Two remarks on the Suita conjecture

by Nikolai Nikolov (Sofia)

Abstract

It is shown that the weak multidimensional Suita conjecture fails for any bounded non-pseudoconvex domain with $C^{1+\varepsilon}$-smooth boundary. On the other hand, it is proved that the weak converse to the Suita conjecture holds for any finitely connected planar domain.

Let D be a domain in \mathbb{C}^{n}. Denote by K_{D} and A_{D} the Bergman kernel on the diagonal and the Azukawa metric of D (cf. [JP]). Let

$$
I_{D}^{A}(z)=\left\{X \in \mathbb{C}^{n}: A_{D}(z ; X)<1\right\}
$$

be the indicatrix of A_{D} at $z \in D$.
Z. Błocki and W. Zwonek have recently proved the following (see [BZ, Theorem 2] and [B2, Theorem 7.5]).

Theorem 1. If D is a pseudoconvex domain in \mathbb{C}^{n}, then

$$
K_{D}(z) \geq \frac{1}{\lambda\left(I_{D}^{A}(z)\right)}, \quad z \in D\left({ }^{1}\right)
$$

Theorem 1 for $n=1$ is known as the Suita conjecture (see [S]). The first proof of this conjecture is given in [B1].

Theorem 1 can hold for some bounded non-pseudoconvex domains. To see this, note that if M is a closed pluripolar subset of a domain D in \mathbb{C}^{n}, then $K_{D \backslash M}=K_{D}$ and $A_{D \backslash M}=A_{D}$.

On the other hand, our first remark says that even a weaker version of Theorem 1 fails for every bounded non-pseudoconvex domain with $C^{1+\varepsilon_{-}}$ smooth boundary.

Proposition 2. Let D be a bounded non-pseudoconvex domain in \mathbb{C}^{n} with $C^{1+\varepsilon}-$ smooth boundary $(\varepsilon>0)$. Then there exists a sequence $\left(z_{j}\right)_{j} \subset D$

2010 Mathematics Subject Classification: 32A25, 32F45, 32U35.
Key words and phrases: Suita conjecture, Bergman kernel, Azukawa metric.
$\left({ }^{1}\right)$ If $K_{D}(z)=0$, then $\lambda\left(I_{D}^{A}(z)\right)=\infty$.
such that

$$
\lim _{j \rightarrow \infty} K_{D}\left(z_{j}\right) \lambda\left(I_{D}^{A}\left(z_{j}\right)\right)=0
$$

Proof. Since D is non-pseudoconvex, we can find a sequence $\left(z_{j}\right)_{j} \subset D$ approaching $a \in \partial D$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} K_{D}\left(z_{j}\right)<\infty \tag{1}
\end{equation*}
$$

(otherwise, $\log K_{D}$ would be a plurisubharmonic exhaustion function for D). On the other hand, if $\varepsilon \leq 1$, then, by [DNT, Proposition 2(i)], there exists a constant $c_{1}>0$ such that

$$
c_{1} A_{D}(z ; X) \geq \frac{\left|X_{N}\right|}{\left(d_{D}(z)\right)^{\varepsilon /(1+\varepsilon)}}+\|X\|, \quad z \text { near } a
$$

where $d_{D}(z)=\operatorname{dist}(z, \partial D)$ and X_{N} is the projection of X on the complex normal to ∂D at a point a^{\prime} such that $\left\|z-a^{\prime}\right\|=d_{D}(z)$. Thus, one can find a constant $c_{2}>0$ for which

$$
\lambda\left(I_{D}^{A}(z)\right) \leq c_{2}\left(d_{D}(z)\right)^{2 \varepsilon /(1+\varepsilon)}, \quad z \text { near } a
$$

This inequality and (1) imply the wanted result.
Proposition 3 ([BZ, Proposition 4]). Let $0<r<1$ and $P_{r}=\{z \in \mathbb{C}$: $r<|z|<1\}$. Then

$$
K_{P_{r}}(\sqrt{r}) \geq-\frac{2 \log r}{\pi^{2}} \cdot \frac{1}{\lambda\left(I_{P_{r}}^{A}(\sqrt{r})\right)}
$$

So, the converse to the Suita conjecture is not true with any universal constant instead of 1 . However, our second remark says that any finitely connected planar domain has its own constant.

Proposition 4. For any finitely connected planar domain D there exists a constant $c>0$ such that

$$
K_{D}(z) \leq \frac{c}{\lambda\left(I_{D}^{A}(z)\right)}, \quad z \in D
$$

Proof. It follows from the removable singularity theorem and the uniformization theorem that it is enough to consider the case when $D=\mathbb{D} \backslash E$, where E is a union of disjoint closed discs contained in the open unit disc \mathbb{D}. Since now ∂D is C^{1}-smooth, [JN, Proposition 2] (see also [JP, Lemma 20.3.1]) and the remark at the end of [JN] show that

$$
\lim _{z \rightarrow \partial D} \frac{d_{D}^{2}(z)}{\lambda\left(I_{D}^{A}(z)\right)}=\frac{1}{4 \pi}=\lim _{z \rightarrow \partial D} K_{D}(z) d_{D}^{2}(z)
$$

Hence

$$
\lim _{z \rightarrow \partial D} K_{D}(z) \lambda\left(I_{D}^{A}(z)\right)=1
$$

which leads to the desired inequality.

References

[B1] Z. Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), 149-158.
[B2] Z. Błocki, Cauchy-Riemann meet Monge-Ampère, Bull. Math. Sci. 4 (2014), 433-480.
[BZ] Z. Błocki and W. Zwonek, Estimates for the Bergman kernel and the multidimensional Suita conjecture, arXiv:1404.7692.
$[$ DNT] N. Q. Dieu, N. Nikolov and P. J. Thomas, Estimates for invariant metrics near non-semipositive boundary points, J. Geom. Anal. 23 (2013), 598-610.
[JN] M. Jarnicki and N. Nikolov, Behavior of the Carathéodory metric near strictly convex boundary points, Univ. Iagel. Acta Math. 40 (2002), 7-12.
[JP] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, 2nd extended ed., de Gruyter, 2013.
[S] N. Suita, Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal. 46 (1972), 212-217.

Nikolai Nikolov
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev St., Block 8
1113 Sofia, Bulgaria
and
Faculty of Information Sciences
State University of Library Studies
and Information Technologies
69A, Shipchenski prohod St.
1574 Sofia, Bulgaria
E-mail: nik@math.bas.bg

Received 18.11.2014
and in final form 24.11.2014

