Sum of squares and the Łojasiewicz exponent at infinity

by Krzysztof Kurdyka (Le Bourget-du-Lac), Beata Osińska-Ulrych (Łódź), Grzegorz Skalski (Łódź) and StanisŁaW Spodzieja (Łódź)

Abstract

Let $V \subset \mathbb{R}^{n}, n \geq 2$, be an unbounded algebraic set defined by a system of polynomial equations $h_{1}(x)=\cdots=h_{r}(x)=0$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial. It is known that if f is positive on V then $\left.f\right|_{V}$ extends to a positive polynomial on the ambient space \mathbb{R}^{n}, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial $h(x)=\sum_{i=1}^{r} h_{i}^{2}(x) \sigma_{i}(x)$, where σ_{i} are sums of squares of polynomials of degree at most p, such that $f(x)+h(x)>0$ for $x \in \mathbb{R}^{n}$. We give an estimate for p in terms of: the degree of f, the degrees of h_{i} and the Łojasiewicz exponent at infinity of $\left.f\right|_{V}$. We prove a version of the above result for polynomials positive on semialgebraic sets. We also obtain a nonnegative extension of some odd power of f which is nonnegative on an irreducible algebraic set.

1. Introduction. Let $f \in \mathbb{R}[x], x=\left(x_{1}, \ldots, x_{n}\right)$, be a positive semidefinite polynomial, that is, $f(x) \geq 0$ for $x \in \mathbb{R}^{n}$. Then

$$
\begin{equation*}
f h^{2}=h_{1}^{2}+\cdots+h_{m}^{2} \quad \text { for some } h, h_{1}, \ldots, h_{m} \in \mathbb{R}[x], h \neq 0, \tag{AH}
\end{equation*}
$$

i.e., f is a sum of squares of rational functions. We shall denote by $\sum \mathbb{R}(x)^{2}$ the set of such sums and by $\sum \mathbb{R}[x]^{2}$ the set of sums of squares of polynomials. The above theorem is E. Artin's [1] solution of Hilbert's 17th problem. Motzkin [16 gave an example of a positive semidefinite polynomial $f\left(x_{1}, x_{2}\right)=1+x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-3\right)$ which is not a sum of squares of polynomials, so the degree of h in $(\widehat{\mathrm{AH}})$ must be positive.

Positive semidefinite polynomials can also be considered on closed basic semialgebraic sets, that is, sets $X \subset \mathbb{R}^{n}$ of the form

$$
X=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}, \quad \text { where } g_{1}, \ldots, g_{r} \in \mathbb{R}[x] .
$$

We define the preordering in $\mathbb{R}[x]$, generated by $g_{1}, \ldots, g_{r} \in \mathbb{R}[x]$, to be the
set
$T\left(g_{1}, \ldots, g_{r}\right)=\left\{\sum_{e=\left(e_{1}, \ldots, e_{r}\right) \in\{0,1\}^{r}} s_{e} g_{1}^{e_{1}} \cdots g_{r}^{e_{r}}: s_{e} \in \sum \mathbb{R}[x]^{2}\right.$ for $\left.e \in\{0,1\}^{r}\right\}$.
Let $f \in \mathbb{R}[x]$. The following Stellensätze are natural generalizations of the above Artin theorem (Krivine [11], Dubois [6], Risler [22]; see also [2]).

Real Nullstellensatz. Let $I \subset \mathbb{R}[x]$ be an ideal. Then $f=0$ on $V(I):=\left\{x \in \mathbb{R}^{n}: g(x)=0\right.$ for any $\left.g \in I\right\}$ if and only if $f^{2 N}+u \in I$ for some integer $N>0$ and $u \in \sum \mathbb{R}[x]^{2}$.

Positivstellensatz. $f>0$ on X if and only if $s f=1+t$ for some $s, t \in T\left(g_{1}, \ldots, g_{r}\right)$.

Nichtnegativstellensatz. $f \geq 0$ on X if and only if $s f=f^{2 N}+t$ for some integer $N>0$ and $s, t \in T\left(g_{1}, \ldots, g_{r}\right)$.

These issues were studied in [15], [21], [26], [28]. A remarkable result of Schmüdgen [29] asserts that for X compact every strictly positive polynomial on X belongs to $T\left(g_{1}, \ldots, g_{r}\right)$. A challenging problem is effective computation of the polynomials in the Stellensätze, in particular explicit bounds for their degrees. For instance a relevant estimate for the degree of the denominator in (AH) was obtained by Schmid (see Scheiderer [28]), who proved that the degree of h can be bounded by an n tower of exponentials in the degree of g. In a recently posted preprint, Lombardi, Perrucci and Roy [14] obtained a bound as a tower of five exponentials in n and $\operatorname{deg} g$.

An important issue is extension of semidefinite polynomials on an algebraic set to semidefinite polynomials on the ambient space. The existence of such an extension was proved by C. Scheiderer [25, Corollary 5.5] (see also [27]). A partial result on nonnegative extension of polynomials was obtained by D. Plaumann [20, Lemma 3.2]. In the present paper we give a constructive proof of the existence of a positive semidefinite extension onto the space \mathbb{R}^{n} (or \mathbb{R}^{n+r} for some $r \in \mathbb{N}$) of a semidefinite polynomial f on an algebraic or semialgebraic set $X \subset \mathbb{R}^{n}$. We estimate the degree of such an extension in terms of the degree of f and the Łojasiewicz exponent at infinity of a suitable mapping.

By the Łojasiewicz exponent at infinity of a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ on an unbounded set S we mean the supremum of the set of exponents ν in the following Łojasiewicz inequality:

$$
|F(x)| \geq C|x|^{\nu} \quad \text { for all } x \in S \text { with }|x| \geq R
$$

for some positive constants C, R, where $|\cdot|$ are norms (in \mathbb{R}^{n} and \mathbb{R}^{m}); we denote it by $\mathcal{L}_{\infty}(F \mid S)$. For $S=\mathbb{R}^{n}$ the exponent $\mathcal{L}_{\infty}(F \mid S)$ will be called the Łojasiewicz exponent at infinity of F and denoted by $\mathcal{L}_{\infty}(F)$. The Łojasiewicz exponent does not depend on the chosen norms in \mathbb{R}^{n} and \mathbb{R}^{m}.

In what follows, we will use the Euclidean norm. The exponent $\mathcal{L}_{\infty}(F)$ is an important tool in the study of properness and injectivity of polynomial mappings, in the effective Nullstellensatz and in optimization (for references see for instance [19]).

