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On the growth of an algebroid function with radially
distributed values

by Nan Wu and Jian Hua Zheng (Beijing)

Abstract. We investigate how the growth of an algebroid function could be affected
by the distribution of the arguments of its a-points in the complex plane. We give estimates
of the growth order of an algebroid function with radially distributed values, which are
counterparts of results for meromorphic functions with radially distributed values.

1. Introduction and the results. We assume that the reader is fa-
miliar with the fundamental results and standard notations of Nevanlinna
theory in the unit disk ∆ = {z : |z| < 1} and in the complex plane C (see

[5, 10, 14, 22]). A value on the extended complex plane Ĉ = C ∪ {∞} is
called a radially distributed value of a transcendental meromorphic function
if most of the points at which the value is assumed distribute closely along a
finite number of rays from the origin. The growth of meromorphic functions
with radially distributed values has been thoroughly studied (see [1], [3], [4],
[12, 13], [17, 18, 19] and [20, 21, 22]).

However, similar results concerning algebroid functions are rather few.
This motivated us to investigate this case. Indeed in [23], we suggested that
some aspects of algebroid functions are worthy of consideration, the first
one being:

Problem. How does an algebroid function grow when some restriction
is imposed on arguments of certain a-points?

The purpose of this paper is to discuss this problem. Before stating our
results, we give some notations and definitions. Let f = f(z) be the ν-valued
algebroid function determined by an irreducible equation

(1.1) F (z, w) := A0(z)w
ν +A1(z)w

ν−1 + · · ·+Aν(z) = 0,

where Aν(z), . . . , A0(z) are entire functions, at least one of which is transcen-
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dental, without any common zeros. Let ~A = (A0, . . . , Aν), ~∞ = (1, 0, . . . , 0).
For any a ∈ C, put ~a = (aν , aν−1, . . . , 1). Then we set

‖ ~A(z)‖ = (|A0|2 + |A1|2 + · · ·+ |Aν |2)1/2,

‖~a‖ =

{
(|a|2ν + |a|2ν−2 + · · ·+ |a|2 + 1)1/2, a 6=∞,

1, a =∞.

Since F (z, w) is irreducible, one can have F (z, a) = ~A(z) · ~a 6≡ 0, where
F (z,∞) = A0(z). Set log+ x = max{0, log x} and define

m(r,~a, ~A) =
1

2π

2π�

0

log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

dθ,

N(r,~a, ~A) = N(r, 0, F (z, a))

=

r�

0

n(t, 0, F (z, a))− n(0, 0, F (z, a))

t
dt+ n(0, 0, F (z, a)) log r,

T (r,~a, ~A) = m(r,~a, ~A) +N(r,~a, ~A),

where n(t, 0, F (z, a)) is the number of roots of the equation F (z, a) = 0 in the
disk {|z| ≤ t}, counting multiplicities. More generally, n(t, a, f(z)) denotes
the number of roots of f(z) = a in {|z| ≤ t}, counting multiplicities.

Following G. Valiron, we define the characteristic function of f(z) as

T (r, f) =
1

2νπ

2π�

0

log max
0≤j≤ν

|Aj(reiθ)| dθ.

By using Valiron’s result (cf. [16]), we get a relation between T (r, f) and

T (r,~a, ~A):

|T (r,~a, ~A)− νT (r, f)| = O(1).

The counting function of a-points of f(z) is defined as

N(r, a, f) =
1

ν
N(r, 0, F (z, a)).

Put

δ(a, f) = 1− lim sup
r→∞

N(r, a, f)

T (r, f)
= 1− lim sup

r→∞

N(r, 0, F (z, a))

T (r,~a, ~A)
.

The value a is called a Nevanlinna deficient value of f if δ(a, f) > 0. The
order and lower order of f(z) are defined as

λ(f) := lim sup
r→∞

log T (r, f)

log r
, µ(f) := lim inf

r→∞

log T (r, f)

log r
.

Given an angular domain X = {z : α < arg z < β} (0 < β−α < 2π), define
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the counting function of a-points of f(z) in X as

N(r,X, f = a) =
1

ν

r�

1

n(t,X, f = a)

t
dt,

where n(t,X, f = a) is the number of roots of f(z) = a in X ∩ {z : |z| < t},
counting multiplicities.

For algebroid functions, Niino [8] obtained the following theorem.

