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On some properties of induced almost contact structures

by Zuzanna Szancer (Kraków)

Abstract. Real affine hypersurfaces of the complex space Cn+1 with a J-tangent
transversal vector field and an induced almost contact structure (ϕ, ξ, η) are studied.
Some properties of the induced almost contact structures are proved. In particular, we
prove some properties of the induced structure when the distribution D is involutive.
Some constraints on a shape operator when the induced almost contact structure is either
normal or ξ-invariant are also given.

1. Introduction. We study real affine hypersurfaces f : M → Cn+1 of
the complex space Cn+1 with a J-tangent transversal vector field C and an
induced almost contact structure (ϕ, ξ, η). The main purpose of this paper
is to investigate some properties of the induced almost contact structures.
In particular, we prove some properties of the induced structure when the
distribution D is involutive. We also establish some constraints on the shape
operator when the induced almost contact structure is either normal or ξ-
invariant.

In Section 2, we briefly recall the basic formulas of affine differential ge-
ometry. We introduce the notion of a J-tangent transversal vector field and
a J-invariant distribution D. When the hypersurface f is additionally non-
degenerate we define a 1-dimensional distribution Dh as the complementary
orthogonal distribution to D in TM with respect to the second fundamental
form h.

In Section 3, we recall the definition of an induced almost contact struc-
ture and some results related to this structure obtained in [SS], [S1] and
[S2]. We also recall the important result of K. Yano and S. Ishihara [YI]
characterizing normal almost contact structures.

Section 4 contains the main results of this paper. In this section we find
equivalent conditions for Lξϕ = 0 and for Lξη = 0 as well as some relations
between normality of (ϕ, ξ, η) and these Lie derivatives. When the distribu-
tion D is involutive, we show the existence (at least locally) of a J-tangent
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transversal vector field such that τ |D = 0 and S ◦ ϕ = ϕ ◦ S on D. In
particular, we prove that locally we can always find on the manifold M a
normal induced almost contact structure. We also give a local characteriza-
tion of affine hypersurfaces with an involutive distribution D and the shape
operator vanishing on D. Finally, we show that when (ϕ, ξ, η) is normal and
the second fundamental form is definite on D then the shape operator must
be proportional to identity. V. Cruceanu [C] proved that an almost contact
metric structure (ϕ, ξ, η, h) induced by a centro-affine, J-tangent transver-
sal vector field is ξ-invariant. We show that for equiaffine hypersurfaces the
converse, in a certain sense, is also true.

2. Preliminaries. We briefly recall the basic formulas of affine differ-
ential geometry. For more details, we refer to [NS]. Let f : M → Rn+1 be an
orientable, connected differentiable n-dimensional hypersurface immersed in
affine space Rn+1 equipped with its usual flat connection D. Then, for any
transversal vector field C we have

DX f∗Y = f∗(∇XY ) + h(X,Y )C,(2.1)

DX C = −f∗(SX) + τ(X)C,(2.2)

where X,Y are vector fields tangent to M . For any transversal vector field,
∇ is a torsion-free connection, h is a symmetric bilinear form on M , called
the second fundamental form, S is a tensor of type (1, 1), called the shape
operator , and τ is a 1-form, called the transversal connection form.

If h is nondegenerate, then we say that the hypersurface or the hyper-
surface immersion is nondegenerate. We have the following

Theorem 2.1 ([NS], Fundamental equations). For an arbitrary trans-
versal vector field C the induced connection ∇, the second fundamental form
h, the shape operator S, and the 1-form τ satisfy the following equations:

R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY,(2.3)

(∇Xh)(Y, Z) + τ(X)h(Y, Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z),(2.4)

(∇XS)(Y )− τ(X)SY = (∇Y S)(X)− τ(Y )SX,(2.5)

h(X,SY )− h(SX, Y ) = 2dτ(X,Y ).(2.6)

The equations (2.3), (2.4), (2.5) and (2.6) are called the equation of
Gauss, Codazzi for h, Codazzi for S and Ricci , respectively.

For a hypersurface immersion f : M → Rn+1 a transversal vector field
C is said to be equiaffine (resp. locally equiaffine) if τ = 0 (resp. dτ = 0).

