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Sum of squares and the Łojasiewicz exponent at infinity

by Krzysztof Kurdyka (Le Bourget-du-Lac),
Beata Osińska-Ulrych (Łódź),

Grzegorz Skalski (Łódź) and Stanisław Spodzieja (Łódź)

Abstract. Let V ⊂ Rn, n ≥ 2, be an unbounded algebraic set defined by a system
of polynomial equations h1(x) = · · · = hr(x) = 0 and let f : Rn → R be a polynomial.
It is known that if f is positive on V then f |V extends to a positive polynomial on the
ambient space Rn, provided V is a variety. We give a constructive proof of this fact for an
arbitrary algebraic set V . Precisely, if f is positive on V then there exists a polynomial
h(x) =

∑r
i=1 h

2
i (x)σi(x), where σi are sums of squares of polynomials of degree at most p,

such that f(x)+h(x) > 0 for x ∈ Rn. We give an estimate for p in terms of: the degree of f ,
the degrees of hi and the Łojasiewicz exponent at infinity of f |V . We prove a version of the
above result for polynomials positive on semialgebraic sets. We also obtain a nonnegative
extension of some odd power of f which is nonnegative on an irreducible algebraic set.

1. Introduction. Let f ∈ R[x], x = (x1, . . . , xn), be a positive semidef-
inite polynomial, that is, f(x) ≥ 0 for x ∈ Rn. Then

(AH) fh2 = h21 + · · ·+ h2m for some h, h1, . . . , hm ∈ R[x], h 6= 0,

i.e., f is a sum of squares of rational functions. We shall denote by
∑

R(x)2
the set of such sums and by

∑
R[x]2 the set of sums of squares of polyno-

mials. The above theorem is E. Artin’s [1] solution of Hilbert’s 17th prob-
lem. Motzkin [16] gave an example of a positive semidefinite polynomial
f(x1, x2) = 1 + x21x

2
2(x

2
1 + x22 − 3) which is not a sum of squares of polyno-

mials, so the degree of h in (AH) must be positive.
Positive semidefinite polynomials can also be considered on closed basic

semialgebraic sets, that is, sets X ⊂ Rn of the form

X = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}, where g1, . . . , gr ∈ R[x].

We define the preordering in R[x], generated by g1, . . . , gr ∈ R[x], to be the
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set

T (g1, . . . , gr) =
{ ∑
e=(e1,...,er)∈{0,1}r

seg
e1
1 · · · g

er
r : se ∈

∑
R[x]2 for e∈ {0, 1}r

}
.

Let f ∈ R[x]. The following Stellensätze are natural generalizations of the
above Artin theorem (Krivine [11], Dubois [6], Risler [22]; see also [2]).

Real Nullstellensatz. Let I ⊂ R[x] be an ideal. Then f = 0 on
V (I) := {x ∈ Rn : g(x) = 0 for any g ∈ I} if and only if f2N + u ∈ I for
some integer N > 0 and u ∈

∑
R[x]2.

Positivstellensatz. f > 0 on X if and only if sf = 1 + t for some
s, t ∈ T (g1, . . . , gr).

Nichtnegativstellensatz. f ≥ 0 on X if and only if sf = f2N + t
for some integer N > 0 and s, t ∈ T (g1, . . . , gr).

These issues were studied in [15], [21], [26], [28]. A remarkable result of
Schmüdgen [29] asserts that forX compact every strictly positive polynomial
on X belongs to T (g1, . . . , gr). A challenging problem is effective computa-
tion of the polynomials in the Stellensätze, in particular explicit bounds for
their degrees. For instance a relevant estimate for the degree of the denom-
inator in (AH) was obtained by Schmid (see Scheiderer [28]), who proved
that the degree of h can be bounded by an n tower of exponentials in the
degree of g. In a recently posted preprint, Lombardi, Perrucci and Roy [14]
obtained a bound as a tower of five exponentials in n and deg g.

An important issue is extension of semidefinite polynomials on an alge-
braic set to semidefinite polynomials on the ambient space. The existence of
such an extension was proved by C. Scheiderer [25, Corollary 5.5] (see also
[27]). A partial result on nonnegative extension of polynomials was obtained
by D. Plaumann [20, Lemma 3.2]. In the present paper we give a construc-
tive proof of the existence of a positive semidefinite extension onto the space
Rn (or Rn+r for some r ∈ N) of a semidefinite polynomial f on an algebraic
or semialgebraic set X ⊂ Rn. We estimate the degree of such an extension
in terms of the degree of f and the Łojasiewicz exponent at infinity of a
suitable mapping.

