i < mn+2)are given by H; = {w;-1 =0} (1 <i<n+1)and Hypo =
{-wo — -+ —wy = 0}. Then

n—+2

(3.2) Z(f57Hz) =0 (s=1,2).
i=1
We set
_ (fi, H) ~ (f1, Hiq1)
o) ™ 97 (o Hin)

Since f1 # fa, we have h # g. From , it follows that
h(f2, Hi) + -+ h(fo, Hi) + g(fo, Hip1) + -+ + g(f2, Hpp) = 0.
Thus
(h = g)((fos H1) + -+ + (f2, Hi)) = 0,
and so
f20 + for + -+ fou-1) = 0.

This contradicts the differential nondegeneracy of fo. Hence f1 = fo.
Similarly, we have f| = fo = f3. =
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Denote by C the set of all ¢ € C*™1\ {0} such that

(i) dim{z € C™ : (fy, Hi)(2) = (fi, He)(2) =0} <m -2 (1 <i<gq,
1<k<3),

(ii) {Hi,...,Hgq, H.} are in general position.

LEMMA 3.2. C is dense in C*H1,

Proof. Denote by C; the set of all ¢ € C"*1\ {0} which satisfy (i). Then,
by [J, Lemma 5.1], C; is dense in C"*1.

For I = {iy,...,in} C {1,...,q} with #I = n, define a holomorphic
function 77 on C"*! by setting T;(c) := det(a;k, cx), where 1 < j <n, 0 <
k <n.Tt is easy to see that Ty # 0. Thus, S = (), 7; *{0} is an analytic set
of codimension one in C**1.

Therefore, C = C; \ S is dense in C"!. u

LEMMA 3.3 (see [Fu98]). For each c € C"\{0}, set F** = (fs, H;)/(fs,¢)
(we will write Fj* for F* if H. = Hj). Then Tgis(r) < Tfs( )+ o(T(r)).

LEMMA 3.4. Let ¢ = n + 3 and let fi, fo be as above. Suppose that
f1 7'é fg. Then:

ON N(fH (r) = N(r,min{vy, . v, gy} +o(T(r) (L<i<n+3),
(ii) || Ty, (r) = Tp,(r) 4+ o(T(r)) = §NW(r, f*A) + o(T(r)), where A =

Hl +--+ Hq;
(ifi) f | <;§;H) g;mg” then || NU(r, Bij) = NW(r, Bj;) + o(T(r)) =
o(T(r)),

(iv) if | tRgy # 25 then || NU(r, Ayy) = o(T(r)).

Proof. (i)—(iii) Fix i € {1,...,n + 3}. Since f # g, there exists ¢ =
(co,...,cn) € C such that

= (f1, Hi)(f2, He) = (f1, He)(f2, Hi) # 0
For z € C™\ I(f) it is easy to see that

o ifze Suppf*A\f ( i) then I/P (z) > 1, since fi(z) = fa(2),
e if z € f~1(H;) then v}, (2) > mln{y(thi)(z),Z/?f%Hi)(z)}.

This yields
V8 (2) = minfofl) ) (2), 0, (=)} + mind FA(2), 1) — min{ul; 7 (2), 1.
Integrating, we obtain

(3.3) Np,(z) > N(r, min{V?thi), V(Ofg,Hi)}) + N f*A) — N([]lc]yHi)(r).
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On the other hand, by Jensen’s formula and the definition of the character-

istic function,

(34)  Np.(r)= | log|Pc[n+0(1)
I(r)

< | Qog(|(fr, 00 + [(fr, H)[H)'?
" +10g(|(f2, ) + (2, Hi) 1))+ O(1)
< Ty, (r) + Tpy (r) + o(T(r)).
By the Second Main Theorem, we also have

(3.5) | Ty, (r) < sNW(r, fA) +o(T(r))  (1<5<2).
C(?mbining 73.5 with N (r, min{V?fl’Hi), V?f%Hi)}) > N([ch]’H )( ), we ob-

tain
: 1
| N (r,min{wly, g, vy, D) = N, (1) + o(T(r),
| Ty, (r) = §Np.(r) + o(T(r)) = NU(r, f*4) (1< s<2).
Thus (i) and (ii) are proved.