Theorem A ([8]). Let f(z) be a ν-valued algebroid function of lower

order µ satisfying 1 ≤ µ < ∞ in C and with δ(a, f) > 0 for some a ∈ Ĉ.
Let Ω be an angular domain defined by

Ω =

{
z : |arg z − θ| < π − 2

µ
arcsin

√
δ

2
+ η

}
, 0 ≤ θ < 2π,

where η > 0 is a small real number. Suppose that the solutions in Ω of
f(z) = a are finite in number. Then the equation f(z) = c has an infinite
number of solutions in Ω except for at most 2ν − 1 values of c 6= a.

We consider q pairs of real numbers {αj , βj} such that

(1.2) − π ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αq < βq ≤ π,
and define ω = max1≤i≤q

{
π

βi−αi

}
. We will establish the following results.

Theorem 1.1. Let f(z) be the ν-valued algebroid function of finite lower
order µ < ∞ in C determined by (1.1) and with δ = δ(a, f) > 0 for some

a ∈ Ĉ. If for q pairs of real numbers {αi, βi} satisfying (1.2) and 2ν distinct
complex values ai 6= a (i = 1, . . . , 2ν), we have

(1.3)

2ν∑
i=1

n(r, Y, f = ai) = o(T (dr, f)),

n(r, Y, f = a) = o

(
T (dr, f)

log r

)
(d ≥ 1),

for Y =
⋃q
j=1{z : αj < arg z < βj} and

(1.4)

q∑
i=1

(αi+1 − βi) <
4

β
arcsin

√
δ

2
, αq+1 = 2π + α1,

where β = max{ω, µ}, then λ(f) ≤ ω.

Theorem 1.2. Let f(z) and a be as in Theorem 1.1. If for q pairs of
real numbers {αi, βi} satisfying (1.2) and 2ν distinct complex values ai 6= a
(i = 1, . . . , 2ν), we have

(1.5) lim sup
r→∞

log+(
∑2ν

i=1 n(r, Y, f = ai) + n(r, Y, f = a))

log r
≤ ρ
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for Y =
⋃q
j=1{z : αj < arg z < βj} and (1.4) for β = max{ω, ρ, µ}, then

λ(f) ≤ max{ω, ρ}.

From Theorem 1.1, we have the following corollary which improves The-
orem A.

Corollary 1.3. Let f(z) be the ν-valued algebroid function of lower or-
der µ satisfying 0 < µ <∞ in C determined by (1.1) and with δ = δ(a, f) >

0 for some a ∈ Ĉ. If for any angular domain X = {z : α < arg z < β}
(0 < β − α ≤ 2π) satisfying

β − α > max

{
π

µ
, 2π − 4

µ
arcsin

√
δ

2

}
,

we have

n(r,X, f = a) = o

(
T (dr, f)

log r

)
,

then there exists a ray arg z = θ ∈ (α, β) such that for any small ε > 0, and
any 2ν distinct complex values ai 6= a (i = 1, . . . , 2ν),

(1.6) lim sup
r→∞

∑2ν
i=1 n(r, Zε(θ), f = ai)

T (dr, f)
> 0,

where Zε(θ) = {z : θ − ε < arg z < θ + ε} and d ≥ 1.

Remark. Let us show that Theorem A follows from Corollary 1.3. We
take into account the amplitude of the angular domain Ω in Theorem A.
Since

2π − 4

µ
arcsin

√
δ

2
+ 2η ≥ 2π − π

µ
+ 2η ≥ π

µ
+ 2η,

by noting µ ≥ 1 in Theorem A, the amplitude of Ω is greater than

max

{
π

µ
, 2π − 4

µ
arcsin

√
δ

2

}
.

Since f(z) in Corollary 1.3 is an algebroid function and not an algebraic
function, we have

T (r, f)

log r
→∞ as r →∞.

If the equation f(z) = a has finite roots in X, then we must have

n(r,X, f = a) = o

(
T (r, f)

log r

)
.

Therefore, in terms of Corollary 1.3, Ω contains a ray arg z = φ such
that (1.6) holds. We obtain immediately the result of Theorem A.
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2. Some lemmas. First we need some auxiliary results for the proof
of the theorems. The following result can be found in [22] for meromorphic
functions.