For $k, n, d \in \mathbb{N}$ and $l \in \mathbb{R}$ we put

$$
\theta(k, n, d, l)=k(6 k-3)^{n-1}(d+2-l)
$$

Let $V \subset \mathbb{R}^{n}$ be an unbounded algebraic set and let $h_{1}, \ldots, h_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such that $V=\left\{x \in \mathbb{R}^{n}: h_{1}(x)=\cdots=h_{r}(x)=0\right\}$. Obviously we may assume that $r \geq n$. Let $k \in \mathbb{N}, k \geq \max \left\{\operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{r}\right\}$. For a polynomial function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \operatorname{deg} f=d$, which is positive on the set V we have

$$
f(x)+h(x)>0, \quad x \in \mathbb{R}^{n}
$$

and

$$
\mathcal{L}_{\infty}(f+h)=\mathcal{L}_{\infty}(f \mid V)
$$

for an effectively computed polynomial $-h \in T\left(h_{1},-h_{1}, \ldots, h_{r},-h_{r}\right)$, with

$$
\operatorname{deg} h<2+2 k+d+\theta\left(2 k, n, d, \mathcal{L}_{\infty}(f \mid V)\right)
$$

of the form 4.2 (see Theorem 4.1 and Corollary 5.1). We also obtain a version of the above result for $\mathcal{L}_{\infty}(f+h)=\beta$, where $\beta \leq \mathcal{L}_{\infty}(f \mid V)$ is given (see Corollary 4.3). If additionally V is an irreducible algebraic set and $f(x) \geq 0$ for $x \in V$, with $\left.f\right|_{V} \neq 0$, then

$$
f(x) f^{p}(x)=-h(x)+\sigma(x)
$$

where $\sigma \in \sum \mathbb{R}(x)^{2}$, and $-h \in T\left(h_{1},-h_{1}, \ldots, h_{r},-h_{r}\right)$ is of the form (5.4) (see Corollary 5.3). We also have an estimate for the degree of h similar to the above.

For the basic semialgebraic set

$$
X=\left\{x \in \mathbb{R}^{n}: g_{1}(x)>0, \ldots, g_{j}(x)>0, g_{j+1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

where $g_{1}, \ldots, g_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $1 \leq j \leq r$, we put $h_{i}(x, y)=g_{i}(x) y_{i}^{2}-1$ for $i=1, \ldots, j$ and $h_{i}(x, y)=g_{i}(x)-y_{i}^{2}$ for $i=j+1, \ldots, r$, and

$$
Y=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{r}: h_{1}(x, y)=\cdots=h_{r}(x, y)=0\right\}
$$

By Theorem 4.1 we obtain the following version of the Positivstellensatz (see Corollary 5.2): if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a polynomial and $f(x)>0$ for $x \in X$, then

$$
f(x)+h(x, y)=\sigma(x, y)
$$

where $\sigma \in \sum \mathbb{R}(x, y)^{2}$, and $-h \in T\left(h_{1},-h_{1}, \ldots, h_{r},-h_{r}\right)$ is of the form (5.2). The degree of h is estimated similarly to the above in terms of $\operatorname{deg} f$ and the Łojasiewicz exponent at infinity of $\left.f\right|_{V}$.

The main role in our considerations will be played by the following result due to K. Kurdyka and S. Spodzieja (see [12, Corollary 10], cf. [3]-10],
[23]). Let $\operatorname{dist}(x, V)$ be the distance from $x \in \mathbb{R}^{n}$ to the set $V \subset \mathbb{R}^{n}$ in the metric induced by the norm $|\cdot|$ (we set $\operatorname{dist}(x, V)=1$ if $V=\emptyset$). By the degree of a polynomial mapping $F=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we mean $\operatorname{deg} F=\max \left\{\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{m}\right\}$.

THEOREM $1.1([12])$. Let $F=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a polynomial mapping of degree d. Then for some positive constant C,

$$
|F(x)| \geq C\left(\frac{\operatorname{dist}\left(x, F^{-1}(0)\right)}{1+|x|^{2}}\right)^{d(6 d-3)^{n-1}} \quad \text { for } x \in \mathbb{R}^{n}
$$

2. Preliminaries. We denote by $\mathbf{L}(m, k)$ the set of all linear mappings $\mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$, where for $k=0$ we put $\mathbb{R}^{k}=\{0\}$.

We will use the following theorem (see [32, Theorem 4], cf. [31]).
Theorem 2.1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a polynomial mapping having a compact set of zeros, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}(m, k)$ such that $(L \circ F)^{-1}(0)$ is compact, we have

$$
\begin{equation*}
\mathcal{L}_{\infty}(F) \geq \mathcal{L}_{\infty}(L \circ F) \tag{2.1}
\end{equation*}
$$

Moreover, for the generic $L \in \mathbf{L}(m, k)$, i.e., outside a proper algebraic subset of $\mathbf{L}(m, k)$, the set $(L \circ F)^{-1}(0)$ is compact and

$$
\begin{equation*}
\mathcal{L}_{\infty}(F)=\mathcal{L}_{\infty}(L \circ F) \tag{2.2}
\end{equation*}
$$

Let $m \geq k$. We denote by $\Delta(m, k)$ the set of all linear mappings $L=$ $\left(L_{1}, \ldots, L_{k}\right) \in \mathbf{L}(m, k)$ of the form

$$
L_{i}\left(y_{1}, \ldots, y_{m}\right)=y_{i}+\sum_{j=k+1}^{m} \alpha_{i, j} y_{j}, \quad i=1, \ldots, k
$$

where $\alpha_{i, j} \in \mathbb{R}$.
Theorem 2.1 implies the following corollary (see [32, Corollary 5]).
Corollary 2.2. Under the assumptions of Theorem 2.1, for the generic linear mapping $L=\left(L_{1}, \ldots, L_{k}\right) \in \Delta(m, k)$, the set of zeroes of $L \circ F$ is compact and

$$
\mathcal{L}_{\infty}(F)=\mathcal{L}_{\infty}(L \circ F)
$$

Moreover, if $d_{j}=\operatorname{deg} f_{j}$ and $d_{1} \geq \cdots \geq d_{m}$, then $\operatorname{deg}\left(L_{j} \circ F\right)=d_{j}$ for $j=1, \ldots, k$.

Let us recall Proposition 2.10 of [19] (see also [18]).
Proposition 2.3. Let $\beta=p / q$, where $p \in \mathbb{Z}, q \in \mathbb{N}$. Then there exists a polynomial mapping $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that
(a) $\mathcal{L}_{\infty}(\Psi)=\beta$,
(b) $\operatorname{deg} \Psi \leq q \cdot(|p|+q)$.

Moreover, the mapping has at most one zero.

Actually the polynomial mapping Ψ in the above proposition is of one of the following forms: $\Psi=(x, x y-1): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the gradient of the polynomial $h_{1}(x, y)=y^{p+q}-\left(x+y^{q}\right)^{p+q}$ if $p, q \geq 1$, or of $h_{2}(x, y)=y-$ $y^{1+q} x^{-p-q}$ if $-p>q>1$.