(3.6)

(fr,Hi) _ (f2,H,i)
(f1,Hj) = (f2,H;)’

o If z € Suppf*A\Bl] then 1/?3 (z) > 1, since f(z) = g(z2).
o If z € B;; \ f1(H;), we rewrite P, as follows:

(f1, H)
7(fi,H])((f1’ ) (f2, He) = (f1, He)(fa2, Hy)).

If there is an index j such that || then we see that:

This yields
V%ic(z) > (min{ f*A(2),1} — B;j(2)) + 2B;;(2) = min{ f*A(z), 1} + B;;(2).
Integrating, we get

Np, (2) = NW(r, f*4) + NU(r, Byj).

Combining this With (3.6), we have || NIU(r, B;;) = o(T(r)).
Similarly, | NlU(r, B;;) = N[ I(r, Bﬂ) +o(T'(r)) = o(T'(r)), proving (iii).
(iv) Suppose that || f D 75 (f 2. We consider the holomorphic func-

tion
= (f1, Hi)(f2, Hj) — (fr, Hj)(fa, Hi) # 0
Similarly to the argument in (i)—(iil), we see that:
o If z € Supp f*A\ A;; then V%Z_C(z) > 1, since f(z) = g(z).
o If z € Ayj, then v}, (2) > min{”?f,Hi)(Z)7 1} + min{u?fﬂj)(z), 1} =2.
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Hence V?Dic(z) > (min{f*A(2),1} — Ai;(2)) + 24;;(2) = min{f*A(z),1} +
A;i(z). It follows that

Np,,(r) > NU(r, £ A) + NU(r, A;)).
Combining this with , we have | NU(r, A;;) = o(T(r)), and (iv) is
proved. m

REMARK 3.5. 1) Lemma is also valid for any distinct maps h, g in
g(f? {H }:H_l?’v 1)
2) If ¢ =n+3 and f1, fo, f3 are distinct maps in G(f, {Hi}?jf’, 1), then:
(a) Fori,je{l,...,n+3} with V; ~ V}, we have || N(r, Ai;) = o(T'(r))
and || N(r,B;j) = N(r,Bj) + o(T(r)) = o(T(r)). From Lemma
3.4{(iii)—(iv), it follows that
1
| N{f (1) = N(r, Aij) + N(r, Bij) = o(T(r)),
| NI, () = N, Agg) + N(r, By) = o(T(r)).

(b) Take a partition I3 U --- U I as in (3.1). Denote by A; the the
hypersurface defined by

A; = U {a: irreducible hypersurface C ﬂ JH(H))\ U f—l(Hj)}.
JEL Il
From the above remark, we see that for any irreducible hypersurface
a C f7Y(H;) in C™ such that a ¢ f~'(Hj;) whenever V; =~ V;
ora C f~ ( ») whenever Vj» 3¢ V; we have || N(r, o) = o(T(r)).
Therefore,
o dim(A4;, NA4;,) <m—2 for all <i; <ig <k,
o A C fTUH)) and || Ny () = N(r,4) + o(T(r)) for all
jel, 1<i<k,

o [ T5.(r) = § S5, N(r. A + o(T(r)).

DEFINITION 3.6 (see [Fu98]). Let Fy, Fi, F» be meromorphic functions

on C™. Write o := (a!,..., ™) where aF are nonnegative integers, and set
la| = |at| + -+ + |a™|. We define Cartan’s auziliary function by
1 1 1
@Q(Fo,Fl,Fg) = FQFlFQ' l/FO 1/F1 1/F2
D*(1/Fy) D*(1/F1) D(1/F,)
LEmMmA 3.7 ([Fu98, Proposition 3.4|). If &*(F,G,H) = 0 and

QY(1/F,1/G,1/H) = 0 for all o with |a| < 1, then one of the following
assertions holds:

(i) F=G,G=H or H=PF.

(ii) There exist o, B & {0,1} with o # B such that F = oG = H.
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For fi, fo, fs € G(f,{H;}{_;,1) and each j (1 < j < g), we define a
divisor D; by

0 e 0 _ .0 _ .0
Dj(z) = { V(thj)(Z) if V(fl,Hj)(Z) B V(f2,Hj)(Z) - V(f37Hj)(Z)’
0 otherwise.
We now prove the following lemma, which is an improvement of the
lemma on Cartan’s auxiliary function of Fujimoto [Fu98].