Lemma 2.1 ([22]). Let f(z) be an algebroid function in C of finite lower
order 0 ≤ µ < ∞ and order 0 < λ ≤ ∞. Then for any finite and positive
number β satisfying µ ≤ β ≤ λ and a set E of finite logarithmic measure,
i.e.,

	
E t
−1 dt < ∞, there exists a sequence {rn} of positive numbers such

that

(1) rn /∈ E and lim
n→∞

rn
n

=∞;

(2) lim inf
n→∞

log T (rn, f)

log rn
≥ β;

(3) T (t, f) < (1 + o(1))(2t/rn)βT (rn/2, f) for t ∈ [rn/n, nrn];

(4) T (t, f)/tβ−εn ≤ 2β+1T (rn, f)/rβ−εnn for 1 ≤ t ≤ nrn, where εn =
[log n]−2.

Since the characteristic function T (r, f) of an algebroid function f(z) is
also a non-decreasing, positive and continuous function defined in (0,∞), one
can derive Lemma 2.1 directly from [22]. A sequence {rn} satisfying (1)–(4)
of Lemma 2.1 is called a sequence of Pólya peaks of order β outside E. Given
a positive function Λ(r) satisfying limr→∞ Λ(r) = 0, for r > 0 and a ∈ Ĉ,
define

EΛ(r, a) =

{
θ : log+

‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

> Λ(r)T (r, f)

}
.

By meas(E) we denote the Lebesgue measure of the set E. The follow-
ing result is a comprehensive version of the main result of Krytov [7] and
Yang [16].

Lemma 2.2 ([7, 16]). Let f(z) be a ν-valued algebroid function in C of
finite lower order µ and order 0 < λ ≤ ∞ with δ = δ(a, f) > 0 for some

a ∈ Ĉ. Then for any sequence {rn} of Pólya peaks of order β > 0 where
µ ≤ β ≤ λ, and for any positive function Λ(r) with Λ(r)→ 0 as r →∞,

(2.1) lim inf
n→∞

meas(EΛ(rn, a)) ≥ min

{
2π,

4

β
arcsin

√
δ

2

}
.

Lemma 2.2 is called the spread relation of algebroid functions; it was
proved in [7, 16] for Pólya peaks of order µ. By the same argument, one can
derive Lemma 2.2 for Pólya peaks of order β (µ ≤ β ≤ λ).

Lemma 2.3. Let f(z) be the ν-valued algebroid function determined
by (1.1) in the complex plane. Assume that u = u(z) is a conformal mapping
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from the angular domain X = {z : α < arg z < β} (0 < β − α ≤ 2π) onto
the unit disk. Let z(u) be the inverse mapping of u(z). Then f(z(u)) is a
ν-valued algebroid function defined in the unit disk.

Proof. It is obvious that f(z(u)) is a ν-valued algebroid function deter-
mined by the equation

F (z(u), w) :=A0(z(u))wν+A1(z(u))wν−1+· · ·+Aν−1(z(u))w+Aν(z(u)) = 0.

The fact that Ai(z) (i= 1, . . . , ν) are entire functions implies that the compo-
site functions A0(z(u)), . . . , Aν(z(u)) are also analytic. As A0(z), . . . , Aν(z)
have no common zeros, also A0(z(u)), . . . , Aν(z(u)) have no common ze-
ros, because if u = u0 is a common zero, then z(u0) is a common zero
of A0(z), . . . , Aν(z). Since F (z, w) is irreducible, so is F (z(u), w) because
if

F (z(u), w) = F1(u,w)F2(u,w),

then

F (z, w) = F1(u(z), w)F2(u(z), w),

which is a contradiction. Hence, the proof is complete.

Lemma 2.4 ([17]). The transformation

(2.2) ζ(z) =
(ze−iθ0)π/(β−α) − 1

(ze−iθ0)π/(β−α) + 1
(θ0 = (α+ β)/2)

maps the angular domain X = {z : α < arg z < β} (0 < β − α ≤ 2π)
conformally onto the unit disk {ζ : |ζ| < 1} in the ζ-plane, and maps z = eiθ0

to ζ = 0. The image of Xε(r) = {z : 1 ≤ |z| ≤ r, α + ε ≤ arg z ≤ β − ε}
(0 < ε < (β − α)/2) in the ζ-plane is contained in the disk {ζ : |ζ| ≤ h},
where

h = 1− ε

β − α
r−π/(β−α).

On the other hand, the inverse image of the disk {ζ : |ζ| ≤ h} (h < 1) in
the z-plane is contained in X ∩ {z : |z| ≤ r}, where

r =

(
2

1− h

)(β−α)/π
.

Moreover, for |ζ| ≤ h, we have

(2.3)
β − α
π

(
1− h

2

)(β−α)/π
≤ |z′(ζ)| ≤ β − α

π

(
2

1− h

)1+(β−α)/π
,

where z(ζ) is the inverse of the transformation (2.2).