Let dimM = 2n + 1 and f : M → R2n+2 be an affine hypersurface.
We always assume that R2m ' Cm is endowed with the standard complex
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structure J . In particular, if m = n+ 1, we have

J(x1, . . . , xn+1, y1, . . . , yn+1) = (−y1, . . . ,−yn+1, x1, . . . , xn+1).

Let C be a transversal vector field on M . We say that C is J-tangent if
JCx ∈ f∗(TxM) for every x ∈ M . We also define a distribution D on M as
the biggest J invariant distribution on M , that is,

Dx = f−1∗
(
f∗(TxM) ∩ J(f∗(TxM))

)
for every x ∈ M . It is clear that dimD = 2n. A vector field X is called a
D-field if Xx ∈ Dx for every x ∈M . We use the notation X ∈ D for vectors
as well as for D-fields.

When f is additionally nondegenerate we can define a 1-dimensional
distribution Dh as follows:

Dhx := {X ∈ TxM : h(X,Y ) = 0 ∀Y ∈ Dx},
where h is the second fundamental form on M relative to any transversal
vector field. It follows from [NS, Prop. 2.5] that the definition of Dh is
independent of the choice of a transversal vector field. We say that the
distribution D is nondegenerate if h is nondegenerate on D. To simplify the
writing, we will be omitting f∗ in front of vector fields in most cases. From
now on we always assume that both f and D are nondegenerate.

3. Almost contact structures. A (2n + 1)-dimensional manifold M
is said to have an almost contact structure if there exist on M a tensor field
ϕ of type (1, 1), a vector field ξ and a 1-form η which satisfy

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1

for every X ∈ TM . If additionally there is a semi-Riemannian metric g on
M such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for every X,Y ∈ TM then (ϕ, ξ, η, g) is called an almost contact metric
structure. We say that an almost contact structure is normal if

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ,ϕ] is the Nijenhuis tensor for ϕ.

Let f : M → R2n+2 be a hypersurface with a J-tangent transversal
vector field C. Then we can define a vector field ξ, a 1-form η and a tensor
field ϕ of type (1,1) as follows:

ξ := JC,

η|D = 0 and η(ξ) = 1,

ϕ|D = J |D and ϕ(ξ) = 0.
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It is easy to see that (ϕ, ξ, η) is an almost contact structure on M . This
structure is called the almost contact structure on M induced by C (or simply
induced almost contact structure).

Let f : M → R2n+2 be an affine hypersurface with an induced almost
contact structure (ϕ, ξ, η). For an induced almost contact structure we have

Theorem 3.1 ([SS]). If (ϕ, ξ, η) is an induced almost contact structure
on M then:

η(∇XY ) = −h(X,ϕY ) +X(η(Y )) + η(Y )τ(X),(3.1)

ϕ(∇XY ) = ∇XϕY + η(Y )SX − h(X,Y )ξ,(3.2)

η([X,Y ]) = −h(X,ϕY ) + h(Y, ϕX) +X(η(Y ))− Y (η(X))

+ η(Y )τ(X)− η(X)τ(Y ),
(3.3)

ϕ([X,Y ]) = ∇XϕY −∇Y ϕX − η(X)SY + η(Y )SX,(3.4)

η(∇Xξ) = τ(X),(3.5)

η(SX) = h(X, ξ),(3.6)

for all X,Y ∈ X (M).

From the above we immediately get

Corollary 3.2 ([SS]). For all Z,W ∈ D we have

η(∇ZW ) = −h(Z,ϕW ),(3.7)

η(∇ξZ) = −h(ξ, ϕZ),(3.8)

ϕ(∇ZW ) = ∇ZϕW − h(Z,W )ξ,(3.9)

η([Z,W ]) = −h(Z,ϕW ) + h(W,ϕZ),(3.10)

η([Z, ξ]) = h(ξ, ϕZ) + τ(Z).(3.11)

Moreover

(3.12) S(D) ⊂ D if and only if ξ ∈ Dh.
In the case when the distribution D is involutive we have the following

simple lemma:

Lemma 3.3 ([S2]). If the distribution D is involutive then the second
fundamental form is antihermitian, that is, it satisfies

h(ϕX,ϕY ) = −h(X,Y ) for all X,Y ∈ D.