LEMMA 3.8. Let f1,fo,fs € G(f,{Hi}l,1). Assume that &% :=
@ (Flol Fio2 [Fiod) £ for some ¢ € C and o with |a| = 1. Then:

(i) | N(r,Dig) + 2(NU(r, f*A) = Ny (1) < Noa(r) < T(r) +
o(T(r)), where A is the divisor lel H on P"(C).

(i) If ¢ = n + 3 then | 2N([}{Hio)(r) > N(r, Diy) + Ty, (r) + o(T(r))
(1 <s<3).

Proof. Set I :=I(f)UU<;<nss(f T (Hi) N f71(H)). Then I is either
an analytic subset of codimension at least two in C™ or an empty set.

Assume that a is a zero of some (f, H;), i # ig, such that a ¢ I and
a ¢ (f,H;,)"1{0}. Let I" be an irreducible component of the zero divisor
of the function (f, H;) which contains a. We take a holomorphic function h
on C™ satisfying v) = v(L), where v(L) denotes the reduced divisor with
support L.

The function
1 1

hFO®  hF
is holomorphic on a neighbourhood U of a for all 1 < s < 2. Since |a| =1,
we have

Ps =

o1 gio2 i Y1 P2
@ = pEFPI 02 piod . ‘ - -
D% D%py

This implies that
(3.7) V3a(a) > 2.
Assume that b is a zero of (f, H;,) such that b ¢ I. We write

ngn YFiol pio2 pio3 ! -D“<.1>.
@ AR

This implies that

(3.8) Vo (b) > min (Z VFcioS(b) - V?,Cioa@) (b) — VIO,ZOU(S)(b) - 1)
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If b € Supp Dj, then v(g, m, 1(b) = (4, 1;,)(0) = v(g5,1,,)(b) = Diy(b). There
exists a holomorphic function h on an open neighbourhood U of b such that
vh = Diy),, - We write

Q¥ = h 2ol o2 o’

h/Fo — h/Fo? h/F0? — h/F0?
D(h/F*t) — D*(h/F%) D(h/Fi*?) — D*(h/F?)

Then
(39) Vpo (b) Z l/h<b) = Dio (b)

From (3.7)—(3.9), we have

Dig(2) + 2(min{ f*(A)(2), 1} = min{v(} 7, )(2)}) < vipa(2)

for all z outside an analytic subset of codimension at least two. This imme-
diately implies the first inequality of (i).

It is easy to see that a pole of @< is either a zero or a pole of some F05.

By (3.7)—(3.9) we see that & is holomorphic at all zeros of F0 (1 < s < 3).
Then

3
Nl/dsa(r) S ZNI/FC'LOS(T)
s=1

On the other hand, it is easy to see that

m(r,®%) < im(r, F%) + 0 <Z m(r, DZ*’”)) +0(1)

s=1
3

<D mr F2%) +o(T(r),

s=1
where ¢0¢ = 1/F%%. Hence,

Nao (1) < Tpa(r) + O(1) < m(r, %) + Ny g (1) + O(1)

3
< SN, e (1) + m(r, F0%)) + o(T(r))
s=1

3
=Y Tpios(r) +o(T(r)) < T(r) + o(T(r)),
s=1

proving the second inequality of (i).
Finally, the second assertion of the lemma immediately follows from the
first assertion and Lemma [3.4(ii). =

From now on, we will denote by Q({ H;}?_1; f1, f2, f3) the set of all indices

j € {1,....q} such that &*(FI' FI* FI*) = 0 for all ¢ € C and a with
la] = 1.



206 S. D. Quang

LEMMA 3.9. Let f1, fa, f3 € G(f, {H;}!42,1). Then there do not exist
i0,Jo € {1,...,n+ 3} and o, 8 € {0,1},« # B, such that

(f. Hiy) _ (2, i) (f3, Hi,)

(310) (flaHjo) - (f27 ) :6(f37Hj0).

Proof. Suppose that such ig, jg and a, B exist. Then fi, fo, f3 must be
pairwise dlstmct Take a partition I; U - U Iy of {1,...,n+3} asin
By Lemma we see that k = I({H} 3. 1, fa. f3) > 3. Without loss of
generality, we may assume that ig € I; and jo € Is.

For each 3 <t < k, if there exists z € Ay, then EJ{IZE?};EQ 8:2, zoggz;

and hence 1 = a, since fi(z) = f2(z). This is a contradiction. Therefore,
Ay =0 for all 3 <t < k. By Remark [3.5(2b), we have

(3.11) | Ny =o(T() Vi€l i>3
Then from Lemma (ii) and (3.11), we see that j € G(f, {H;}142, 1) for
all j € Iy and ¢ > 3.

