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Rotation surfaces with L;-pointwise 1-type
Gauss map in pseudo-Galilean space

by DAE WON YOON (Jinju), YOUNG Ho KiM (Daegu)
and JAE SEONG JUNG (Jinju)

Abstract. We study rotation surfaces in the three-dimensional pseudo-Galilean space
Gé such that the Gauss map G satisfies the condition Li1G = f(G 4 C) for a smooth
function f and a constant vector C, where L; is the Cheng—Yau operator.

1. Introduction. The Gauss map remains an interesting object in Eu-
clidean space and pseudo-Euclidean space and it has been investigated from
various viewpoints by many differential geometers [1], [6], [7], [9], [11], [16],
etc.

If the Gauss map G of a surface M satisfies

(1.1) AG = \G + C)

for a constant A and a constant vector C, where A denotes the Laplacian
operator on M, then M is said to have 1-type Gauss map; it is a special
case of a finite type Gauss map introduced by Chen [3]. A plane, a circular
cylinder and a sphere are surfaces with 1-type Gauss map. However, the
Laplacian operator of the Gauss map of some well-known surfaces such as
a helicoid, a catenoid and a right cone in the three-dimensional Euclidean
space E? take a somewhat different form:

(1.2) AG = f(G +C)

for a smooth function f and a constant vector C. If the Gauss map G of a
surface M satisfies condition (1.2), M is said to have pointwise 1-type Gauss
map (cf. [11], [4]). Many results on submanifolds with pointwise 1-type Gauss
map were obtained in [I], [4], [8], [LI], [17], etc. when the ambient spaces
are the Euclidean space, Minkowski space and Galilean space.
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The Laplacian operator of a hypersurface M immersed in E"*! is a
second-order linear differential operator which arises naturally as the lin-
earized operator of the first variation of the mean curvature for normal
variations of hypersurfaces. From this point of view, the Laplacian operator
A can be seen as the first one of a sequence of n operators Lo, L1, ..., L,_1,
where Lj stands for the linearized operator of the first variation of the
(k + 1)th mean curvature arising from normal variations of hypersurfaces
(cf. [2]). These operators are given by Ly (f) = trace(Py, o V2 f) for a smooth
function f on M (see Section 2). When k = 0, Ly = —A is nothing but
the Laplacian operator; when & = 1 the operator L; is the operator [
introduced by Cheng and Yau [5] and called the Cheng—Yau operator. Hy-
persurfaces in terms of the linearized operator L have been studied in [9],
[12] and [13].

Mimicking the condition (1.2), we can consider the following condition
in terms of the Gauss map and the Cheng—Yau operator:

(1.3) LG = f(G +C)

for a smooth function f and a constant vector C.

A surface M is said to have Li-pointwise 1-type Gauss map if its Gauss
map G satisfies condition (1.3). In particular, a Li-pointwise 1-type Gauss
map is said to be of the first kind if (1.3) is satisfied for C' = 0; otherwise,
it is said to be of the second kind [10].

Recently, in [9] and [I0] the authors studied constant curvature surfaces
and helicoidal surfaces with Li-pointwise 1-type Gauss map.

In this paper, we classify rotation surfaces in the three-dimensional
pseudo-Galilean space G} satisfying condition (1.3).

2. Preliminaries. Let x : M — M be an isometric immersion of a
connected oriented hypersurface into an (n + 1)-dimensional Riemannian

manifold M. Let V and v be the Levi-Civita connections on M and M,
respectively. Then the Gauss and Weingarten formulas are given by

VxY =VxY + (SX,Y)N and VxN =-SX

for all tangent vector fields X,Y € X (M), where S and N are the shape
operator and the unit normal vector field of M, respectively. It is well-known
that S defines a self-adjoint linear operator on each tangent space and its
eigenvalues k1(p),...,kn(p) are the principal curvatures of M at p. The
functions si(p) defined by

Sk(p) = Uk(ﬁl(p)a B ”n(p))v 1<k <n,

are called the algebraic invariants of the shape operator S of M, where oy,
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is the kth symmetric function in R" given by
Ot tn) = >ty ety
1<i1 << <n
The classical Newton transformations Py : X' (M) — X (M) are defined from
the shape operator S by
Pk:skPo—SoPk,l, k‘:L...,n,

where Py = I denotes the identity operator acting on X' (M). We consider
the second-order linear differential operator Ly : C*°(M) — C*(M) given
by

Li(f) = trace(Py o V2f),

where V2f is the Hessian of f. It is a consequence of the Codazzi equation
that

(2.1) Li(f) = div(Px(V f)).
Here Vf stands for the gradient of f and div for the divergence operator
(see [14]).