By the Łojasiewicz exponent at infinity of a mapping F : Rn → Rm on
an unbounded set S we mean the supremum of the set of exponents ν in the
following Łojasiewicz inequality :

|F (x)| ≥ C|x|ν for all x ∈ S with |x| ≥ R,
for some positive constants C, R, where | · | are norms (in Rn and Rm); we
denote it by L∞(F |S). For S = Rn the exponent L∞(F |S) will be called
the Łojasiewicz exponent at infinity of F and denoted by L∞(F ). The Ło-
jasiewicz exponent does not depend on the chosen norms in Rn and Rm.
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In what follows, we will use the Euclidean norm. The exponent L∞(F ) is
an important tool in the study of properness and injectivity of polynomial
mappings, in the effective Nullstellensatz and in optimization (for references
see for instance [19]).

For k, n, d ∈ N and l ∈ R we put

θ(k, n, d, l) = k(6k − 3)n−1(d+ 2− l).
Let V ⊂ Rn be an unbounded algebraic set and let h1, . . . , hr ∈ R[x1, . . . , xn]
be polynomials such that V = {x ∈ Rn : h1(x) = · · · = hr(x) = 0}. Obvi-
ously we may assume that r ≥ n. Let k ∈ N, k ≥ max{deg h1, . . . ,deg hr}.
For a polynomial function f : Rn → R, deg f = d, which is positive on the
set V we have

f(x) + h(x) > 0, x ∈ Rn,
and

L∞(f + h) = L∞(f |V )

for an effectively computed polynomial −h ∈ T (h1,−h1, . . . , hr,−hr), with
deg h < 2 + 2k + d+ θ(2k, n, d,L∞(f |V )),

of the form (4.2) (see Theorem 4.1 and Corollary 5.1). We also obtain a
version of the above result for L∞(f + h) = β, where β ≤ L∞(f |V ) is
given (see Corollary 4.3). If additionally V is an irreducible algebraic set
and f(x) ≥ 0 for x ∈ V , with f |V 6= 0, then

f(x)fp(x) = −h(x) + σ(x),

where σ ∈
∑

R(x)2, and −h ∈ T (h1,−h1, . . . , hr,−hr) is of the form (5.4)
(see Corollary 5.3). We also have an estimate for the degree of h similar to
the above.

For the basic semialgebraic set

X = {x ∈ Rn : g1(x) > 0, . . . , gj(x) > 0, gj+1(x) ≥ 0, . . . , gr(x) ≥ 0},
where g1, . . . , gr ∈ R[x1, . . . , xn] and 1 ≤ j ≤ r, we put hi(x, y) = gi(x)y

2
i −1

for i = 1, . . . , j and hi(x, y) = gi(x)− y2i for i = j + 1, . . . , r, and

Y = {(x, y) ∈ Rn × Rr : h1(x, y) = · · · = hr(x, y) = 0}.
By Theorem 4.1 we obtain the following version of the Positivstellensatz (see
Corollary 5.2): if f : Rn → R is a polynomial and f(x) > 0 for x ∈ X, then

f(x) + h(x, y) = σ(x, y),

where σ ∈
∑

R(x, y)2, and −h ∈ T (h1,−h1, . . . , hr,−hr) is of the form (5.2).
The degree of h is estimated similarly to the above in terms of deg f and the
Łojasiewicz exponent at infinity of f |V .

The main role in our considerations will be played by the following result
due to K. Kurdyka and S. Spodzieja (see [12, Corollary 10], cf. [3]–[10],
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[23]). Let dist(x, V ) be the distance from x ∈ Rn to the set V ⊂ Rn in
the metric induced by the norm | · | (we set dist(x, V ) = 1 if V = ∅). By
the degree of a polynomial mapping F = (f1, . . . , fm) : Rn → Rm we mean
degF = max{deg f1, . . . ,deg fm}.

Theorem 1.1 ([12]). Let F = (f1, . . . , fm) : Rn → Rm be a polynomial
mapping of degree d. Then for some positive constant C,

|F (x)| ≥ C
(
dist(x, F−1(0))

1 + |x|2

)d(6d−3)n−1

for x ∈ Rn.

2. Preliminaries. We denote by L(m, k) the set of all linear mappings
Rm → Rk, where for k = 0 we put Rk = {0}.

We will use the following theorem (see [32, Theorem 4], cf. [31]).