The proof of Lemma 2.4 can be found in [17].
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Lemma 2.5 ([6, 9]). Suppose that f(z) is a ν-valued algebroid function

defined in the unit disk, and ai ∈ Ĉ (i = 1, . . . , q) are q (> 2ν) distinct
complex values. Then

(q − 2ν)T (r, f) ≤
q∑
i=1

N(r, ai, f) +O(log(1− r)−1 + log T (r, f))

for all r possibly outside a set F ⊂ (0, 1) with
	
F dr/(1− r) <∞.

Lemma 2.5 is called the second fundamental theorem for algebroid func-
tions in the unit disk; its proof can be found in [6, 9].

Now, we use by the Poisson–Jensen formula for meromorphic functions

in order to estimate the logarithmic module log+ ‖
~A(z)‖ ‖~a‖
|F (z,a)| .

Lemma 2.6. Let f(ξ) be the ν-valued algebroid function determined
by (1.1) in the unit disk. Then, for any z = reiθ such that 0 < r < R < 1,
we have

log+
‖ ~A(z)‖ ‖~a‖
|F (z, a)|

≤ log+(ν + 1)1/2 +
R+ r

R− r
m(R,~a, ~A)(2.4)

+
M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣,
where b1, . . . , bM are all the roots of f(ξ) = a in |ξ| < R appearing according
to their multiplicities and M = n(R, a, f).

Proof. We will prove that (2.4) holds for every point z. For any z = reiθ,
0 < r < R < 1, there exists an integer 0 ≤ k = kz ≤ ν such that

max
0≤l≤ν

|Al(z)| = |Ak(z)|.

Then

log+
‖ ~A(z)‖ ‖~a‖
|F (z, a)|

≤ log+
(ν + 1)1/2|Ak(z)| ‖~a‖

|F (z, a)|

≤ log+(ν + 1)1/2 + log+
|Ak(z)| ‖~a‖
|F (z, a)|

= log+(ν + 1)1/2 + log+
∣∣∣∣ Ak(z)F (z, a)

‖~a‖
∣∣∣∣.

Since both Ak(ξ) and F (ξ, a) are analytic functions in the unit disk and ‖~a‖
is a constant number, we deduce that Ak(ξ)‖~a‖/F (ξ, a) is a meromorphic
function in the unit disk. Now we apply the Poisson–Jensen formula to this
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function:

log+
∣∣∣∣Ak(z)‖~a‖F (z, a)

∣∣∣∣ ≤ 1

2π

2π�

0

log+
∣∣∣∣Ak(Reiφ)‖~a‖
F (Reiφ, a)

∣∣∣∣ R2 − r2

R2 − 2Rr cos(θ − φ) + r2
dφ

+

M∑
t=1

log

∣∣∣∣ R2 − btz
R(z − bt)

∣∣∣∣.
Using the inequality R2−r2

R2−2Rr cos(θ−φ)+r2 ≤
R+r
R−r , we derive

log+
∣∣∣∣Ak(z)‖~a‖F (z, a)

∣∣∣∣ ≤ 1

2π

R+ r

R− r

2π�

0

log+
∣∣∣∣Ak(Reiφ)‖~a‖
F (Reiφ, a)

∣∣∣∣ dφ+
M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣
=

1

2π

R+ r

R− r

2π�

0

log+
|Ak(Reiφ)| ‖~a‖
|F (Reiφ, a)|

dφ+
M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣.
In view of |Ak(Reiφ)| ≤ ‖ ~A(Reiφ)‖, we have

log+
∣∣∣∣Ak(z)‖~a‖F (z, a)

∣∣∣∣ ≤ R+ r

R− r
m(R,~a, ~A) +

M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣.
This completes the proof of (2.4).

Now, we establish a lemma of independent interest. Define, for 0 ≤ α <
β < 2π,

mα,β(r,~a, ~A) =
1

2π

β�

α

log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

dθ.

Lemma 2.7. Let f(z) be the ν-valued algebroid function determined by
(1.1) in C. Set X = {z : α < arg z < β} (0 < β − α < 2π). Then, for any
0 < ε < (β − α)/2 and for all r except a set E of finite logarithmic measure,

(2.5) mα+ε,β−ε(r,~a, ~A)

≤ Cε
(
rω

kr�

1

∑2ν
i=1 n(x,X, f = ai)

x1+ω
dx+ n(kr,X, f = a) log r + 1

)
,

where ω = π/(β − α), k = (8(β − α)/ε)1/ω and Cε is a positive number
depending on ε and β − α.