Normal almost contact structures can be characterized as follows:

Theorem 3.4 ([YI, Th. 3.3]). The induced almost contact structure
(ϕ, ξ, η) is normal if and only if

SϕZ − ϕSZ + τ(Z)ξ = 0 for every Z ∈ D.
Using the same methods as in the proof of Theorem 4.7 in [S1] we get
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Lemma 3.5. Let f : M → R2n+2 be an affine hypersurface with an
involutive distribution D and a J-tangent transversal vector field C such
that

τ(Z) = −h(ξ, ϕZ)

for all Z ∈ D. Then for every point x ∈M there exist an open neighbourhood
U ⊂M and linearly independent D-fields X1, . . . , X2n defined on U such that
[Xi, Xj ] = 0 for i, j = 1, . . . , 2n and [Xi, ξ] = 0 for i, . . . , 2n.

The following theorem gives a necessary and sufficient condition for the
affine normal to be J-tangent.

Theorem 3.6 ([S1]). Let f : M → R2n+2 be the Blaschke hypersurface
with an affine normal field C. Then C is J-tangent if and only if the Gauss–
Kronecker curvature is constant in the direction of the distribution Dh.

4. Main results. We start with the following lemma:

Lemma 4.1. Let (ϕ, ξ, η) be an induced almost contact structure. Then

(4.1) Lξϕ = 0 ⇔
{
SϕX − ϕSX − h(ϕX, ξ)ξ = 0,

τ(X) = −h(ϕX, ξ)

for all X ∈ D. Moreover

(4.2) Lξη = 0 ⇔ τ(X) = −h(ϕX, ξ) for every X ∈ D.

Proof. From Theorem 3.1 (formulas (3.2) and (3.4)) we have

(LXϕ)(Y ) = ∇Y ϕX −∇ϕYX + η(X)SY − η(Y )SX

for all X,Y ∈ X (M). The above equality implies that Lξϕ = 0 if and only if

(4.3) SX = ∇ϕXξ

for all X ∈ D. Applying η to both sides and using (3.5) and (3.6) we get

h(X, ξ) = η(∇ϕXξ) = τ(ϕX)

for all X ∈ D. Hence, we obtain a formula for τ on D:

(4.4) τ(X) = −h(ϕX, ξ)

for all X ∈ D. Now, applying ϕ to both sides of (4.3) and again using (3.2)
we get

ϕSX = ϕ(∇ϕXξ) = SϕX − h(ϕX, ξ)ξ

for all X ∈ D. Finally,

(4.5) Lξϕ = 0 ⇔
{
SϕX − ϕSX − h(ϕX, ξ)ξ = 0

τ(X) = −h(ϕX, ξ)
for all X ∈ D.
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To prove the second part of the lemma, it is enough to note that from
the formula (3.3) we have

(Lξη)(X) = ξ(η(X))− η([ξ,X]) = h(ϕX, ξ)− τ(ξ)η(X) + τ(X)

for all X ∈ X (M). Therefore Lξη = 0 if and only if

τ(X) = −h(ϕX, ξ) for all X ∈ D.

From the above lemma and Theorem 3.4 we immediately obtain

Corollary 4.2. If Lξϕ = 0 then Lξη = 0 and (ϕ, ξ, η) is a normal al-
most contact structure. On the other hand, if (ϕ, ξ, η) is normal then Lξη = 0
if and only if Lξϕ = 0.

For an induced almost contact structure we have the following lemma:

Lemma 4.3. If (ϕ, ξ, η) is an induced almost contact structure then

(4.6) h(ϕSX, Y )− h(X,ϕSY ) +X(h(Y, ξ))− Y (h(X, ξ)) = h([X,Y ], ξ)

for all X,Y ∈ X (M). If ξ ∈ Dh and X,Y ∈ D then (4.6) takes the form

(4.7) h(ϕSX, Y )− h(X,ϕSY ) = h(ξ, ξ)(h(ϕX, Y )− h(X,ϕY )).

Proof. From the Codazzi equation for S we have

η(∇XSY )− η(S(∇XY ))− τ(X)η(SY )

= η(∇Y SX)− η(S(∇YX))− τ(Y )η(SX).

Using (3.1) and (3.6) we obtain (4.6). If ξ ∈ Dh then

h(X, ξ) = h(ξ, ξ)η(X)

for all X ∈ X (M). Consequently, formula (4.6) takes the form

h(ϕSX, Y )− h(X,ϕSY ) = h(ξ, ξ)η([X,Y ])

for all X,Y ∈ D. Finally, (4.7) is a consequence of Corollary 3.2 (for-
mula (3.10)).