By Remark |3.5| - 5(2b), for 1 < s < 3 we have

I Ty, (r QZNTA )+ o(T(r)) = L(N(r, A1) + N(r, A2)) + o(T(r))

=1
= SO )+ N )+ o).
This easily implies that

(812) | Tp(r) = Nig ) (r) +o(T(r)) = N,y () + o(T(r).
Then
| N i) () = Ny (1) +0(T() 2 NGy () + 3NG4 (0).

Therefore, || Nfg 1(r) =o(T(r)). Similarly,

i0)>>

(813) || Tr.(r) = N{j 4. 1(r) =0T ().

From (3.11)-(3.13) and Remark [3.5(2a), we see that V; = Vi, and V; » Vj,
for all i € I; and ¢t > 3.
Taking 41 € I3, by the density of C, we have
@Q(Fcillv F512> Fcilg) =0
for all ¢ € C" and « with |a| = 1. In particular,
P (lel F112 FZ13) — 0

0 Y7t ?

(r)+o(T(r)) and || Nf

57

ie.,
iol _ pio2 iol _ 7mio3
F F F F
o friol i02 o miol i03
D (F"Ll - F’il ) D (le - F"L.l )
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for all @ with |a| = 1. Since the last determinant is a Wronskian, there exist
constants a7 and (1, not both zero, such that

ar (Fjot — F0%) = By (Fjot — %),
Thus
(3.14) (a1 — B1)F°! — a1 Fj? + B F°% = 0.
Because V; = V,, we have a1, € {0,1} and ay # (1. We consider the
meromorphic mapping F' : C™ — P!(C) with reduced representation F' =

(h Fiifl 2 h F;l‘ﬂ), where h is a meromorphic function on C™. We distinguish
the following two cases.

CASE 1: F' = const. Then there exist constants ag and [ such that
iol iol iol
(3.15) Fiol = apFio! = gy R0l
Since V; = V;,, we have ag, 2 ¢ {0,1} and as # (2. Repeating the same
argument as above, we get the following estimate, similar to (3.11)):
N[l]

W o () = o(T().
This contradicts (3.13)).

CASE 2: F # constant. We see that a zero of some hFiilos (1 <s<3)
must be a zero of (f, H;,) or a zero of (f, H;,).

Take a regular point 2y of A;, with 2y & Am. From , there exists a
permutation {s1, s2, s3} of {1, 2,3} such that V?fsl,Hil)(zo) < V?fSQ,Hil)(ZO) =

V?fs;),,Hil)(ZO)' This yields V}?(ZO) = V?fstl_l)(Z()). Thus

3
(3.16) jzgrnhl{ygFﬁﬁ(zO),l}

- V(0f327Hi1)(ZO) - V fSl (ZO
=min{vfy, u,)(20) 7y, )
> (min{fy ) (z0),v

1<s<t<3

Now take a regular point zp of A;, with zop ¢ A;,. Again by (3.15),
there exists a permutation {si, s2, s3} of {1,2,3} such that V?f m,)(70) =

s1H 10

V?fSTHiO)(ZO) < V?f53,Hi0)(ZO)‘ This yields v;°(20) = V?fSUHil)(ZO)‘ Thus

3

(3.17) me{ths(zo) 1} = min{vfy g, y(20) = v}, m,)(20), 1}
s=1

O

)
(zg)} - min{V?f’Hﬁ)(,zo)7 1}
(ot ) (20)} = V?f,Hil)(ZO))-

IN

< 1- DM (z).



208 S. D. Quang
Combining and Lemma [3.4](i), we obtain
<10 0 (1]
H Z thos — Z (N(T, mln{y(f‘s,Hil)7 V(ft,Hil)}) - N(f,Hzl)(r))
1<s<t<3

]
+ N,

— N, D)) + o(T(r)).