Proof. By Lemmas 2.3 and 2.4, f(z(ζ)) is the ν-valued algebroid function
in the unit disk determined by the irreducible equation

F (z(ζ), w) = A0(z(ζ))wν +A1(z(ζ))wν−1 + · · ·+Aν(z(ζ)) = 0,

where z(ζ) is the inverse of the transformation (2.2). Using Lemma 2.4 and
noticing that the number of roots of an equation in a region is a conformal
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invariant, we have

n(t, τ, f(z(ζ)))− n(0, τ, f(z(ζ))) ≤ n
((

2

1− t

)1/ω

, X, f(z) = τ

)
for τ = ai (i = 1, . . . , 2ν) and for τ = a. Therefore,

N(h′, τ, f(z(ζ))) =
1

ν

h′�

0

n(t, τ, f(z(ζ)))− n(0, τ, f(z(ζ)))

t
dt

+
n(0, τ, f(z(ζ)))

ν
log h′

≤ 1

ν

h′�

1/2

n
((

2
1−t
)1/ω

, X, f(z) = τ
)

t
dt+O(1)

≤ 2

ν

h′�

1/2

n

((
2

1− t

)1/ω

, X, f(z) = τ

)
dt+O(1)

≤ 4ω

ν

( 2
1−h′ )

1/ω�

1

n(x,X, f(z) = τ)

xω+1
dx+O(1).

By the first fundamental theorem,

m(h′,~a, ~A(z(ζ))) = T (h′,~a, ~A(z(ζ)))−N(h′,~a, ~A(z(ζ)))(2.6)

= ν
(
T (h′, f(z(ζ)))−N(h′, a, f)

)
+O(1).

By applying Lemma 2.5 to f(z(ζ)), we have

(2.7) T (h′, f(z(ζ)))−N(h′, a, f)

≤
∑
τ=ai

N(h′, τ, f(z(ζ))) +O

(
log

1

1− h′
+ log T (h′, f(z(ζ)))

)

≤ 4ω

ν

( 2
1−h′ )

1/ω�

1

n(x,X)

xω+1
dx+O

(
log

1

1− h′
+ log T (h′, f(z(ζ)))

)

≤ 4ω

ν

( 2
1−h′ )

1/ω�

1

n(x,X)

xω+1
dx+O

(
log

1

1− h′

)
+O(log T (h′, f(z(ζ)))),

where n(x,X) =
∑2ν

i=1 n(x,X, f = ai).

If m(h′,~a, ~A(z(ζ))) ≤ 2νO(log T (h′, f(z(ζ)))), then we can obtain (2.5)
by the similar method as the following implication.

Now we assume

1
2m(h′,~a, ~A(z(ζ))) ≥ νO(log T (h′, f(z(ζ)))).
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Combining (2.6) with (2.7), we obtain

(2.8) m(h′,~a, ~A(z(ζ)))

≤ 8ω

( 2
1−h′ )

1/ω�

1

n(x,X)

xω+1
dx+O

(
log

1

1−h′

)
, h′ /∈F,

where F is the set described in Lemma 2.5 satisfying
	
F dt/(1− t) <∞. We

set

(2.9) E =

{
r : t = 1− ε

4(β − α)
r−ω, t ∈ F

}
,

where ε > 0 is a real number small enough. Put

ζ = ζ(reiφ) (α+ ε ≤ φ ≤ β − ε),

h = 1− ε

(β − α)
r−ω,

h′ =
3 + h

4
= 1− ε

4(β − α)
r−ω /∈ F,

(2.10)

where ζ = ζ(z) is the mapping described in Lemma 2.4. Combining (2.9)
with (2.10), we can see that if h′ /∈ F , then r /∈ E and E is a set of finite
logarithmic measure, because�

E

dr

r
=

1

ω

�

F

dh

1− h
<∞.

Next we apply (2.4) to estimate the logarithmic module:

log+
‖ ~A(reiφ)‖ ‖~a‖
|F (reiφ, a)|

= log+
‖ ~A(z(ζ))‖ ‖~a‖
|F (z(ζ), a)|

.

Applying Lemma 2.6 gives

(2.11) log+
‖ ~A(reiφ)‖ ‖~a‖
|F (reiφ, a)|

= log+
‖ ~A(z(ζ))‖ ‖~a‖
|F (z(ζ), a)|

≤ log(ν + 1)1/2 +
h′ + h

h′ − h
m(h′,~a, ~A(z(ζ))) +

N∑
l=1

log
2h′

|ζ(reiφ)− ζ(bl)|
,

where ζ(bl) (l = 1, . . . , N) are the roots of f(z(ζ)) = a contained in the disk
|ζ| ≤ h′.