Theorem 2.1. Let F : Rn → Rm be a polynomial mapping having a
compact set of zeros, and let n ≤ k ≤ m. Then for any L ∈ L(m, k) such
that (L ◦ F )−1(0) is compact, we have

(2.1) L∞(F ) ≥ L∞(L ◦ F ).
Moreover, for the generic L ∈ L(m, k), i.e., outside a proper algebraic subset
of L(m, k), the set (L ◦ F )−1(0) is compact and

(2.2) L∞(F ) = L∞(L ◦ F ).
Let m ≥ k. We denote by ∆(m, k) the set of all linear mappings L =

(L1, . . . , Lk) ∈ L(m, k) of the form

Li(y1, . . . , ym) = yi +

m∑
j=k+1

αi,jyj , i = 1, . . . , k,

where αi,j ∈ R.
Theorem 2.1 implies the following corollary (see [32, Corollary 5]).

Corollary 2.2. Under the assumptions of Theorem 2.1, for the generic
linear mapping L = (L1, . . . , Lk) ∈ ∆(m, k), the set of zeroes of L ◦ F is
compact and

L∞(F ) = L∞(L ◦ F ).
Moreover, if dj = deg fj and d1 ≥ · · · ≥ dm, then deg(Lj ◦ F ) = dj for
j = 1, . . . , k.

Let us recall Proposition 2.10 of [19] (see also [18]).

Proposition 2.3. Let β = p/q, where p ∈ Z, q ∈ N. Then there exists
a polynomial mapping Ψ : R2 → R2 such that

(a) L∞(Ψ) = β,
(b) degΨ ≤ q · (|p|+ q).

Moreover, the mapping has at most one zero.



Sum of squares 227

Actually the polynomial mapping Ψ in the above proposition is of one
of the following forms: Ψ = (x, xy − 1) : R2 → R2, the gradient of the
polynomial h1(x, y) = yp+q − (x + yq)p+q if p, q ≥ 1, or of h2(x, y) = y −
y1+qx−p−q if −p > q > 1.

Let G′k(Rn), where 0 ≤ k ≤ n, denote the set of all k-dimensional affine
subspaces of Rn. LetGk(Rn), where 0 ≤ k ≤ n, be the set of all k-dimensional
linear subspaces of Rn (cf. [13, B.6.11] for complex Grassmann spaces).

From Proposition 2.3 we obtain the following corollary.

Corollary 2.4. Let β = p/q, where p ∈ Z, q ∈ N. Let n > 2, and let
A ∈ G′2(Rn). Then there exists a polynomial ψβ : Rn → R, which is a sum
of squares of polynomials in R[x1, . . . , xn], such that

(a) L∞(ψβ|A) = β,
(b) degψβ ≤ 4q(|p|+ 2q),
(c) ψ−1β (0) ⊂ A contains at most one point.

Proof. Let E = (E1, . . . , En−2) ∈ L(n, n − 2) be a linear mapping and
z = (z1, . . . , zn−2) ∈ Rn−2 be a point such that A = E−1(z). By using a
translation, we may assume that z = 0. By choosing an appropriate coordi-
nate system, we can assume that A = R2 × {0}.

From Proposition 2.3 there exists a polynomial mapping Ψ = (ψ1, ψ2) :
R2 → R2 such that

L∞(Ψ) = 1
2β and degΨ ≤ 2q(|p|+ 2q).

Let
ψβ(x) = ψ2

1(x1, x2) + ψ2
2(x1, x2) + E2

1(x) + · · ·+ E2
n−2(x)

for x = (x1, . . . , xm) ∈ Rn. Then L∞(ψβ|A) = 2L∞(Ψ) = β and

degψβ 6 max{2 degψ1, 2 degψ2, 2} = 2degΨ ≤ 4q(|p|+ 2q).

So, (a) and (b) are proved. Part (c) follows from the definition of ψβ and the
fact that Ψ−1(0) contains at most one point.

Let V ⊂ Cn be a complex algebraic set. We denote by δ(V ) the total
degree of V , i.e. δ(V ) := deg V1+ · · ·+deg Vs, where V = V1 ∪ · · · ∪Vs is the
decomposition of V into irreducible components (see [13, p. 419]).

Let V ⊂ Rn be a real algebraic set and let F : Rn → Rm, where m ≥ n,
be a polynomial mapping. Let VC be the Zariski closure of V in Cn; we call
it the complexification of V . Let FC : Cn → Cm denote the complexification
of F (i.e., FC is a complex polynomial mapping such that FC|Rn = F ). We
write δ(V ) for the total degree of VC ⊂ Cn.

We will need the following fact ([19, Proposition 2.11] or [18, Proposition
4.5]).
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Proposition 2.5. Let V ⊂ Rn be a real algebraic set with 0 < dimR V <
n−2. Then there exist A∈G′2(Rn) and f ∈R[x1, . . . , xn] such that V ∩A= ∅,
f |V = 0, f |A = 1 and deg f ≤ δ(V ).