Let $G_{k}^{\prime}\left(\mathbb{R}^{n}\right)$, where $0 \leq k \leq n$, denote the set of all k-dimensional affine subspaces of \mathbb{R}^{n}. Let $G_{k}\left(\mathbb{R}^{n}\right)$, where $0 \leq k \leq n$, be the set of all k-dimensional linear subspaces of \mathbb{R}^{n} (cf. [13, B.6.11] for complex Grassmann spaces).

From Proposition 2.3 we obtain the following corollary.
Corollary 2.4. Let $\beta=p / q$, where $p \in \mathbb{Z}, q \in \mathbb{N}$. Let $n>2$, and let $A \in G_{2}^{\prime}\left(\mathbb{R}^{n}\right)$. Then there exists a polynomial $\psi_{\beta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, which is a sum of squares of polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, such that
(a) $\mathcal{L}_{\infty}\left(\left.\psi_{\beta}\right|_{A}\right)=\beta$,
(b) $\operatorname{deg} \psi_{\beta} \leq 4 q(|p|+2 q)$,
(c) $\psi_{\beta}^{-1}(0) \subset A$ contains at most one point.

Proof. Let $E=\left(E_{1}, \ldots, E_{n-2}\right) \in \mathbf{L}(n, n-2)$ be a linear mapping and $z=\left(z_{1}, \ldots, z_{n-2}\right) \in \mathbb{R}^{n-2}$ be a point such that $A=E^{-1}(z)$. By using a translation, we may assume that $z=0$. By choosing an appropriate coordinate system, we can assume that $A=\mathbb{R}^{2} \times\{0\}$.

From Proposition 2.3 there exists a polynomial mapping $\Psi=\left(\psi_{1}, \psi_{2}\right)$: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\mathcal{L}_{\infty}(\Psi)=\frac{1}{2} \beta \quad \text { and } \quad \operatorname{deg} \Psi \leq 2 q(|p|+2 q) .
$$

Let

$$
\psi_{\beta}(x)=\psi_{1}^{2}\left(x_{1}, x_{2}\right)+\psi_{2}^{2}\left(x_{1}, x_{2}\right)+E_{1}^{2}(x)+\cdots+E_{n-2}^{2}(x)
$$

for $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{n}$. Then $\mathcal{L}_{\infty}\left(\psi_{\beta} \mid A\right)=2 \mathcal{L}_{\infty}(\Psi)=\beta$ and
$\operatorname{deg} \psi_{\beta} \leqslant \max \left\{2 \operatorname{deg} \psi_{1}, 2 \operatorname{deg} \psi_{2}, 2\right\}=2 \operatorname{deg} \Psi \leq 4 q(|p|+2 q)$.
So, (a) and (b) are proved. Part (c) follows from the definition of ψ_{β} and the fact that $\Psi^{-1}(0)$ contains at most one point.

Let $V \subset \mathbb{C}^{n}$ be a complex algebraic set. We denote by $\delta(V)$ the total degree of V, i.e. $\delta(V):=\operatorname{deg} V_{1}+\cdots+\operatorname{deg} V_{s}$, where $V=V_{1} \cup \cdots \cup V_{s}$ is the decomposition of V into irreducible components (see [13, p. 419]).

Let $V \subset \mathbb{R}^{n}$ be a real algebraic set and let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $m \geq n$, be a polynomial mapping. Let $V_{\mathbb{C}}$ be the Zariski closure of V in \mathbb{C}^{n}; we call it the complexification of V. Let $F_{\mathbb{C}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ denote the complexification of F (i.e., $F_{\mathbb{C}}$ is a complex polynomial mapping such that $\left.F_{\mathbb{C}}\right|_{\mathbb{R}^{n}}=F$). We write $\delta(V)$ for the total degree of $V_{\mathbb{C}} \subset \mathbb{C}^{n}$.

We will need the following fact ([19, Proposition 2.11] or [18, Proposition 4.5]).

Proposition 2.5. Let $V \subset \mathbb{R}^{n}$ be a real algebraic set with $0<\operatorname{dim}_{\mathbb{R}} V<$ $n-2$. Then there exist $A \in G_{2}^{\prime}\left(\mathbb{R}^{n}\right)$ and $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $V \cap A=\emptyset$, $\left.f\right|_{V}=0,\left.f\right|_{A}=1$ and $\operatorname{deg} f \leq \delta(V)$.

As is shown in the proof of [19, Proposition 2.11], the affine subspace A and the polynomial f in the above assertion can be effectively determined. More precisely, after choosing an appropriate coordinate system (using for instance a Gröbner basis), one can choose a nonzero polynomial $g \in$ $\mathbb{C}\left[z_{1}, \ldots, z_{n-2}\right], \operatorname{deg} g \leq \delta(V)$, vanishing on $V_{\mathbb{C}}$. Hence there exists $x_{0} \in \mathbb{R}^{n-2}$ such that $\operatorname{Re} g\left(x_{0}\right) \neq 0$. Then one can take $A=\left\{x_{0}\right\} \times \mathbb{R}^{2}$ and $f=u / u\left(x_{0}\right)$, where $\left.g\right|_{\mathbb{R}^{n}}=u+i v$ and $u, v \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Let $V \subset \mathbb{R}^{n}$ be a real algebraic set. We denote by $\kappa(V)$ the infimum of the numbers $k=\max \left\{\operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{r}\right\}$, where $r \in \mathbb{N}, h_{1}, \ldots, h_{r} \in$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $V=\left\{x \in \mathbb{R}^{n}: h_{1}(x)=\cdots=h_{r}(x)=0\right\}$. From [19, Proposition 2.13] we have

Lemma 2.6. Let $V \subset \mathbb{R}^{n}$ be an algebraic set. Then $\kappa(V) \leq \delta(V)$.
3. Auxiliary results. We prove the following generalization of [19, Theorem 1.1]. Let $V \subset \mathbb{R}^{n}$ be an unbounded algebraic set of the form

$$
V=\left\{x \in \mathbb{R}^{n}: h_{1}(x)=\cdots=h_{r}(x)=0\right\}
$$

where $h_{1}, \ldots, h_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. We can assume that $r \geq n$, defining $h_{i}=h_{1}$ for $i \geq r$. Let $k \in \mathbb{N}$ with

$$
k \geq \max \left\{\operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{r}\right\}
$$

Proposition 3.1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $m \geq n \geq 2$, be a polynomial mapping of degree $d>0$ and suppose that the set $F^{-1}(0) \cap V$ is compact. Let p be an integer satisfying

$$
\begin{equation*}
p \geq \mathcal{L}_{\infty}(F \mid V)+\theta\left(k, n, d, \mathcal{L}_{\infty}(F \mid V)\right) \tag{3.1}
\end{equation*}
$$

Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$, and $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n r}$ be the polynomial mapping defined by

$$
H(x)=\left(h_{i}(x)\left(x_{j}-\xi_{j}\right)^{p}: i=1, \ldots, r, j=1, \ldots, n\right), \quad x \in \mathbb{R}^{n}
$$

Then for the generic linear mapping $L \in \mathbf{L}(n r, m)$ we have

$$
\begin{equation*}
\mathcal{L}_{\infty}(F+L \circ H)=\mathcal{L}_{\infty}(F \mid V) \tag{3.2}
\end{equation*}
$$

and $\operatorname{deg} L \circ H \leq k+p$.
Proof. It suffices to prove the assertion for $\xi=0 \in \mathbb{R}^{n}$. Let $F=$ $\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Since $F^{-1}(0) \cap V$ is compact, we have $\mathcal{L}_{\infty}(F \mid V)>$ $-\infty$. It is known that there exist constants $C_{1}, R_{1}>0$ such that

$$
\begin{equation*}
|F(x)| \geq C_{1}|x|^{\mathcal{L}_{\infty}(F \mid V)} \quad \text { for } x \in V \text { with }|x| \geq R_{1} \tag{3.3}
\end{equation*}
$$

Then there exists a positive constant C such that (cf. [19, formula (3.2)])

$$
\begin{equation*}
|F(x)| \geq C|w|^{\mathcal{L}_{\infty}(F \mid V)} \quad \text { for } x \in V \text { with }|x| \geq R_{1},|x-w| \leq 1 \tag{3.4}
\end{equation*}
$$

Diminishing C or C_{1}, we can assume that (3.4) holds with $C=C_{1}$.
From the Mean Value Theorem, for every $x, w \in \mathbb{R}^{n}$ and for any i there is a point t_{i} on the segment with end points x, w such that

$$
\begin{equation*}
\left|f_{i}(x)-f_{i}(w)\right| \leq\left|\nabla f_{i}\left(t_{i}\right)\right||x-w| \tag{3.5}
\end{equation*}
$$

Let $M(w)=\sup \left\{\left|\nabla f_{i}(x)\right|:|x| \leq|w|+1, i=1, \ldots, m\right\}$. Since $\operatorname{deg} \nabla f_{i} \leq$ $d-1$, there exist constants $C_{2}>0$ and $R_{2} \geq R_{1}+1$ such that $0 \leq M(w) \leq$ $C_{2}|w|^{d-1}$ for $|w| \geq R_{2}$. From (3.5) and the above, for $|w| \geq R_{2},|x-w| \leq 1$ we have

$$
\begin{equation*}
|F(x)-F(w)| \leq M(w)|x-w| \leq C_{2}|w|^{d-1}|x-w| \tag{3.6}
\end{equation*}
$$

Let

$$
W=\left\{w \in \mathbb{R}^{n}: \operatorname{dist}(w, V) \leq \min \left\{1, \frac{C_{1}}{2 C_{2}}|w|^{\mathcal{L}_{\infty}(F \mid V)-d+1}\right\}\right\}
$$

By (3.3), (3.5) and (3.6) we obtain (cf. [19, (3.6)])
Lemma 3.2. Under the above notations,

$$
\begin{equation*}
|F(w)| \geq \frac{C_{1}}{2}|w|^{\mathcal{L}_{\infty}(F \mid V)} \quad \text { for } w \in W \text { with }|w| \geq R_{2} \tag{3.7}
\end{equation*}
$$

Let $\tilde{H}=\left(h_{1}, \ldots, h_{r}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$. From Theorem 1.1 there exists a constant $C_{3}>0$ such that

$$
\begin{equation*}
|\tilde{H}(w)| \geq C_{3}\left(\frac{\operatorname{dist}(w, V)}{1+|w|^{2}}\right)^{k(6 k-3)^{n-1}} \quad \text { for } w \in \mathbb{R}^{n} \text { with }|w| \geq R_{2} \tag{3.8}
\end{equation*}
$$

Let

$$
U=\mathbb{R}^{n} \backslash W
$$

and $\theta=\theta\left(k, n, d, \mathcal{L}_{\infty}(F \mid V)\right)$. We have $\mathcal{L}_{\infty}(\tilde{H} \mid U) \geq-\theta$ by the following lemma, which follows from (3.8) (cf. [19, (3.9)]):

Lemma 3.3. There exist constants $C_{4}>0$ and $R_{3} \geq R_{2}$ such that

$$
\begin{equation*}
|\tilde{H}(x)||x|^{\theta\left(k, n, d, \mathcal{L}_{\infty}(F \mid V)\right)} \geq C_{4} \quad \text { for } x \in U \text { with }|x| \geq R_{3} \tag{3.9}
\end{equation*}
$$

It is easy to see that for some $c, c^{\prime}>0$ we have

$$
\begin{equation*}
c|H(x)| \leq|\tilde{H}(x)||x|^{p} \leq c^{\prime}|H(x)| \quad \text { for } x \in \mathbb{R}^{n} \tag{3.10}
\end{equation*}
$$

Let

$$
\Phi=(F, H): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n r}
$$

Since $\left.\Psi\right|_{V}=\left.(F, 0)\right|_{V}$, from (3.7), (3.9) and 3.10) we obtain (cf. [19, (3.11)])

$$
\begin{equation*}
\mathcal{L}_{\infty}(\Phi)=\mathcal{L}_{\infty}(F \mid V) \tag{3.11}
\end{equation*}
$$

From Corollary 2.2, for the generic linear mapping $\tilde{L} \in \Delta(m+n r, m)$ we have $\mathcal{L}_{\infty}(\tilde{L} \circ \Phi)=\mathcal{L}_{\infty}(\Phi)$ and obviously $\tilde{L}=\operatorname{id}_{\mathbb{R}^{m}}+L$, where $\mathrm{id}_{\mathbb{R}^{m}}$ is the identity mapping on \mathbb{R}^{m} and $L \in \mathbf{L}(n r, m)$ is generic. Then $\left.\tilde{L} \circ \Phi\right|_{V}=\left.F\right|_{V}$. The inequality $\operatorname{deg} L \circ H \leq k+p$ is obvious. From the above and (3.11) we obtain the assertion of Proposition 3.1.

Note that the exponent $\mathcal{L}_{\infty}(F \mid V)$ may be a negative rational number. Therefore, the use of the exponent in estimating the degree of the mapping $L \circ H$ improves the estimate.
4. Positive polynomials on algebraic sets. By using Proposition 3.1 we obtain the following theorem on extension of a positive polynomial on a given algebraic set to a sum of squares. Let $h_{1}, \ldots, h_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and let $V \subset \mathbb{R}^{n}$ be an algebraic set of the form

$$
\begin{equation*}
V=\left\{x \in \mathbb{R}^{n}: h_{1}(x)=\cdots=h_{r}(x)=0\right\} . \tag{4.1}
\end{equation*}
$$

Let $k \in \mathbb{N}, k \geq \max \left\{\operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{r}\right\}$. We will assume that the set V is unbounded.