Now, let M be a surface and e1, ey be the principal directions corre-
sponding to the principal curvatures k1, ko of M. By (2.1), for f € C>°(M)
the Cheng—Yau operator L1 f of f can be expressed as

L1f = diV(Pl(Vf))
=ey(k)erf +ea(r1)eaf + ra(erer — Veyea) f + Ki(ezea — Ve e1) f-
Thus, the Cheng—Yau operator L; is given by [9]

(2.2)
Ly = e1(k2)Ve, + 62('%1)v62 + '%2(v61v61 - VV6262) + Hl(vezv@ - vvelel)'

LeEMMA 2.1 ([9]). Let M be an oriented surface in E* with Gaussian
curvature K and mean curvature H. Then the Gauss map G of M satisfies

(2.3) I[1G =-VK — 2KHG.

3. Pseudo-Galilean space. The pseudo-Galilean space G:l), is a Cayley—
Klein space with the absolute figure consisting of an ordered triple {w, f, I},
where w is the ideal (absolute) plane in the three-dimensional real projec-
tive space RPs, f the line (the absolute line) in w and I the fixed hyperbolic
involution of points of f.

Homogeneous coordinates in G} are introduced in such a way that the
absolute plane w is given by zg = 0, the absolute line f by g = 21 = 0 and
the hyperbolic involution n by n : (zo : x1 : x2 : x3) — (0: 0 : 3 : x2). The
last condition is equivalent to the requirement that the conic ¥3 — 2% = 0
is the absolute conic. Metric relations are introduced with respect to the
absolute figure. In affine coordinates defined by (xg: 1 :z2:23) =(1:2z:
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y : z), the distance between the points P; = (z;, i, 2) (i = 1,2) is defined
by (cf. [15])

|ze — x1] if z1 # w9,

VIl —y1)? = (22 — 21)? if 21 = 2o,

The group motion of Gzl,) is a six-parameter group given (in affine coordi-
nates) by

d(Py, Py) = {

a—+x,
b+ cx 4 ycosh ¢ + zsinh ¢,

y

d + ex + ysinh ¢ 4 z cosh ¢.

3
Let x = (x1,y1,21) and y = (22, y2, 22) be vectors in G},,. A vector x is
called isotropic if x1 = 0, otherwise it is non-isotropic. The pseudo-Galilean
scalar product of x and y is defined by
L1129 if 1y Z0 or 29 £ 0,
(x,y) = . N
y1y2 — 2129 if x1 =0 and zo = 0.
From this, the pseudo-Galilean norm of a vector x in G} is given by x| =
V/|{x,x)| and all unit non-isotropic vectors are the form (1, y1, z1). There are
four types of isotropic vectors: spacelike (y% —zf > 0), timelike (y% —zf < 0),
and two types of lightlike (y; = +21) vectors. A non-lightlike isotropic vector
is a unit vector if y — 2% = +1.
The pseudo-Galilean cross product of x and y on G} is defined by
0 —ey e3
XXy=|r1 Y1 21
T2 Y2 22
where e3 = (0,1,0) and ez = (0,0, 1).
Consider a C"-surface M, r > 1, in G% parameterized by
x(u1,u2) = (z(u1, u2), y(u1, uz), 2(u1, uz)).
Let us denote
ox ox 0x
;= — hij =( —,— i,j=1,2
9i 8u,-’ *J <8uz’8uj> ( J ’ )7
where ~ stands for the projection of a vector on the pseudo-Euclidean yz2-
plane. A surface M is called admissible if it does not have Euclidean tangent
planes. Therefore a surface M is admissible if and only if z; # 0 for some
i=1,2.
Let M be an admissible surface. Then the unit normal vector field U of
a surface M is defined by

1
U= W(O,m,l?«’z —X221,T1Y2 — T2Y1),
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where

W= \/I (1y2 —x2y1)? — (2122 — 2221)%|-

Moreover, the matrix of the first fundamental form ds? of M in Gj is
given by (cf. [15])
ds? — <d8% 0 )
0 ds3)’

where ds§ = (g1du1 + godus)? and ds3 = hipdu? + 2hiaduidug + hoadu3.
Here g; = x; and h;; = (X3,%;) (4,7 =1,2).

The Gaussian curvature K of M is defined by means of the coefficients
Li; (i,7 = 1,2) of the second fundamental form, which are the normal
components of x; ; (i,7 = 1,2), that is,

1, . - 1, . -
Lij = —(1%,ij — 9ij%X1,U) = —(g2X,ij — 9ijX2,U).
g1 g2
Thus, the Gaussian curvature K of M is defined by
Liy Loy — L3
and the mean curvature H is given by

(3.2) H=- (95L11 — 29192 L12 + g7 Laa),

€
22
where € (= £1) is the sign of the unit normal vector field.