As is shown in the proof of [19, Proposition 2.11], the affine subspace A
and the polynomial f in the above assertion can be effectively determined.
More precisely, after choosing an appropriate coordinate system (using for
instance a Gröbner basis), one can choose a nonzero polynomial g ∈
C[z1, . . . , zn−2], deg g ≤ δ(V ), vanishing on VC. Hence there exists x0 ∈ Rn−2
such that Re g(x0) 6= 0. Then one can take A = {x0}×R2 and f = u/u(x0),
where g|Rn = u+ iv and u, v ∈ R[x1, . . . , xn].

Let V ⊂ Rn be a real algebraic set. We denote by κ(V ) the infimum
of the numbers k = max{deg h1, . . . ,deg hr}, where r ∈ N, h1, . . . , hr ∈
R[x1, . . . , xn] and V = {x ∈ Rn : h1(x) = · · · = hr(x) = 0}. From [19,
Proposition 2.13] we have

Lemma 2.6. Let V ⊂ Rn be an algebraic set. Then κ(V ) ≤ δ(V ).

3. Auxiliary results. We prove the following generalization of [19, The-
orem 1.1]. Let V ⊂ Rn be an unbounded algebraic set of the form

V = {x ∈ Rn : h1(x) = · · · = hr(x) = 0},
where h1, . . . , hr ∈ R[x1, . . . , xn]. We can assume that r ≥ n, defining hi = h1
for i ≥ r. Let k ∈ N with

k ≥ max{deg h1, . . . ,deg hr}.

Proposition 3.1. Let F : Rn → Rm, where m ≥ n ≥ 2, be a polynomial
mapping of degree d > 0 and suppose that the set F−1(0)∩V is compact. Let
p be an integer satisfying

(3.1) p ≥ L∞(F |V ) + θ(k, n, d,L∞(F |V )).

Let ξ = (ξ1, . . . , ξn) ∈ Rn, and H : Rn → Rnr be the polynomial mapping
defined by

H(x) = (hi(x)(xj − ξj)p : i = 1, . . . , r, j = 1, . . . , n), x ∈ Rn.

Then for the generic linear mapping L ∈ L(nr,m) we have

(3.2) L∞(F + L ◦H) = L∞(F |V ),

and degL ◦H ≤ k + p.

Proof. It suffices to prove the assertion for ξ = 0 ∈ Rn. Let F =
(f1, . . . , fm) : Rn → Rm. Since F−1(0)∩ V is compact, we have L∞(F |V ) >
−∞. It is known that there exist constants C1, R1 > 0 such that

(3.3) |F (x)| ≥ C1|x|L∞(F |V ) for x ∈ V with |x| ≥ R1.
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Then there exists a positive constant C such that (cf. [19, formula (3.2)])

(3.4) |F (x)| ≥ C|w|L∞(F |V ) for x ∈ V with |x| ≥ R1, |x− w| ≤ 1.

Diminishing C or C1, we can assume that (3.4) holds with C = C1.
From the Mean Value Theorem, for every x,w ∈ Rn and for any i there

is a point ti on the segment with end points x,w such that

(3.5) |fi(x)− fi(w)| ≤ |∇fi(ti)| |x− w|.
Let M(w) = sup{|∇fi(x)| : |x| ≤ |w| + 1, i = 1, . . . ,m}. Since deg∇fi ≤
d− 1, there exist constants C2 > 0 and R2 ≥ R1 + 1 such that 0 ≤M(w) ≤
C2|w|d−1 for |w| ≥ R2. From (3.5) and the above, for |w| ≥ R2, |x− w| ≤ 1
we have

(3.6) |F (x)− F (w)| ≤M(w)|x− w| ≤ C2|w|d−1|x− w|.
Let

W =

{
w ∈ Rn : dist(w, V ) ≤ min

{
1,

C1

2C2
|w|L∞(F |V )−d+1

}}
.

By (3.3), (3.5) and (3.6) we obtain (cf. [19, (3.6)])

Lemma 3.2. Under the above notations,

(3.7) |F (w)| ≥ C1

2
|w|L∞(F |V ) for w ∈W with |w| ≥ R2.

Let H̃ = (h1, . . . , hr) : Rn → Rr. From Theorem 1.1 there exists a
constant C3 > 0 such that

(3.8) |H̃(w)| ≥ C3

(
dist(w, V )

1 + |w|2

)k(6k−3)n−1

for w ∈ Rn with |w| ≥ R2.