From (2.3) it follows that

(2.12)

N∑
l=1

log
2h′

|ζ(z)− ζ(bl)|
=

N∑
l=1

log
2h′

|ζ ′(ξ)(z − bl)|

≤
N∑
l−1

log
2κ̂r1+ω

|z − bl|
= N log 2κ̂rω +

N∑
l=1

log
r

|z − bl|
,
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where κ̂ = 1
ω

(2(β−α)
ε

)1+1/ω
. By using Lemma 1.2.2 of [22], we have

(2.13)
1

2π

β−ε�

α+ε

N∑
l=1

log
r

|reiφ − bl|
dφ ≤ KN,

where K is a positive constant depending only on ε.
Combining (2.8) and (2.11)–(2.13), we obtain

(2.14) mα+ε,β−ε(r,~a, ~A) =
1

2π

β−ε�

α+ε

log+
‖ ~A(reiφ)‖ ‖~a‖
|F (reiφ, a)|

dφ

≤ (β − α) log(ν + 1)1/2 + 8π
h′ + h

h′ − h

kr�

1

n(x,X)

x1+ω
dx

+ πn(kr,X, f = a) log r + ((β− hhα)log2κ̂+K)n(kr,X, f = a),

where k = (8(β − α)/ε)1/ω. Therefore, (2.5) follows by noticing that h′ − h
= 3ε

4(β−α)r
−ω.

By Lemma 2.7, we can establish Lemmas 2.8 and 2.9, which are used to
further estimate mα+ε,β−ε(r,~a, ~A) in two different ways. These two lemmas
are of significance for the study of the problem.

Lemma 2.8. Let f(z) be the ν-valued algebroid function of finite lower
order µ <∞ in C determined by (1.1). Assume that there exist 2ν+1 distinct
complex values ai 6= a (i = 1, . . . , 2ν) such that for X = {z : α < arg z < β}
(0 < β − α ≤ 2π), we have

2ν∑
i=1

n(r,X, f = ai) = o(T (dr, f)),

n(r,X, f = a) = o

(
T (dr, f)

log r

)
(d ≥ 1).

Then, for any 0 < ε < (β − α)/2 and for any sequence {rn} of Pólya peaks
of order σ > ω = π/(β − α) of f(z) outside a set E of finite logarithmic
measure,

mα+ε,β−ε(rn,~a, ~A) = o(T (rn, f(z))).

Proof. As {rn} is a sequence of Pólya peaks of order σ > ω for f(z), we
have

krn�

1

n(x,X)

xω+1
dx = o

( krn�

1

T (dx, f(z))

xω+1
dx

)

≤ o
( krn�

1

T (rn, f(z))

xω+1

(
dx

rn

)σ−εn
dx

)
= o

(
T (rn, f(z))

rωn

)
,
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where n(x,X) =
∑2ν

i=1 n(x,X, f = ai). By the property of Pólya peaks,

o(T (drn, f)) = o(T (rn, f)). Using (2.5), we complete the proof.

Lemma 2.9. Let f(z) be the ν-valued algebroid function of finite lower
order µ < ∞ in C determined by (1.1). Assume that there exist 2ν + 1
distinct complex values ai 6= a (i = 1, . . . , 2ν) such that

(2.15) lim sup
r→∞

log+[
∑2ν

i=1 n(r,X, f = ai) + n(r,X, f = a)]

log r
≤ ρ

for X = {z : α < arg z < β} (0 < β − α ≤ 2π). Then, for any 0 < ε <
(β − α)/2 and for all r except a set E of finite logarithmic measure,

mα+ε,β−ε(r,~a, ~A) = O(rη+ε),

where η = max{ρ, ω}, ω = π/(β − α).

Proof. As n(x,X) = O(xρ+ε), we have

kr�

1

n(x,X)

xω+1
dx = O

( kr�

1

xρ+ε

xω+1
dx

)
= O

(kr�
1

xρ+ε−ω−1 dx
)

= O(rmax{ρ−ω,0}+ε/2)

and

n(dr,X, f = a) log r = O(rρ+ε/2 log r) = O(rρ+ε),

where n(x,X) =
∑2ν

i=1 n(x,X, f = ai). From (2.5), we complete the proof.