Theorem 4.1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, n \geq 2$, be a polynomial of degree $d>0$. Suppose that the set $f^{-1}(0) \cap V$ is compact and there exists an open set $U \subset \mathbb{R}^{n}$ such that $V \subset U$ and $f(x)>0$ for all $x \in U \backslash V$. Then there exists a polynomial $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
\begin{equation*}
h(x)=\sum_{i=1}^{r} \sum_{j=1}^{n} \alpha_{i, j} h_{i}^{2}(x)\left(x_{j}-\xi_{j}\right)^{p}, \quad x \in \mathbb{R}^{n}, \tag{4.2}
\end{equation*}
$$

where $\alpha_{i, j} \in \mathbb{R}$ are positive, $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is an arbitrary point of V, and p is an even number satisfying

$$
\begin{equation*}
\mathcal{L}_{\infty}(F \mid V)+\theta\left(2 k, n, d, \mathcal{L}_{\infty}(F \mid V)\right) \leq p<d+\theta\left(2 k, n, d, \mathcal{L}_{\infty}(f \mid V)\right)+2 \tag{4.3}
\end{equation*}
$$

such that
(a) $(f+h)(x) \geq 0$ for $x \in \mathbb{R}^{n}$,
(b) $\mathcal{L}_{\infty}(f+h)=\mathcal{L}_{\infty}(f \mid V)$,
(c) $\operatorname{deg} h \leq p+2 k$.

Proof. Assertion (c) follows immediately from (4.2). We will prove the remaining assertions.

Let $F=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where $f_{i}=f$ for $i=1, \ldots, n$. Since $F^{-1}(0) \cap V=f^{-1}(0) \cap V$ is compact, we have $\mathcal{L}_{\infty}(F \mid V)=\mathcal{L}_{\infty}(f \mid V)>-\infty$. Obviously

$$
V=\left\{x \in \mathbb{R}^{n}: h_{1}^{2}(x)=\cdots=h_{r}^{2}(x)=0\right\}
$$

and $2 k \geq \max \left\{\operatorname{deg} h_{1}^{2}, \ldots, \operatorname{deg} h_{r}^{2}\right\}$. Since $d \geq \mathcal{L}_{\infty}(F \mid V)$, on substituting $2 k$ for k, the assumption (3.1) in Proposition 3.1 is equivalent to (4.3). So,
by Proposition 3.1 for arbitrary $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in V$, an even integer p satisfying (4.3) and the polynomial mapping $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n r}$ defined by

$$
H(x)=\left(h_{i}^{2}(x)\left(x_{j}-\xi_{j}\right)^{p}: i=1, \ldots, r, j=1, \ldots, n\right), \quad x \in \mathbb{R}^{n}
$$

for the generic linear mapping $L \in \mathbf{L}(n r, n)$, we have

$$
\begin{equation*}
\mathcal{L}_{\infty}(F+L \circ H)=\mathcal{L}_{\infty}(F \mid V) \tag{4.4}
\end{equation*}
$$

In particular, (4.4) holds for the generic $L \in \mathbf{L}(n r, n)$ with positive coefficients. Without loss of generality, we may assume that $\xi=0 \in V$. Then the mapping H vanishes only on V.

By Lemma 3.2, there exist $C_{1}, C_{2}>0$ such that for

$$
W=\left\{w \in \mathbb{R}^{n}: \operatorname{dist}(w, V) \leq \min \left\{1, C_{1}|w|^{\mathcal{L}_{\infty}(f \mid V)-d+1}\right\}\right\}
$$

we obtain

$$
|F(w)| \geq C_{2}|w|^{\mathcal{L}_{\infty}(f \mid V)} \quad \text { for } w \in W \text { with }|w| \geq R_{2}
$$

By the assumptions of the theorem, we may assume that $f(x)>0$ for $x \in V$ with $|x| \geq R_{2}$, so diminishing C_{2} if necessary, we have

$$
\begin{equation*}
f(w) \geq C_{2}|w|^{\mathcal{L}_{\infty}(f \mid V)} \quad \text { for } w \in W \text { with }|w| \geq R_{2} \tag{4.5}
\end{equation*}
$$

By Lemma 3.3, there exist constants $C_{3}>0$ and $R_{3} \geq R_{2}$ such that

$$
\begin{equation*}
|H(x)| \geq C_{3}|x|^{d} \quad \text { for } x \in \mathbb{R}^{n} \backslash W \text { with }|x| \geq R_{3} \tag{4.6}
\end{equation*}
$$

By the choice of d, increasing R_{3} if necessary, for some $C_{4}>0$ we obtain

$$
|f(x)| \leq C_{4}|x|^{d} \quad \text { for } x \in \mathbb{R}^{n} \text { with }|x| \geq R_{3}
$$

Multiplying H by a sufficiently large number, we may assume that $C_{3}>C_{4}$. Then from 4.5, 4.6 and the fact that $L_{i} \circ H(x)>0$ for $L_{i} \in \mathbf{L}(n r, 1)$ with positive coefficients and $x \in \mathbb{R}^{n} \backslash V$, we see that for some mapping $L=\left(L_{1}, \ldots, L_{n}\right) \in \mathbf{L}(n r, n)$ with positive coefficients, 4.4 holds and

$$
\begin{equation*}
f(x)+L_{i} \circ H(x) \geq 0 \tag{4.7}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$ with $|x| \geq R_{3}$. Moreover, since $f(x)>0$ for $x \in U \backslash V$, multiplying H by a sufficiently large number, we may assume that 4.7 holds for $x \in \mathbb{R}^{n}$ with $|x| \leq R_{3}$. Summing up, 4.7) holds for any $x \in \mathbb{R}^{n}$, and (a) is verified.

Put $L_{0}=L_{1}+\cdots+L_{n}$, and let

$$
L_{0}\left(y_{1}, \ldots, y_{n r}\right)=\alpha_{1} y_{1}+\cdots+\alpha_{n r} y_{n r},
$$

where $\alpha_{1}, \ldots, \alpha_{n r} \in \mathbb{R}$ are positive. Then the polynomial $h=L_{0} \circ H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of the form 4.2 . Since the Euclidean and the polycylindric norms in \mathbb{R}^{n} are equivalent, there exist $c, c^{\prime}>0$ such that

$$
c\left[n f(x)+L_{0} \circ H(x)\right] \leq|F(x)+L \circ H(x)| \leq c^{\prime}\left[n f(x)+L_{0} \circ H(x)\right]
$$

for $x \in \mathbb{R}^{n}$. Hence, from (4.4) we easily deduce that (b) holds.