Let
U = Rn \W

and θ = θ(k, n, d,L∞(F |V )). We have L∞(H̃|U) ≥ −θ by the following
lemma, which follows from (3.8) (cf. [19, (3.9)]):

Lemma 3.3. There exist constants C4 > 0 and R3 ≥ R2 such that

(3.9) |H̃(x)| |x|θ(k,n,d,L∞(F |V )) ≥ C4 for x ∈ U with |x| ≥ R3.

It is easy to see that for some c, c′ > 0 we have

(3.10) c|H(x)| ≤ |H̃(x)| |x|p ≤ c′|H(x)| for x ∈ Rn.

Let
Φ = (F,H) : Rn → Rm × Rnr.

Since Ψ |V = (F, 0)|V , from (3.7), (3.9) and (3.10) we obtain (cf. [19, (3.11)])

(3.11) L∞(Φ) = L∞(F |V ).
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From Corollary 2.2, for the generic linear mapping L̃ ∈ ∆(m + nr,m) we
have L∞(L̃ ◦ Φ) = L∞(Φ) and obviously L̃ = idRm +L, where idRm is the
identity mapping on Rm and L ∈ L(nr,m) is generic. Then L̃ ◦ Φ|V = F |V .
The inequality degL ◦H ≤ k + p is obvious. From the above and (3.11) we
obtain the assertion of Proposition 3.1.

Note that the exponent L∞(F |V ) may be a negative rational number.
Therefore, the use of the exponent in estimating the degree of the mapping
L ◦H improves the estimate.

4. Positive polynomials on algebraic sets. By using Proposition 3.1
we obtain the following theorem on extension of a positive polynomial on a
given algebraic set to a sum of squares. Let h1, . . . , hr ∈ R[x1, . . . , xn] and
let V ⊂ Rn be an algebraic set of the form

(4.1) V = {x ∈ Rn : h1(x) = · · · = hr(x) = 0}.
Let k ∈ N, k ≥ max{deg h1, . . . ,deg hr}. We will assume that the set V is
unbounded.

Theorem 4.1. Let f : Rn → R, n ≥ 2, be a polynomial of degree d > 0.
Suppose that the set f−1(0) ∩ V is compact and there exists an open set
U ⊂ Rn such that V ⊂ U and f(x) > 0 for all x ∈ U \ V . Then there exists
a polynomial h : Rn → R of the form

(4.2) h(x) =
r∑
i=1

n∑
j=1

αi,jh
2
i (x)(xj − ξj)p, x ∈ Rn,

where αi,j ∈ R are positive, ξ = (ξ1, . . . , ξn) is an arbitrary point of V , and
p is an even number satisfying

(4.3) L∞(F |V )+ θ(2k, n, d,L∞(F |V )) ≤ p < d+ θ(2k, n, d,L∞(f |V ))+ 2,

such that

(a) (f + h)(x) ≥ 0 for x ∈ Rn,
(b) L∞(f + h) = L∞(f |V ),
(c) deg h ≤ p+ 2k.

Proof. Assertion (c) follows immediately from (4.2). We will prove the
remaining assertions.

Let F = (f1, . . . , fn) : Rn → Rn, where fi = f for i = 1, . . . , n. Since
F−1(0)∩V = f−1(0)∩V is compact, we have L∞(F |V ) = L∞(f |V ) > −∞.
Obviously

V = {x ∈ Rn : h21(x) = · · · = h2r(x) = 0}
and 2k ≥ max{deg h21, . . . ,deg h2r}. Since d ≥ L∞(F |V ), on substituting
2k for k, the assumption (3.1) in Proposition 3.1 is equivalent to (4.3). So,
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by Proposition 3.1 for arbitrary ξ = (ξ1, . . . , ξn) ∈ V , an even integer p
satisfying (4.3) and the polynomial mapping H : Rn → Rnr defined by

H(x) = (h2i (x)(xj − ξj)p : i = 1, . . . , r, j = 1, . . . , n), x ∈ Rn,
for the generic linear mapping L ∈ L(nr, n), we have

(4.4) L∞(F + L ◦H) = L∞(F |V ).

In particular, (4.4) holds for the generic L ∈ L(nr, n) with positive coeffi-
cients. Without loss of generality, we may assume that ξ = 0 ∈ V . Then the
mapping H vanishes only on V .

By Lemma 3.2, there exist C1, C2 > 0 such that for

W = {w ∈ Rn : dist(w, V ) ≤ min{1, C1|w|L∞(f |V )−d+1}}
we obtain

|F (w)| ≥ C2|w|L∞(f |V ) for w ∈W with |w| ≥ R2.