Now we shall prove the following

Lemma 4.4. If the distribution D is involutive then for every point x∈M
there exist a neighborhood U and a J-tangent transversal vector field C de-
fined in this neighborhood such that

(1) τ |D = 0,
(2) Sϕ = ϕS on D.

This C is unique up to scaling by nonzero functions constant in the direction
of D.

Proof. Fix x ∈M . Since D is involutive, the Frobenius theorem implies
that there exist linearly independent vector fields X1, . . . , X2n ∈ D defined
on some neighborhood U of x and a vector field X2n+1 also defined on U but
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not belonging to D such that [Xi, Xj ] = 0 for i, j = 1, . . . , 2n+ 1. It follows
that for all X ∈ D we have [X,X2n+1] ∈ D. Now, we can find a vector field
Z ∈ D such that ξ := X2n+1 + Z ∈ Dh. Hence, for all X ∈ D we get

[X, ξ] = [X,X2n+1 + Z] = [X,X2n+1] + [X,Z] ∈ D,
since the distribution D is involutive. Define C := −Jξ and let (ϕ, ξ, η) be
an almost contact structure induced by the transversal vector field C.

From (3.11) and the fact that ξ ∈ Dh we conclude that

τ(Z) = 0

for all Z ∈ D. Now, the Ricci equation (formula (2.6)) implies that

h(Z, SW )− h(SZ,W ) = 2dτ(Z,W )

= Z(τ(W ))−W (τ(Z))− τ([Z,W ]) = 0

for all Z,W ∈ D, because the distribution D is involutive and τ |D = 0.
Consequently,

(4.8) h(Z, SW ) = h(SZ,W )

for all Z,W ∈ D. On the other hand, using (4.6) we easily get

(4.9) h(Z,ϕSW ) = h(ϕSZ,W )

for all Z,W ∈ D. Since ξ ∈ Dh we see that S(D) ⊂ D. Now, using Lemma 3.3
and formulas (4.8) and (4.9) we obtain

h(ϕSW,Z) = h(ϕSZ,W ) = h(SZ,ϕW ) = h(Z, SϕW )

for all Z,W ∈ D. Finally, nondegeneracy of h on D implies that

ϕSW = SϕW

for all W ∈ D.

To prove the last part of the lemma assume that C̄ = φC + f∗Z is any
other J-tangent transversal vector field (note that φ ∈ C∞(U), Z ∈ D)
satisfying conditions (1)–(2).

From (2) it easily follows that Z = 0, since both ξ̄ = JC̄ ∈ Dh and
ξ ∈ Dh. Moreover, condition (1) implies that X(φ) = 0 for all X ∈ D,
because τ̄ = τ + 1

φh(Z, ·) + d log |φ| (see [NS, Prop. 2.5, p. 35]), τ̄ |D = 0,

τ |D = 0 and Z = 0 (here τ̄ is a transversal connection form induced by C̄).

Corollary 4.5. If the distribution D is involutive and dimM = 3
then for every point x ∈ M there exist a neighbourhood U of x, a J-tan-
gent transversal vector field C defined on U and functions α, β ∈ C∞(U)
such that

(1) τ |D = 0,
(2) SX = αX + βϕX for every X ∈ D.
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Proof. Fix x ∈M . From Lemma 4.4 there exist a neighbourhood U of x
and a J-tangent transversal vector field C defined on U such that τ |D = 0
and Sϕ = ϕS on D. It is enough to show that S satisfies condition (2). To
do this let X be an arbitrary but fixed nonvanishing D-field on U . Then
{X,ϕX} forms a basis of D. There exist a, b, c, d ∈ C∞(U) such that

SX = aX + bϕX and SϕX = cX + dϕX.

Since Sϕ = ϕS on D, the above equalities imply that

c = −b and d = a.

Take any Z = pX + qϕX ∈ D. Then

SZ = pSX + qSϕX = p(aX + bϕX) + q(−bX + aϕX)

= a(pX + qϕX) + b(−qX + pϕX) = aZ + bϕZ.

Now, setting α := a and β := b we get (2).

From Lemma 4.4 and Theorem 3.4 we immediately get

Corollary 4.6. If the distribution D is involutive then there exists lo-
cally on M a normal induced almost contact structure.