3. Proof of Theorem 1.1. The idea of the proof comes from [21].
Suppose conversely that λ(f) > ω. We consider the following two cases.

I. λ(f) > β ≥ µ(f). By (1.4), we can choose ε > 0 such that

(3.1)

q∑
i=1

(αi+1 − βi + 2ε) + 2ε <
4

β + 2ε
arcsin

√
δ

2
,

where αq+1 = 2π+α1 and λ(f) > β+ 2ε > µ. Applying Lemma 2.1 to f(z)
gives a sequence {rn} of Pólya peaks of order β + 2ε for f(z) outside E,
where E is the set of Lemma 2.8. Set Λ(r) = Γ 1/2(r) and

(3.2) Γ (r) = max

{
mαi+ε,βi−ε(rn,~a,

~A)

T (rn, f)
: 1 ≤ i ≤ q

}
, rn−1 < r ≤ rn.

Applying Lemma 2.8 to the Pólya peaks {rn} of order β + 2ε for f(z) and
using β+2ε > ωi = π/(βi−αi), we can deduce that limr→∞ Λ(r) = 0. Then
from Lemma 2.2 for sufficiently large n we have

(3.3) measEΛ(rn, a) >
4

β + 2ε
arcsin

√
δ

2
− ε,
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since β + 2ε > 1/2. We can assume (3.3) holds for all n. Set

K := meas
(
EΛ(rn, a) ∩

q⋃
i=1

(αi + ε, βi − ε)
)
.

From (3.1) and (3.3), we derive

K ≥ meas(EΛ(rn, a))−meas
(

[−π, π) \
q⋃
i=1

(αi + ε, βi − ε)
)

= meas(EΛ(rn, a))−meas
( q⋃
i=1

(βi − ε, αi+1 + ε)
)

= meas(EΛ(rn, a))−
q∑
i=1

(αi+1 − βi + 2ε) > ε > 0.

It is easy to see that there exists i0 such that for infinitely many n, we have

(3.4) meas(EΛ(rn, a) ∩ (αi0 + ε, βi0 − ε)) > K/q > ε/q.

We can assume (3.4) holds for all n. Set En = EΛ(rn, a)∩ (αi0 + ε, βi0 − ε).
From the definition of EΛ(rn, a) it follows that

(3.5)
1

2π

�

En

log+
‖ ~A(rne

iθ)‖ ‖~a‖
|F (rneiθ, a)|

dθ

> Λ(rn)T (rn, f)meas(En) >
ε

q
Λ(rn)T (rn, f).

On the other hand, by (3.2), we have

(3.6) mαi0
+ε,βi0−ε(rn,~a,

~A) ≤ Λ2(rn)T (rn, f).

Combining (3.5) with (3.6) gives ε/q ≤ Λ(rn)→ 0, which is impossible.

II. λ(f) = µ(f). Then β = µ = λ(f). By the same argument as in I with
all the β + 2ε replaced by β = µ, we can derive a contradiction.

Theorem 1.1 follows.

4. Proof of Theorem 1.2. Suppose that λ(f) > max{ω, ρ}. We will
derive a contradiction by making a minor modification of the proof of The-
orem 1.1. We consider two cases.

I. λ(f) > µ. Let {rn} be a sequence of Pólya peaks of order β + 2ε for
f(z). Set Λ(r) = [log r]−1. From (3.5), we have

(4.1)
1

2π

�

En

log+
‖ ~A(rne

iθ)‖ ‖~a‖
|F (rneiθ, a)|

dθ >
ε

q

T (rn, f)

log rn
.

On the other hand, by Lemma 2.9 and noticing that η ≤ β, we have

(4.2) mα+ε,β−ε(r,~a, ~A) ≤ O(rβ+ε), r /∈ E.
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Combining (4.1) with (4.2) gives

T (rn, f) ≤ Krβ+εn log rn.

Therefore,

β + 2ε ≤ lim inf
n→∞

log T (rn, f)

log rn
≤ β + ε.

This is impossible.

II. λ(f) = µ. Then β = µ = λ(f). By the same arguments as in I with
all the β + 2ε replaced by β = µ, we can derive

µ = β ≤ max{ρ, ω}+ ε < λ(f).

This is also impossible.

Theorem 1.2 follows.