By the assumptions of the theorem, we may assume that f(x) > 0 for x ∈ V
with |x| ≥ R2, so diminishing C2 if necessary, we have

(4.5) f(w) ≥ C2|w|L∞(f |V ) for w ∈W with |w| ≥ R2.

By Lemma 3.3, there exist constants C3 > 0 and R3 ≥ R2 such that

(4.6) |H(x)| ≥ C3|x|d for x ∈ Rn \W with |x| ≥ R3.

By the choice of d, increasing R3 if necessary, for some C4 > 0 we obtain

|f(x)| ≤ C4|x|d for x ∈ Rn with |x| ≥ R3.

Multiplying H by a sufficiently large number, we may assume that C3 > C4.
Then from (4.5), (4.6) and the fact that Li ◦ H(x) > 0 for Li ∈ L(nr, 1)
with positive coefficients and x ∈ Rn \ V , we see that for some mapping
L = (L1, . . . , Ln) ∈ L(nr, n) with positive coefficients, (4.4) holds and

(4.7) f(x) + Li ◦H(x) ≥ 0

for x ∈ Rn with |x| ≥ R3. Moreover, since f(x) > 0 for x ∈ U\V , multiplying
H by a sufficiently large number, we may assume that (4.7) holds for x ∈ Rn
with |x| ≤ R3. Summing up, (4.7) holds for any x ∈ Rn, and (a) is verified.

Put L0 = L1 + · · ·+ Ln, and let

L0(y1, . . . , ynr) = α1y1 + · · ·+ αnrynr,

where α1, . . . , αnr∈R are positive. Then the polynomial h=L0 ◦H : Rn→R
is of the form (4.2). Since the Euclidean and the polycylindric norms in Rn
are equivalent, there exist c, c′ > 0 such that

c[nf(x) + L0 ◦H(x)] ≤ |F (x) + L ◦H(x)| ≤ c′[nf(x) + L0 ◦H(x)]

for x ∈ Rn. Hence, from (4.4) we easily deduce that (b) holds.
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From Theorem 4.1, Lemma 2.6 and Artin’s Theorem (see [1, Satz 1], cf.
[28, Theorem 1.1.1]) we obtain

Corollary 4.2. Let f : Rn → R be a polynomial satisfying the assump-
tions of Theorem 4.1. Then there exists a polynomial g : Rn → R of the form
g = f + h, where g is a sum of squares of rational functions and h is a sum
of squares of polynomials, such that

(a) g|V = f |V ,
(b) L∞(g) = L∞(f |V ),
(c) deg g ≤ d+ 2δ(V ) + 2 + θ(2δ(V ), n, d,L∞(f |V )).

With an additional assumption we will show that when extending a pos-
itive polynomial on an algebraic set to a sum of squares, we can require the
Łojasiewicz exponent at infinity to have a fixed value. Precisely, we assume
that dimV ≤ n − 3. Thus n ≥ 4. According to Proposition 2.5 there exist
A ∈ G′2(Rn) and g ∈ R[x1, . . . , xn] such that

V ∩A = ∅, g|V = 1, g|A = 0, deg g ≤ δ(V ).

Let E = (E1, . . . , En−2) ∈ L(n, n − 2) be a linear mapping such that A =
L−1(z) for some z ∈ Rn−2. By Corollary 2.4 for any β = p

q ∈ Q, p ∈ Z,
q ∈ N, there exists a polynomial ψβ : Rn → R which is a sum of squares of
polynomials, such that

L∞(ψβ|A) = β and degψβ ≤ (|p|+ 2q) · 4q,
and ψ−1β (0) ⊂ A contains at most one point.

Corollary 4.3. Let f : Rn → R, where n ≥ 4, be a polynomial of degree
d > 0 and suppose that f(x) > 0 for x ∈ V . Let β = p/q ∈ Q, p ∈ Z, q ∈ N,
and let β ≤ L∞(f |V ). Take an even integer P satisfying

(4.8) P ≥ d+ θ(2k + 2, n,D, β),

where D = eδ(V ) + max{d, (|p| + 2q) · 4q} and e ≥ 2 is the smallest even
number greater than the order of ψβ at its zero. Let ξ = (ξ1, . . . , ξn) ∈ A.
Then there exists a polynomial h : Rn → R of the form

h(x) =

r∑
i=1

n−2∑
l=1

n∑
j=1

αi,l,jh
2
i (x)E

2
l (x)(xj − ξj)P , x ∈ Rn,

where αi,l,j are positive real numbers, such that

(a) (gef + (1− g2)ψβ + h)|V = f |V ,
(b) (gef + (1− g2)ψβ + h)(x) ≥ 0 for x ∈ Rn,
(c) L∞(gef + (1− g2)ψβ + h) = β,
(d) deg(gef + (1− g2)ψβ + h) ≤ P + 2k + 2.