As an application of Lemma 4.4, consider an affine immersion f :
M → R2n+2 with an involutive distribution D and the transversal vector
field C from Lemma 4.4. Additionally assume that S|D = 0 and let (ϕ, ξ, η)
be an almost contact structure on M induced by C.

From formula (3.2), and since S|D = 0, we have

ϕ(∇Xξ) = −h(X, ξ)ξ = 0

for all X ∈ D. We similarly conclude (using (3.5) and Lemma 4.4) that

η(∇Xξ) = 0

for every X ∈ D. Thus ∇Xξ = 0 for every X ∈ D. Fix x ∈ M . Lemma 3.5
implies that in some neighbourhood of x there exist X1, . . . , X2n ∈ D
linearly independent and such that [Xi, Xj ] = 0 and [Xi, ξ] = 0 for all
i, j = 1, . . . , 2n. Now, the Frobenius theorem implies that there exists a
local coordinate system (x1, . . . , x2n, y) such that

∂

∂xi
= Xi and

∂

∂y
= ξ.

It follows that

∇∂/∂xi
∂

∂y
= 0 and h

(
∂

∂xi
,
∂

∂y

)
= 0

for i = 1, . . . , 2n. In the above coordinates f satisfies the following system
of differential equations:

fxiy = 0
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for i = 1, . . . , 2n. It follows that f can be locally expressed in the form

f(x1, . . . , x2n, y) = A(y) +B(x1, . . . , x2n),

where A : I → R2n+2, B : U → R2n+2, I is an interval in R and U is some
open subset in R2n. Since f is an immersion, B must be an immersion, too.
Moreover, because the distribution D is involutive and ∂/∂x1, . . . , ∂/∂x2n
∈ D, the map B must be a kählerian immersion. Summarizing we have

Theorem 4.7. Let f : M → R2n+2 be an affine immersion with an
involutive distribution D and the transversal vector field from Lemma 4.4.
If S|D = 0 then there exist a kählerian immersion B : U → R2n+2 defined
on some open subset in R2n and a curve A : I → R2n+2 such that f can be
locally expressed in the form

f(x1, . . . , x2n, y) = A(y) +B(x1, . . . , x2n).

Example 4.8. Let us consider the affine immersion defined by

f : R3 3 (x1, x2, y) 7→


−2x21 + 2x22 + sin y

−2x2

−4x1x2 + cos y

2x1

 ∈ R4

with the transversal vector field

C : R3 3 (x1, x2, y) 7→


− sin y

0

− cos y

0

 ∈ R4.

It is not difficult to see that C is J-tangent. Let (ϕ, ξ, η) be an almost contact
structure induced by C. Then

τ = 0, S|D = 0, Sξ = ξ

and

h =

4 sin y 4 cos y 0

4 cos y −4 sin y 0

0 0 1


in the canonical base {∂/∂x1, ∂/∂x2, ∂/∂y} of R3. Because Jfx1 = fx2 ,
the fields ∂/∂x1, ∂/∂x2 generate the distribution D. Moreover, the form of
h implies that the distribution Dh is generated by ∂/∂y. Straightforward
computations show that the Gauss–Kronecker curvature equals

K = −(4x21 + 4x22 + 1)−5/2,
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so it is constant in the direction of Dh. Now Theorem 3.6 implies that the
affine normal field is J-tangent. It can be shown that in this case C is the
affine normal field.

The following theorem shows that under some additional assumptions
on the hypersurface, if an induced almost contact structure is normal then
the shape operator must be proportional to the identity.

Theorem 4.9. Let (ϕ, ξ, η) be an almost contact structure induced by
an equiaffine J-tangent transversal vector field. If (ϕ, ξ, η) is normal and
the second fundamental form h is definite on D then

S = h(ξ, ξ) id and h(ξ, ξ) = const .

Proof. Since the structure (ϕ, ξ, η) is normal, we have

SϕX = ϕSX

for all X ∈ D. Using formula (3.6) we obtain

h(ϕX, ξ) = η(SϕX) = η(ϕSX) = 0

for all X ∈ D, hence ξ ∈ Dh. Now, Lemma 4.3 implies

h(SϕX, Y )− h(X,SϕY ) = h(ξ, ξ)(h(ϕX, Y )− h(X,ϕY ))

for all X,Y ∈ D. Substituting Y = ϕX we have

(4.10) h(SϕX,ϕX) + h(X,SX) = h(ξ, ξ)(h(ϕX,ϕX) + h(X,X)).