From Theorem 4.1, Lemma 2.6 and Artin's Theorem (see [1, Satz 1], cf. [28, Theorem 1.1.1]) we obtain

Corollary 4.2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial satisfying the assumptions of Theorem 4.1. Then there exists a polynomial $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form $g=f+h$, where g is a sum of squares of rational functions and h is a sum of squares of polynomials, such that
(a) $\left.g\right|_{V}=\left.f\right|_{V}$,
(b) $\mathcal{L}_{\infty}(g)=\mathcal{L}_{\infty}(f \mid V)$,
(c) $\operatorname{deg} g \leq d+2 \delta(V)+2+\theta\left(2 \delta(V), n, d, \mathcal{L}_{\infty}(f \mid V)\right)$.

With an additional assumption we will show that when extending a positive polynomial on an algebraic set to a sum of squares, we can require the Łojasiewicz exponent at infinity to have a fixed value. Precisely, we assume that $\operatorname{dim} V \leq n-3$. Thus $n \geq 4$. According to Proposition 2.5 there exist $A \in G_{2}^{\prime}\left(\mathbb{R}^{n}\right)$ and $g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
V \cap A=\emptyset,\left.\quad g\right|_{V}=1,\left.\quad g\right|_{A}=0, \quad \operatorname{deg} g \leq \delta(V)
$$

Let $E=\left(E_{1}, \ldots, E_{n-2}\right) \in \mathbf{L}(n, n-2)$ be a linear mapping such that $A=$ $L^{-1}(z)$ for some $z \in \mathbb{R}^{n-2}$. By Corollary 2.4 for any $\beta=\frac{p}{q} \in \mathbb{Q}, p \in \mathbb{Z}$, $q \in \mathbb{N}$, there exists a polynomial $\psi_{\beta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is a sum of squares of polynomials, such that

$$
\mathcal{L}_{\infty}\left(\psi_{\beta} \mid A\right)=\beta \quad \text { and } \quad \operatorname{deg} \psi_{\beta} \leq(|p|+2 q) \cdot 4 q,
$$

and $\psi_{\beta}^{-1}(0) \subset A$ contains at most one point.
Corollary 4.3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $n \geq 4$, be a polynomial of degree $d>0$ and suppose that $f(x)>0$ for $x \in V$. Let $\beta=p / q \in \mathbb{Q}, p \in \mathbb{Z}, q \in \mathbb{N}$, and let $\beta \leq \mathcal{L}_{\infty}(f \mid V)$. Take an even integer P satisfying

$$
\begin{equation*}
P \geq d+\theta(2 k+2, n, D, \beta), \tag{4.8}
\end{equation*}
$$

where $D=e \delta(V)+\max \{d,(|p|+2 q) \cdot 4 q\}$ and $e \geq 2$ is the smallest even number greater than the order of ψ_{β} at its zero. Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in A$. Then there exists a polynomial $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
h(x)=\sum_{i=1}^{r} \sum_{l=1}^{n-2} \sum_{j=1}^{n} \alpha_{i, l, j} h_{i}^{2}(x) E_{l}^{2}(x)\left(x_{j}-\xi_{j}\right)^{P}, \quad x \in \mathbb{R}^{n},
$$

where $\alpha_{i, l, j}$ are positive real numbers, such that
(a) $\left.\left(g^{e} f+\left(1-g^{2}\right) \psi_{\beta}+h\right)\right|_{V}=\left.f\right|_{V}$,
(b) $\left(g^{e} f+\left(1-g^{2}\right) \psi_{\beta}+h\right)(x) \geq 0$ for $x \in \mathbb{R}^{n}$,
(c) $\mathcal{L}_{\infty}\left(g^{e} f+\left(1-g^{2}\right) \psi_{\beta}+h\right)=\beta$,
(d) $\operatorname{deg}\left(g^{e} f+\left(1-g^{2}\right) \psi_{\beta}+h\right) \leq P+2 k+2$.

Proof. By the definition of the functions ψ_{β}, g, the choice of e, and the assumption that $f(x)>0$ for $x \in V$, there exists an open set $U \subset \mathbb{R}^{n}$ with
$V \cup A \subset U$ such that $g^{2}(x) f(x)+\left(1-g^{2}(x)\right) \psi_{\beta}(x)>0$ for $x \in U \backslash(V \cup A)$. Moreover, the function $g^{2}(x) f(x)+\left(1-g^{2}(x)\right) \psi_{\beta}(x)$ has a compact set of zeroes in $V \cup A$ and $\operatorname{deg}\left[g^{2}(x) f(x)+\left(1-g^{2}(x)\right) \psi_{\beta}(x)\right] \leq D$. Then Theorem 4.1 yields the assertion.

Example 4.4. The assumption $f>0$ on V is essential, as shown by the following example. Let $V=\left\{(x, y) \in \mathbb{R}^{n}: x^{2}-y^{3}=0\right\}$, and let $f(x, y)=y$. Then $f \geq 0$ on V, but for every $h \in \mathbb{R}[x, y]$ vanishing on V there exists $(x, y) \in \mathbb{R}^{2}$ such that $f(x, y)+h(x, y)<0$. Indeed, $h(x, y)=\left(x^{2}-y^{3}\right) h_{1}(x, y)$, and $f(0, y)+h(0, y)=y-y^{3} h_{1}(0, y)$. Thus $f(0, y)+h(0, y)$ changes sign at 0 .
5. Positivstellensatz on algebraic and semialgebraic sets. Let $V \subset \mathbb{R}^{n}$ be an algebraic set of the form 4.1). Then V can be considered as a basic semialgebraic set, since

$$
V=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{2 r}(x) \geq 0\right\}
$$

where $g_{1}=h_{1}, g_{2}=-h_{1}, \ldots, g_{2 r-1}=h_{r}, g_{2 r}=-h_{r}$. Then the preordering T generated by $g_{1}, \ldots, g_{2 r}$ is of the form
$T=\left\{\sum_{e \in\{0,1\}^{2 r}} \sigma_{e} g_{1}^{e_{1}} \cdots g_{2 r}^{e_{2 r}}: \sigma_{e} \in \sum \mathbb{R}[x]^{2}\right.$ for $\left.e=\left(e_{1}, \ldots, e_{2 r}\right) \in\{0,1\}^{2 r}\right\}$.
From Theorem 4.1 and Artin's Theorem we obtain the following version of the Positivstellensatz on algebraic sets.