Proof. By the definition of the functions ψβ , g, the choice of e, and the
assumption that f(x) > 0 for x ∈ V , there exists an open set U ⊂ Rn with
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V ∪A ⊂ U such that g2(x)f(x) + (1− g2(x))ψβ(x) > 0 for x ∈ U \ (V ∪A).
Moreover, the function g2(x)f(x) + (1 − g2(x))ψβ(x) has a compact set of
zeroes in V ∪A and deg[g2(x)f(x) + (1− g2(x))ψβ(x)] ≤ D. Then Theorem
4.1 yields the assertion.

Example 4.4. The assumption f > 0 on V is essential, as shown by the
following example. Let V = {(x, y) ∈ Rn : x2 − y3 = 0}, and let f(x, y) = y.
Then f ≥ 0 on V , but for every h ∈ R[x, y] vanishing on V there exists
(x, y) ∈ R2 such that f(x, y)+h(x, y) < 0. Indeed, h(x, y) = (x2−y3)h1(x, y),
and f(0, y) + h(0, y) = y − y3h1(0, y). Thus f(0, y) + h(0, y) changes sign
at 0.

5. Positivstellensatz on algebraic and semialgebraic sets. Let
V ⊂ Rn be an algebraic set of the form (4.1). Then V can be considered as
a basic semialgebraic set, since

V = {x ∈ Rn : g1(x) ≥ 0, . . . , g2r(x) ≥ 0},
where g1 = h1, g2 = −h1, . . . , g2r−1 = hr, g2r = −hr. Then the preordering
T generated by g1, . . . , g2r is of the form

T =
{ ∑
e∈{0,1}2r

σeg
e1
1 · · · g

e2r
2r : σe ∈

∑
R[x]2 for e = (e1, . . . , e2r) ∈ {0, 1}2r

}
.

From Theorem 4.1 and Artin’s Theorem we obtain the following version of
the Positivstellensatz on algebraic sets.

Corollary 5.1. If f : Rn → R with n ≥ 2 is a polynomial of degree
d > 0, and f(x) > 0 for x ∈ V , then

f(x) = −h(x) + σ(x),

where σ ∈
∑

R(x)2, h is of the form (4.2), and −h ∈ T . If additionally
k = max{deg g1, . . . ,deg gr}, d = deg f and D = max{k, d}, then
(5.1) deg h ≤ d+ 2k + 2 + θ(2k, n, d,−D(6D − 3)n−1).

Proof. If V is a bounded algebraic set, then the assertion is obvious.
Assume that V is unbounded. The first part of the assertion follows imme-
diately from Theorem 4.1. From [32, Corollary 6] (cf. [7]–[10]), we have

L∞(f |V ) ≥ −D(6D − 3)n−1,

and by Theorem 4.1, we obtain (5.1).

By considering a polynomial f ∈ R[x1, . . . , xn] positive on a basic semial-
gebraic setX as an element of R[x1, . . . , xn, y1, . . . , yr], where r is the number
of inequalities defining X, we obtain a version of the Positivstellensatz on
any basic semialgebraic set (see Corollary 5.2 below). Let us start with some
notations.
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Consider the basic semialgebraic set

X = {x ∈ Rn : g1(x) > 0, . . . , gj(x) > 0, gj+1(x) ≥ 0, . . . , gr(x) ≥ 0},
where g1, . . . , gr ∈ R[x1, . . . , xn] and 0 ≤ j ≤ r. Put hi(x, y) = gi(x)y

2
i − 1

for i = 1, . . . , j and hi(x, y) = gi(x)− y2i for i = j + 1, . . . , r, and let

Y = {(x, y) ∈ Rn × Rr : h1(x, y) = · · · = hr(x, y) = 0}.
Then we have π(Y ) = X for the projection π : Rn × Rr 3 (x, y) 7→
x ∈ Rn. So, any polynomial f : Rn → R can be considered as a polyno-
mial on Y , by identifying f ◦ π with f . Denote by T1 the preordering of
R[x1, . . . , xn, y1, . . . , yr] generated by h1,−h1, . . . , hr,−hr. By Theorem 4.1
we obtain the following version of the Positivstellensatz on basic semialge-
braic sets.