= NG, Dyy) + o(T(1)

Y
=N,

Since f(z) = g(z) for all z € Ay we obtain (AF;*' — hF**)(z) = 0 for all
z € Az \ (A1 U A3). Then we have
(3.18) | N([}{Hjo)(r)

= N(r, A2) + o(T(r)) < N,

hFZ{)lthiiPQ (r) +o(T(r))
< TF( )+ o(T'(r))

ZN,ELOS oT(r)) < Ny~ NU(r, i) + o(T(r)

Z NP o1+ 0T(1) = o(T (1))
This contradicts N[ o )(7’) =Tp(r)+o(T(r) (1<s5<3). =

(f7H]0
From Lemmas [3.7] and we immediately get

LEMMA 3.10. Let f1, fo, f3 € G(f,{H; }:L+13, 1). Suppose that ig,jo €
({H} 1af17f27f3) Th@’ll V;'o%‘/jo OTWONV]O
Proof. By the density of C, we have
B (E, 2, Fio%) — 0%(E, 32, F39) — 0
for all ¢ € C and « with |a| = 1. In particular,

1 2 3 jol 702 703
¢a(F;g>F;87F’;g) éa(onoszoovFO)_O
By Lemma one of the following two assertions holds:
o Fiol = [i0% or 0% = Fiv3 op Fi03 = plol
jo jo jo Jo jo

Jo

e there exist a, 8 & {0,1}, a # 3, such that le FZO2 = BF“)S.

Lemma [3.9] shows that the second assertion cannot be true. Thus the first
must hold. Hence V;; = Vj, or V;; ~Vj;. =

4. Proofs of main theorems. We need the following lemma.
LEMMA 4.1. Let fi, fo, fs € G(f, {H;}72,1) be distinct and ip €
({H fl, fa, f3). Then there is a partition Iy UIyU I3 of {1,...,n+3}
as in satzsfymg
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(i) i € Q{H; }”+3 f1, f2, f3) if and only if i € I,

(ii) || N(r,A2) = N(r,As) + o(T(r)) and || N(r,D;) = o(T(r)) for all
1€ IbUIs.

Proof. Since f1, fa, f3 are distinct, I({H; }"+3 f1, f2, f3) > 3. We take a

partition Iy U---U LUl U-- U (changing the indices if necessary) of
{1,...,n+3} as in (3.1)), Wherel+t > 3, so that

ivel, Vi~Vy Vie |J L VixV, Vie (] L
1<i<l I<i<t+l

() I V; % Vig i € L1 U+ Uy then i & QU{H}S; f1, f2, f3), b
Lemma Therefore, to prove (i), it is sufficient to show that [ =1 and
t=2.

Indeed, suppose that t > 2. For each i € {l+1,...,l+t} we pick j; € I,.
By Lemma [3.8(ii),

(4.1) | 2Ny, () = N, Dj) + Ty, (r) + o(T(r)-
Since i € Q({Hi}!%; f1. fa, f3), we have & (F} | F! | Fi ) = 0forall |a| = 1.

Repeating the same argument in the proof of Lemma similarly to (3.14]),
there exist aq, 51 € {0,1}, a1 # B1, such that
(01 = B)F°t — ay FIO% + By F*% = 0.
We consider the meromorphic mapping F : C™ — P!(C) with representation
F = (Fiol ;. plo?)
21 1 ‘
If F' = const, then there exist constants as and (8o such that
Firt = a0t = o,

Since Vj, »~ Vi,, we have ag,f2 ¢ {0,1} and as # [2. Since Flzlol(z) =
F/*'(2) ¢ {1,00} for all z € A, \ (A; U A1) with v & {1,i}, it follows that
A, =0 for all v & {1,4}. In particular,

| Ty, (r) < N(r, Ay) + o(T'(r)) = o(T(r)),

V1i<s<3 I+1<v<Il+t v#i.

This contradicts (4.1)).

Thus F # const. Repeating the same argument as in Case 2 of Lemma/[3.9]
we have the following inequality, similar to (3.18)):

I+t
(42) | g N1, A0) < N o s _(7) +0(T(0)) S Te(r) +0(T(r)
v=Il+1

<Ny = N D) + o(T(r).
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Summing over all i =1+ 1,...,l +t, we get

I+t I+t
(4.3) (t—=2) > N(r,A4)+ > N(r,4)NU(r,D;) < o(T(r)).
i=l+1 i=l+1

This is a contradiction.

Therefore, t < 2.

Suppose that t = 1. We have [ +t > 3 < [ > 2, so by Remark [3.5]2a),
| N(r,A4;) = o(T(r)) for all 1 < i < [. Therefore, from Remark [3.5(2b) it
follows that

+1
I T, (r) < 3D N(r, A) + o(T(r)) < §N(r, A1) + o(T(r))
i=1
< 3T7,(r) + o(T(r)),

a contradiction. Hence ¢t = 2.