Corollary 5.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $n \geq 2$ is a polynomial of degree $d>0$, and $f(x)>0$ for $x \in V$, then

$$
f(x)=-h(x)+\sigma(x)
$$

where $\sigma \in \sum \mathbb{R}(x)^{2}$, h is of the form 4.2), and $-h \in T$. If additionally $k=\max \left\{\operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{r}\right\}, d=\operatorname{deg} f$ and $D=\max \{k, d\}$, then

$$
\begin{equation*}
\operatorname{deg} h \leq d+2 k+2+\theta\left(2 k, n, d,-D(6 D-3)^{n-1}\right) \tag{5.1}
\end{equation*}
$$

Proof. If V is a bounded algebraic set, then the assertion is obvious. Assume that V is unbounded. The first part of the assertion follows immediately from Theorem 4.1. From [32, Corollary 6] (cf. [7]-[10]), we have

$$
\mathcal{L}_{\infty}(f \mid V) \geq-D(6 D-3)^{n-1}
$$

and by Theorem 4.1, we obtain (5.1).
By considering a polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive on a basic semialgebraic set X as an element of $\mathbb{R}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right]$, where r is the number of inequalities defining X, we obtain a version of the Positivstellensatz on any basic semialgebraic set (see Corollary 5.2 below). Let us start with some notations.

Consider the basic semialgebraic set

$$
X=\left\{x \in \mathbb{R}^{n}: g_{1}(x)>0, \ldots, g_{j}(x)>0, g_{j+1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

where $g_{1}, \ldots, g_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $0 \leq j \leq r$. Put $h_{i}(x, y)=g_{i}(x) y_{i}^{2}-1$ for $i=1, \ldots, j$ and $h_{i}(x, y)=g_{i}(x)-y_{i}^{2}$ for $i=j+1, \ldots, r$, and let

$$
Y=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{r}: h_{1}(x, y)=\cdots=h_{r}(x, y)=0\right\}
$$

Then we have $\pi(Y)=X$ for the projection $\pi: \mathbb{R}^{n} \times \mathbb{R}^{r} \ni(x, y) \mapsto$ $x \in \mathbb{R}^{n}$. So, any polynomial $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be considered as a polynomial on Y, by identifying $f \circ \pi$ with f. Denote by T_{1} the preordering of $\mathbb{R}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right]$ generated by $h_{1},-h_{1}, \ldots, h_{r},-h_{r}$. By Theorem 4.1 we obtain the following version of the Positivstellensatz on basic semialgebraic sets.

Corollary 5.2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial, and let $f(x)>0$ for $x \in X$. Then

$$
f(x)=-h(x, y)+\sigma(x, y),
$$

where $\sigma \in \sum \mathbb{R}(x, y)^{2}$, and $-h \in T_{1}$ is of the form

$$
\begin{equation*}
-h(x, y)=\sum_{i=1}^{r} \sum_{j=1}^{n+r} \alpha_{i, j} h_{i}(x, y) \cdot\left(-h_{i}(x, y)\right)\left(w_{j}-\xi_{j}\right)^{p}, \quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{r} \tag{5.2}
\end{equation*}
$$

where $\alpha_{i, j}$ are positive numbers, $\left(w_{1}, \ldots, w_{n+r}\right)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right)$, and $\left(\xi_{1}, \ldots, \xi_{n+r}\right)$ is an arbitrary point of Y and p is a positive even number such that

$$
\begin{equation*}
p \leq d+2+\theta\left(2 k+4, n+r, d,-D(6 D-3)^{n+r-1}\right) \tag{5.3}
\end{equation*}
$$

provided $k=\max \left\{\operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{r}\right\}, d=\operatorname{deg} f$ and $D=\max \{k+2, d\}$.
Proof. By [32, Corollary 6], we have $\mathcal{L}_{\infty}(f \mid Y) \geq-D(6 D-3)^{n+r-1}$. It is easy to see that $\max \left\{\operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{r}\right\} \leq k+2$. So, for the smallest positive even number satisfying

$$
p \geq d+\theta\left(2 k+4, n+r, d,-D(6 D-3)^{n-1}\right)
$$

the inequality 5.3 holds. Moreover, the assumptions of Theorem 4.1 are satisfied. So Theorem 4.1 yields the assertion.

Corollary 5.2 also includes the case when the basic semialgebraic set X is closed or when it is open. It is known that for a basic closed semialgebraic set

$$
X=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

where $g_{1}, \ldots, g_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, there exists an algebraic set $Y=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{r}: g_{1}(x)-y_{1}^{2}=0, \ldots, g_{r}(x)-y_{r}^{2}=0\right\}$
such that $\pi(Y)=X$, where $\pi: \mathbb{R}^{n} \times \mathbb{R}^{r} \ni(x, y) \mapsto x \in \mathbb{R}^{n}$. So, any polynomial $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be considered as a polynomial on Y, upon identifying $f \circ \pi$ with f. Then the preordering T_{1} is generated by $g_{1}(x)-y_{1}^{2}$, $-g_{1}(x)+y_{1}^{2}, \ldots, g_{m}(x)-y_{m}^{2},-g_{r}(x)+y_{r}^{2}$. Thus Corollary 5.2 gives the Positivstellensatz on a closed semialgebraic set for $j=0$.

For $j=r$, Corollary 5.2 gives the Positivstellensatz for an open semialgebraic set. Indeed, for an open basic semialgebraic set $X=\left\{x \in \mathbb{R}^{n}\right.$: $\left.g_{1}(x)>0, \ldots, g_{r}(x)>0\right\}$, there exists an algebraic set $Y=\left\{\left(x, y_{1}, \ldots, y_{r}\right) \in\right.$ $\left.\mathbb{R}^{n} \times \mathbb{R}^{r}: g_{1}(x) y_{1}^{2}-1=0, \ldots, g_{r}(x) y_{r}^{2}-1=0\right\}$ such that $\pi(Y)=X$. Then the preordering T_{1} is generated by $g_{1}(x) y_{1}^{2}-1,-g_{1}(x) y_{1}^{2}+1, \ldots, g_{m}(x) y_{m}^{2}-1$, $-g_{r}(x) y_{r}^{2}+1$.