5. Proof of Corollary 1.3. Suppose that Corollary 1.3 does not hold.
Then for any ray arg z = θ ∈ (α, β) there exist 2ν values a1(θ), . . . , a2ν(θ)
different from a in the extended complex plane such that

2ν∑
j=1

n(r, Z2ε(θ), f = aj(θ)) = o(T (dr, f)),

for some ε = ε(θ) and d = d(θ) ≥ 1. In view of a Valiron-type theorem
(cf. [22, Lemma 2.7.1]), we have

n(r, Zε(θ), f = b) ≤ Cε
( 2ν∑
j=1

n(2r, Z2ε(θ), f = aj(θ)) + n(2r, Z2ε(θ), f = a)
)

+O((log r) log log r) = o(T (2dr, f))

for all b possibly except a zero measure set of b.
Take an η > 0 such that

(5.1) β − α− 2η > max

{
π

µ
, 2π − 4

µ
arcsin

√
δ

2

}
.

Since there exist finitely many θi such that [α+ η, β − η] ⊂
⋃q
i=1(θi − ε(θi),

θi + ε(θi)), we can find 2ν values aj different from a and d ≥ 1 such that
2ν∑
j=1

n(r,Ωη, f = aj) = o(T (dr, f)).

It is easy to see from (5.1) that

(2π + α+ η)− (β − η) <
4

µ
arcsin

√
δ

2
and ωη =

π

β − α− 2η
< µ.

Therefore, by Theorem 1.1, we have µ ≤ λ(f) ≤ ωη. This contradiction
completes the proof of Corollary 1.3.
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Math. J. 34 (1969), 1–23.
[10] M. Tsuji, Potential Theory in Modern Function Theory , Maruzen, Tokyo, 1959.
[11] P. C. Wu, On the order of a class of meromorphic functions, Acta Math. Sinica 12

(1996), 191–204.
[12] S. J. Wu, On the argument distribution and growth of meromorphic functions, Sci.

China 6 (1993), 565–575.
[13] S. J. Wu, Distribution of the (0,∞) accumulative lines of meromorphic functions,

Chin. Ann. Math. Ser. B 15 (1994), 453–462.
[14] L. Yang, Value Distribution and New Research, Springer, Berlin, 1993.
[15] L. Yang, Borel directions of meromorphic functions in an angular domain, Sci.

Sinica 1979, Special Issue I, 149–163.
[16] L. Z. Yang, Sums of deficiencies of algebroid functions, Bull. Austral. Math. Soc. 42

(1990), 191–200.
[17] G. H. Zhang, Theory of Entire and Meromorphic Functions—Deficient and Asymp-

totic Values and Singular Directions, Sci. Press, Beijing, 1986 (in Chinese); English
transl.: Amer. Math. Soc., Providence, RI, 1993.

[18] G. H. Zhang and P. C. Wu, On order of meromorphic functions, Sci. China 8 (1985),
785–800.

http://dx.doi.org/10.1090/S0002-9947-1955-0067982-9
http://dx.doi.org/10.1007/BF00968958
http://dx.doi.org/10.2996/kmj/1138847517
http://dx.doi.org/10.1007/BF02108162
http://dx.doi.org/10.1017/S0004972700028367


80 N. Wu and J. H. Zheng

[19] G. H. Zhang and P. C. Wu, Growth of meromorphic functions and their distributions
of Julia directions, Pure Appl. Math. 1 (1985), 16–23 (in Chinese).

[20] J. H. Zheng, On the growth of meromorphic functions with two radially distributed
values, J. Math. Anal. Appl. 206 (1997), 140–154.

[21] J. H. Zheng, On transcendental meromorphic functions with radially distributed
values, Sci. China Ser. A Math. 47 (2004), 401–416.

[22] J. H. Zheng, Value Distribution of Meromorphic Functions, Tsinghua Univ. Press,
Beijing, and Springer, Berlin, 2010.

[23] J. H. Zheng, On value distribution of meromorphic functions with respect to argu-
ments I , Complex Var. Elliptic Equations 56 (2011), 271–298.

Nan Wu
Department of Mathematics
School of Science
China University of Mining
and Technology (Beijing)
100083 Beijing, China
E-mail: wunan2007@163.com

Jian Hua Zheng
Department of Mathematical Sciences

Tsinghua University
100084 Beijing, China

E-mail: jzheng@math.tsinghua.edu.cn

Received 12.1.2013
and in final form 28.4.2013 (2997)

http://dx.doi.org/10.1006/jmaa.1997.5201
http://dx.doi.org/10.1360/02ys0210
http://dx.doi.org/10.1080/17476930903394887

	1 Introduction and the results
	2 Some lemmas
	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	5 Proof of Corollary 1.3
	References