Corollary 5.2. Let f : Rn → R be a polynomial, and let f(x) > 0 for
x ∈ X. Then

f(x) = −h(x, y) + σ(x, y),

where σ ∈
∑

R(x, y)2, and −h ∈ T1 is of the form
(5.2)

− h(x, y) =
r∑
i=1

n+r∑
j=1

αi,jhi(x, y) · (−hi(x, y))(wj − ξj)p, (x, y) ∈ Rn × Rr,

where αi,j are positive numbers, (w1, . . . , wn+r) = (x1, . . . , xn, y1, . . . , yr),
and (ξ1, . . . , ξn+r) is an arbitrary point of Y and p is a positive even number
such that

(5.3) p ≤ d+ 2 + θ(2k + 4, n+ r, d,−D(6D − 3)n+r−1),

provided k = max{deg g1, . . . ,deg gr}, d = deg f and D = max{k + 2, d}.

Proof. By [32, Corollary 6], we have L∞(f |Y ) ≥ −D(6D − 3)n+r−1. It
is easy to see that max{deg h1, . . . ,deg hr} ≤ k + 2. So, for the smallest
positive even number satisfying

p ≥ d+ θ(2k + 4, n+ r, d,−D(6D − 3)n−1)

the inequality (5.3) holds. Moreover, the assumptions of Theorem 4.1 are
satisfied. So Theorem 4.1 yields the assertion.

Corollary 5.2 also includes the case when the basic semialgebraic set X
is closed or when it is open. It is known that for a basic closed semialgebraic
set

X = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0},
where g1, . . . , gr ∈ R[x1, . . . , xn], there exists an algebraic set

Y = {(x1, . . . , xn, y1, . . . , yr) ∈ Rn×Rr : g1(x)− y21 = 0, . . . , gr(x)− y2r = 0}
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such that π(Y ) = X, where π : Rn × Rr 3 (x, y) 7→ x ∈ Rn. So, any
polynomial f : Rn → R can be considered as a polynomial on Y , upon
identifying f ◦π with f . Then the preordering T1 is generated by g1(x)− y21,
−g1(x)+y21, . . . , gm(x)−y2m,−gr(x)+y2r . Thus Corollary 5.2 gives the Posi-
tivstellensatz on a closed semialgebraic set for j = 0.

For j = r, Corollary 5.2 gives the Positivstellensatz for an open semi-
algebraic set. Indeed, for an open basic semialgebraic set X = {x ∈ Rn :
g1(x) > 0, . . . , gr(x) > 0}, there exists an algebraic set Y = {(x, y1, . . . , yr) ∈
Rn×Rr : g1(x)y21−1 = 0, . . . , gr(x)y

2
r−1 = 0} such that π(Y ) = X. Then the

preordering T1 is generated by g1(x)y21 − 1,−g1(x)y21 + 1, . . . , gm(x)y
2
m − 1,

−gr(x)y2r + 1.
Let V be an irreducible algebraic set of the form (4.1).

Corollary 5.3. Let f : Rn → R be a polynomial, and let f(x) ≥ 0 for
x ∈ V , and f |V 6= 0. Then

fp+1 = −h+ σ,

where σ ∈
∑

R(x)2, and −h ∈ T is of the form

− h(x) =
r∑
i=1

n∑
j=1

αi,jf
p(x)hi(x) · (−hi(x))(xj − ξj)p(5.4)

+

r∑
i=1

αihi(x) · (−hi(x))(1− ξn+1f(x))
p, x ∈ Rn × Rr,

where αi,j , αi are positive numbers, (ξ1, . . . , ξn) is an arbitrary point of V ,
ξn+1 ∈ R and p is a positive even number such that

(5.5) p ≤ d+ 2 + θ(2k + 4, n+ 1, d,−D(6D − 3)n),

provided k = max{deg g1, . . . ,deg gr}, d = deg f and D = max{k, d+ 1}.

Proof. Let X = V \ V (f). Then f(x) > 0 for x ∈ X and X 6= ∅. Let
Y = {(x, y) ∈ Rn × R : x ∈ V, f(x)y − 1 = 0},

and define hi(x, y) = hi(x) for i = 1, . . . , r and hr+1(x, y) = f(x)y−1. Then
by Theorem 4.1 for any (ξ1, . . . , ξn+1) ∈ Y , there exist positive numbers αi,j ,
i = 1, . . . , r + 1, j = 1, . . . , n, and σ ∈

∑
R(x, y)2 such that

f(x) = −h(x, y) + σ(x, y),

where

−h(x, y) =
r+1∑
i=1

n+1∑
j=1

αi,jhi(x, y) · (−hi(x, y))(wj − ξj)p, (x, y) ∈ Rn × R,

and (w1, . . . , wn+1) = (x1, . . . , xn, y). Setting y = 1/f yields the assertion.
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