Let V be an irreducible algebraic set of the form (4.1).
Corollary 5.3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial, and let $f(x) \geq 0$ for $x \in V$, and $\left.f\right|_{V} \neq 0$. Then

$$
f^{p+1}=-h+\sigma,
$$

where $\sigma \in \sum \mathbb{R}(x)^{2}$, and $-h \in T$ is of the form

$$
\begin{align*}
-h(x)= & \sum_{i=1}^{r} \sum_{j=1}^{n} \alpha_{i, j} f^{p}(x) h_{i}(x) \cdot\left(-h_{i}(x)\right)\left(x_{j}-\xi_{j}\right)^{p} \tag{5.4}\\
& +\sum_{i=1}^{r} \alpha_{i} h_{i}(x) \cdot\left(-h_{i}(x)\right)\left(1-\xi_{n+1} f(x)\right)^{p}, \quad x \in \mathbb{R}^{n} \times \mathbb{R}^{r},
\end{align*}
$$

where $\alpha_{i, j}, \alpha_{i}$ are positive numbers, $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is an arbitrary point of V, $\xi_{n+1} \in \mathbb{R}$ and p is a positive even number such that

$$
\begin{equation*}
p \leq d+2+\theta\left(2 k+4, n+1, d,-D(6 D-3)^{n}\right) \tag{5.5}
\end{equation*}
$$

provided $k=\max \left\{\operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{r}\right\}, d=\operatorname{deg} f$ and $D=\max \{k, d+1\}$.
Proof. Let $X=V \backslash V(f)$. Then $f(x)>0$ for $x \in X$ and $X \neq \emptyset$. Let

$$
Y=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: x \in V, f(x) y-1=0\right\}
$$

and define $h_{i}(x, y)=h_{i}(x)$ for $i=1, \ldots, r$ and $h_{r+1}(x, y)=f(x) y-1$. Then by Theorem 4.1 for any $\left(\xi_{1}, \ldots, \xi_{n+1}\right) \in Y$, there exist positive numbers $\alpha_{i, j}$, $i=1, \ldots, r+1, j=1, \ldots, n$, and $\sigma \in \sum \mathbb{R}(x, y)^{2}$ such that

$$
f(x)=-h(x, y)+\sigma(x, y)
$$

where

$$
-h(x, y)=\sum_{i=1}^{r+1} \sum_{j=1}^{n+1} \alpha_{i, j} h_{i}(x, y) \cdot\left(-h_{i}(x, y)\right)\left(w_{j}-\xi_{j}\right)^{p}, \quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}
$$

and $\left(w_{1}, \ldots, w_{n+1}\right)=\left(x_{1}, \ldots, x_{n}, y\right)$. Setting $y=1 / f$ yields the assertion.

Acknowledgements. This research was partially supported by NCN (grant no. 2012/07/B/ST1/03293) and ANR (France) grant STAAVF.

References

[1] E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg 5 (1927), 100-115.
[2] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer, Berlin, 1998.
[3] W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math. (2) 126 (1987), 577-591.
[4] S. Burgdorf, C. Scheiderer and M. Schweighofer, Pure states, nonnegative polynomials and sums of squares, Comment. Math. Helv. 87 (2012), 113-140.
[5] E. Cygan, A note on separation of algebraic sets and the Eojasiewicz exponent for polynomial mappings, Bull. Sci. Math. 129 (2005), 139-147.
[6] D. W. Dubois, A Nullstellensatz for ordered fields, Ark. Mat. 8 (1969), 111-114.
[7] Z. Jelonek, On the Łojasiewicz exponent, Hokkaido Math. J. 35 (2006), 471-485.
[8] S. Ji, J. Kollár and B. Shiffman, A global Łojasiewicz inequality for algebraic varieties, Trans. Amer. Math. Soc. 329 (1992), 813-818.
[9] J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), 963-975.
[10] J. Kollár, Effective Nullstellensatz for arbitrary ideals, J. Eur. Math. Soc. 1 (1999), 313-337.
[11] J.-L. Krivine, Anneaux préordonnés, J. Anal. Math. 12 (1964), 307-326.
[12] K. Kurdyka and S. Spodzieja, Separation of real algebraic sets and Łojasiewicz exponent, Proc. Amer. Math. Soc. 142 (2014), 3089-3102.
[13] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
[14] H. Lombardi, D. Perrucci and M.-F. Roy, An elementary recursive bound for effective Positivstellensatz and Hilbert 17-th problem, arXiv:1404.2338v1] [math.AG] (2014).
[15] M. Marshall, Positive Polynomials and Sums of Squares, Math. Surveys Monogr. 146, Amer. Math. Soc., Providence, RI, 2008.
[16] T. S. Motzkin, The arithmetic-geometric inequality, in: Inequalities, O. Shisha (ed.), Academic Press, New York, 1967, 205-224.
[17] T. Netzer, An elementary proof of Schmüdgen's theorem on the moment problem of closed semi-algebraic sets, Proc. Amer. Math. Soc. 136 (2008), 529-537.
[18] B. Osińska, Extensions of regular mappings and the Łojasiewicz exponent at infinity, Bull. Sci. Math. 135 (2011), 215-229.
[19] B. Osińska-Ulrych, G. Skalski and S. Spodzieja, Extensions of real regular mappings and the Łojasiewicz exponent at infinity, Bull. Sci. Math. 137 (2013), 718-729.
[20] D. Plaumann, Sums of squares on reducible real curves. Math. Z. 265 (2010), 777797.
[21] A. Prestel and Ch. N. Delzell, Positive Polynomials. From Hilbert's 17th Problem to Real Algebra, Springer Monogr. Math., Springer, Berlin, 2001.
[22] J. J. Risler, Une caractérisation des idéaux des variétés algébriques réelles, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), 1171-1173.
[23] T. Rodak and S. Spodzieja, Łojasiewicz exponent near the fibre of a mapping, Proc. Amer. Math. Soc. 139 (2011), 1201-1213.
[24] Y. Savchuk and K. Schmüdgen, Positivstellensätze for algebras of matrices, Linear Algebra Appl. 436 (2012), 758-788.
[25] C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352 (2000), 1039-1069.
[26] C. Scheiderer, Sums of squares on real algebraic curves, Math. Z. 245 (2003), 725760.
[27] C. Scheiderer, Sums of squares on real algebraic surfaces, Manuscripta Math. 119 (2006), 395-410.
[28] C. Scheiderer, Positivity and sums of squares: a guide to recent results, in: Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl. 149, Springer, New York, 2009, 271-324.
[29] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203-206.
[30] M. Schweighofer, Global optimization of polynomials using gradient tentacles and sums of squares, SIAM J. Optim. 17 (2006), 920-942.
[31] S. Spodzieja, The Lojasiewicz exponent at infinity for overdetermined polynomial mappings, Ann. Polon. Math. 78 (2002), 1-10.
[32] S. Spodzieja and A. Szlachcińska, Eojasiewicz exponent of overdetermined mappings, Bull. Polish Acad. Sci. Math. 61 (2013), 27-34.

Krzysztof Kurdyka
Laboratoire de Mathématiques (LAMA)
Université de Savoie
UMR-5127 de CNRS
73-376 Le Bourget-du-Lac Cedex, France
E-mail: Krzysztof.Kurdyka@univ-savoie.fr

Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja
Faculty of Mathematics and Computer Science

University of Łódź 90-238 Łódź, Poland E-mail: bosinska@math.uni.lodz.pl skalskg@math.uni.lodz.pl spodziej@math.uni.lodz.pl

Received 14.5.2013
and in final form 14.6.2014