We now prove [ = 1. Suppose that [ > 2. Similarly to the above, we have
| N(r,A;) =o(T(r)) for all 1 < i <1 and

+2

~

A
rol—
N

| Ty, (r) < N(r; Ai) + o(T(r))
=1

< 5(N(r, Aipq) + N(r, Aig2)) + o(T(r))
< Ty, (r) +o(T(r)).

This yields
(4.4) | Ty, (r) = N(r, A1) + o(T'(r))

= N(r,Ap2) +o(T(r)) (1<s<3).
Then for [ + 1 < i <1+ 2, we have

| NG ) sar) < N,y (1) = NI}

j)>
< Ty, (r) = Nij () +o(T (1))
= T, (r) = N(r, 4)(r) + o(T(r)) = o(T(r)).
This implies that
3

| N(r,D;,) > N Zme
= N(r,A;) +o(T ()):Tfs( r)+o(T(r) (1<s<3,i>1),

contradicting (4.3]). Therefore, [ = 1. The first assertion of the lemma is
proved.
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(ii) On the other hand, the inequality implies that
| N(r,A2) < N(r,As) — N(r,D;) + o(T(r)) Vi€ Is,
| N(r,As) < N(r,As) — N(r,D;) + o(T(r)) Vi€ Is.
Thus || N(r,A2) = N(r, A3) + o(T(r)) and N(r,D;) = o(T(r)) for all i €
Io U I3. The second assertion of the lemma is proved. m

Proof of Theorem[1.2. Suppose that there exist three distinct mappings
£0,17, £2 € G(f. (i}, 2). Then, by Lemma 40,

(4.5) | N([Jl‘]s ( ) = N([,zj H)( ) — N([Jl”]s )( r)

S N(T7 mln{y?f&Hi)’ l/(fthi)}) - N([}LHZ)(T)
=o(T(r)) (1<s#t<3).

Suppose that there exists ig € Q({H;}; "+3 i f1, f2, f3). We take a partition
I, UL, U I3 as in Lemma [£.1] with i € Il

Then for each i € Iy U I3, we have N(r D;) = o(T(r)). Since i ¢
QU{H;}! f1 f2, f3), combining Lemma i) and (4.5)), we also have

3
(4.6) || N(r,Di) > Ny (0) = S N ) = Ny () + o(T(r))
s=1

> 5(N(r, D) + Ty, (r)) +o(T(r))  (1<s<3).

It follows that || N(r, D;) = Ty, (r) + o(T(r)). This contradicts || N(r, D;) =
o(T(r)).

Hence i ¢ Q({H;}!, fl, fa, f3) for all 1 < i < n+ 3. Similarly to ( ,
we have || N(r, D;) = Tfs( )+ o(T'(r)). By Lemma [3.§(ii), it follows that

| 2N[f 11,)(1) = N(r, Di) + Ty, (r) 4+ o(T'(r)) = 2T7,(r) + o(T(r)).
Take a partition Iy U---U I of {1,...,n+ 3} asin (3.1)). Then

= I({H:};; f1,f27f3) > 3.
From Remark |3.5| - 5(2b), we have

| Ty, (r QZNTAHO( (r))

k
= 13 TL0) +olT () = ST () +o(T(r)).

Letting r — oo, we get 1 = k/2, a contradiction. =

Proof of Theorem [1.3, Suppose that there exist three distinct mappings
O, Y 2 e G(f, {H; }:‘J“l?’, 1). Firstly, we notice that for i # j, dim A;; <
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dim(f~'H; N Hy) < m — 2 (by the assumption of the theorem), and hence
A;j =0 and || N(r, A;;) = 0. Therefore if V; ~ V;, then

(4.7) | N ) = N () + o(T(r)) = o(T(r)).

Suppose that there exists ig € Q({H; }”+3 f1, f2, f3). We take a partition
I UL U I3 as in Lemma [£.1] with ig € I4.
Then for each i € I U I3, by Lemma [3.8[ii) we have

NG () = 3T5,() +o(T(r)) - (1< 5 <3).

From this and ., it is easy to see that #Io = §I3 = 1. Then §/; = n + 1.
It follows that f; = fo = f3, a contradiction.