Normality of (ϕ, ξ, η) implies that, if X ∈ D is an eigenvector for S corre-
sponding to some eigenvalue λ, then ϕX is also an eigenvector for S and for
the same eigenvalue λ. Now, the Ricci equation (2.6), equiaffinity of C and
definiteness (positive or negative) of h on D imply that S|D has only real
eigenvalues.

Let {λ1, . . . , λk} be all eigenvalues of S|D and let X1, . . . , Xk be the
corresponding eigenvectors. Now using (4.10) we get

λi(h(ϕXi, ϕXi) + h(Xi, Xi)) = h(ξ, ξ)(h(ϕXi, ϕXi) + h(Xi, Xi))

for i = 1, . . . , k. Since h is definite on D we easily obtain λi = h(ξ, ξ) for
i = 1, . . . , k. Since SX ∈ D for all X ∈ D, the Ricci equation (2.6) implies
that

h(Sξ,X) = h(ξ, SX) = 0

for all X ∈ D. Therefore Sξ ∈ Dh. On the other hand η(Sξ) = h(ξ, ξ) thus
Sξ = h(ξ, ξ)ξ. Finally, since all eigenvalues of S are equal to h(ξ, ξ) and S is
diagonalizable on D, we see that S = h(ξ, ξ) id. Now, the Codazzi equation
for S (2.5) implies that h(ξ, ξ) = const.

We say (see [C]) that an almost contact metric structure (ϕ, ξ, η, h) is
ξ-invariant if Lξϕ = 0, Lξη = 0, and Lξh = 0 (of course we also always have
Lξξ = 0).
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V. Cruceanu [C] proved that an almost contact metric structure (ϕ, ξ, η, h)
induced by a centro-affine, J-tangent transversal vector field is ξ-invariant.
The following theorem shows that for equiaffine hypersurfaces the converse,
in a certain sense, is also true.

Theorem 4.10. Let (ϕ, ξ, η) be an almost contact structure induced by
an equiaffine J-tangent transversal vector field C. If

Lξϕ = 0, Lξη = 0, Lξh = 0,

then

S = h(ξ, ξ) id and h(ξ, ξ) = const .

Proof. It follows from Theorem 3.1 that

(Lξh)(X,Y ) = (∇ξh)(X,Y )− h(ϕSX, Y )− h(X,ϕSY )(4.11)

+ τ(X)h(ξ, Y ) + τ(Y )h(ξ,X)

for all X,Y ∈ X (M). Since τ = 0 and Lξh = 0, the above formula implies

(4.12) (∇ξh)(X,Y ) = h(ϕSX, Y ) + h(X,ϕSY )

for all X,Y ∈ X (M). Using Corollary 4.2 and the assumption that Lξϕ = 0
we find that (ϕ, ξ, η) is normal, that is (see Th. 3.4),

SϕX = ϕSX

for all X ∈ D. In particular, ξ ∈ Dh. The Codazzi equation for h (2.4) gives

(∇ξh)(X,Y ) = (∇Xh)(ξ, Y ) = X(h(ξ, Y ))− h(∇Xξ, Y )− h(ξ,∇XY )

= −h(∇Xξ, Y )− η(∇XY )h(ξ, ξ)

for all X,Y ∈ D. Since ∇Xξ = −ϕSX and η(∇XY ) = −h(X,ϕY ) for every
X,Y ∈ D, the last equality takes the form

(4.13) (∇ξh)(X,Y ) = h(ϕSX, Y ) + h(X,ϕY )h(ξ, ξ).

Now, from (4.12) and (4.13) we obtain

h(X,ϕSY ) = h(X,ϕY )h(ξ, ξ)

for all X,Y ∈ D. Nondegeneracy of h on D implies that

ϕSY = h(ξ, ξ)ϕY,

therefore

SY = h(ξ, ξ)Y

for all Y ∈ D. Formula (3.6) and the Ricci equation (2.6) imply that Sξ =
h(ξ, ξ)ξ. Finally, for all X ∈ X (M) we have

SX = h(ξ, ξ)X.

Moreover h(ξ, ξ) is constant due to the Codazzi equation for S (2.5) and
equiaffinity of C.
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