Therefore, i ¢ Q({H; }?+137f1,f2,f3) for all 1 < i < n+ 3. By Lemma
3.8|(ii), we have

(4.8) | NG gy () = 3T, () + o(T(r).

Take a partition Iy U---U Iy of {1,...,n+3} as in (3.1)). As above, by (4.7
and (4.8) we easily see that #I; = 1 for 1 < i < k. Therefore k = n + 3.
From Remark [3.5{(2b), we have

n+3
| Ty, (r) = 1> N(r, A;) + o(T(r))
=1
nt3 n-+3
> 5 DT (r) +o(T(r) = = Tr,(r) + o(T(r).

Letting r — 0o, we get 1 > (n + 3)/4, a contradiction. =

Proof of Theorem . Suppose that fO, £, f2 are distinct. By Lemma
54),

[1] 2] i
(4.9) I N Gor),27) = Ny () = N (1)

. 1
S N(T, mln{y(fs,Hl)’ V(ft,H1)}) o N([f]s,Hl)(r)
=o(T(r)) (1<s#t<3).
We also notice that for i # 1, dim A;; < dim(f~'H;NH;) < m — 2 (by
assumption), so A, = 0 and || N(r, A;1) = 0. This shows that if V; ~ V}
then

(4.10) | N{f gy () = N g1 () + 0(T(r)) = o(T(r)).

Suppose that there exists ig € Q({H;}; ”+3 : f1, f2, f3). We take a partition
I, UL U I3 as in Lemma [£.1] with ig € I1

If 41; = 1 then I({H;}] ”+3 i f1, f2, f3) = 2. By Lemma we have f1 =
fo = f3, a contradiction. Therefore g > 2.
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We distinguish the following two cases.
CASE 1: 1 € I;. There exists v € I1,v # 1. By (4.10)), one gets

N(r, 4;) = N([le{Hl)(T) +o(T(r)) =0o(T(r)) (because V, ~ V7).

Therefore,

3(N(r, Ar) + N(r, A2) + N(r, A3)) + o(T(r))

= 5(N(r, A2) + N(r, A3)) + o(T(r)).

This yields || N(r, A2) = N(r, A3) + o(T(r)) = Ty, (r) + o(T(r)).
Taking ¢ € I, we have

0
I N,

Ty (r) =

2 1
(1) S NG ) = NG ()

< Ty, (r) = Nj gy (1) +o(T(r) = o(T(r)) (1< 5<3).

i)>

It follows that

11 [1]
I N(r, D) > Ny ZNU%HDQ

= N(r, A) + O(T( ) =Ty, (r) + o(T(r))-
This contradicts || N(r, D;) = o(T(r)) (because i € I5).
CASE 2: 1 ¢ I;. We may assume that 1 € I5. By Lemma [3.§[ii), we have
| N,y (r) = $T7,(r)+0(T'(r)). Suppose that there exists i € I>\{1}. Then
Vi =~ Vi and (4.10) implies that || N[1 )( r) = o(T'(r)), a contradiction.

Therefore Iy = {1}. Hence I({H; };‘+23, f2, f2, f3) = 2. Then f1 = fo = f3,
by Lemma a contradiction.

Therefore, Q({H;}'"2; f1, f2, f3) = 0. Now Lemma (ii) yields
(4.11) | NGy () = 3T () +o(T(r)) (1< 5 <3).

We take a partition I; U--- U I} as in . We may assume that 1 € I.
By repeating the same argument as in Case 2, we have I = {1}. Then
k—1=I({H}"3 fi, f2, f3) > 3 4 k > 4, by Lemma [3.1]

On the other hand, it follows from Lemma [3.8](ii) that

| 2N () = N(r, Dy) + Ty, () + o(T(r)

3
=z N([Jl*]s,Hl)( )= N([Jlf]s,Hl),»(?") + Ty, (r) +o(T(r))

v=1
N )+ T () +o(T) (1< s <3).
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Thus

(4.12)

S. D. Quang

N([chl,Hﬂ(r) = Tfs(r) +o(T(r)) (1<s<3).

Combining Remark [3.5(2b), ([4.11)) and (4.12) we get

k
2Ty (r) = > N(r, A;) + o(T(r))
i=1
k
> Ty, (r) + ) 3T7.(r) + o(T(r))
=2

= 5 Tp(r) +o(T(r)).

Letting r — oo, we get 2 > (k+1)/2, that is, & < 3. This contradicts
k>4. u
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