In the pseudo-Galilean space G, there are two types of rotations: pseudo-

Euclidean rotations given by the normal form
r=uw,
iy = ycosht + zsinht,
z = ysinht + z cosht,

and isotropic rotations with the normal form

T =+ bt,
7=y 4+t +bt?/2,
Z2=2z,

where ¢ € R and b = constant > 0.
The trajectory of a single point under a pseudo-Euclidean rotation is a
pseudo-Euclidean circle (i.e., a rectangular hyperbola)

x = constant, y?—22=1r% reR.

The invariant r is the radius of the circle. Pseudo-Euclidean circles intersect
the absolute line f in the fixed points of the hyperbolic involution (Fy, F).
There are three kinds of pseudo-Euclidean circles: circles of real radius,
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of imaginary radius, and of radius zero. Circles of real radius are time-
like curves (having timelike tangent vectors) and imaginary radius spacelike
curves (having spacelike tangent vectors).

The trajectory of a point under isotropic rotation is an isotropic circle

whose normal form is

1’2

= tant = .
z = constant, y =
The invariant b is the radius of the circle. The fixed line of the isotropic
rotation (3.2) is the absolute line f.

First of all, we rotate a non-isotropic curve o parameterized by

a(u) = (h(u),g(u),0) or a(u) = (h(u),0,g(u))
around the z-axis by pseudo-Euclidean rotation (3.1), where g is a positive

function and A is a smooth function on an open interval I. Then the surface
M of revolution can be written as

(3.3) x(u,v) = (h(u), g(u) cosh v, g(u) sinh v),
(3.4) x(u,v) = (h(u), g(u)sinh v, g(u) coshv),
for any v € R.

Next, we consider the isotropic rotations. By rotating the isotropic curve
a(u) = (0, h(u), g(u)) about the z-axis by isotropic rotation (3.2), we obtain
a surface

2

(35) x(10) = (v hla) + 55900 ).

where h and g are smooth functions and b # 0 [I5].

4. Rotation surface generated by a non-isotropic curve. Let M
be a rotation surface generated by a non-isotropic curve a(u) = (u, g(u),0).
Then M is parameterized by
(4.1) x(u,v) = (u, g(u) coshv, g(u) sinh v),

where g(u) is a positive function. By using the natural frame {x,,x,} of M
we define an orthonormal frame {e1,es} by

el = quH = (1, ¢'(u) coshv, ¢’ (u) sinhv),
X
(4.2) Xz '
ey = = (0, sinh v, coshv);
1%l

from this the Gauss map G of M is given by
(4.3) G = (0, cosh v, sinh v).
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On the other hand, the Gaussian curvature K and the mean curvature H
are given by

7
1
(4.4) K-l W g .
g(u) 29(u)
Thus from (2.3), (4.3) and (4.4) the operator L;G of the Gauss map G can
be expressed as

I A

4.1. Rotation surface with Li-harmonic Gauss map. First of all,
we consider a rotation surface M with Li-harmonic Gauss map, that is,
LG = 0. From (4.5) we have

g(u)g" (u) — g'(w)g"(u) =0, g¢"(u) =0,

and it follows that g(u) = au + b with a,b € R. In this case, M is a flat
surface. If a = 0, M is a Lorentzian hyperbolic cylinder y? — 22 = b?. If
a # 0, M is a Lorentzian cone (ax + b)? = y? — 22.

THEOREM 4.1. Let M be a rotation surface defined by (4.1) in the three-
dimensional pseudo-Galilean space Gi. Then M has Ly-harmonic Gauss
map if and only if it is an open part of a Lorentzian hyperbolic cylinder or
a Lorentzian cone.

4.2. Rotation surface with L;-pointwise 1-type Gauss map of
the first kind. In this subsection, we study rotation surfaces with Li-
pointwise 1-type Gauss map of the first kind. From (4.5) we can obtain the
equations

M) — o (wa (w0 = 9" (u) _
9(u)g” (u) — g'(u)g"(u) =0, O

The first equation implies ¢”(u) = cg(u), where ¢ € R. So, from (4.4) the
Gaussian curvature K is constant. On the other hand, rotation surfaces with
constant Gaussian curvature were obtained in [15].

Thus, we have the following theorem.

THEOREM 4.2. Let M be a rotation surface defined by (4.1) in the three-
dimensional pseudo-Galilean space G%. Then M has Ly-pointwise 1-Gauss
map of the first kind if and only if M is an open part of one of the following
surfaces:

1. x(u,v) = (u,acos(ku + b) coshv, acos(ku + b) sinhv), ¢= —k?,
2. x(u,v) = (u,acosh(ku + b) coshv, a cosh(ku + b) sinhv), ¢ = k?,

where a,b, k € R.
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4.3. Rotation surface with L;-pointwise 1-type Gauss map of
the second kind. Let M be a rotation surface with Li-pointwise 1-type
Gauss map of the second kind. Then equation (1.3) is satisfied for a non-zero
constant vector C' = (c1, ¢2,c3) and a smooth function f and we have

o)y () g/ )g" ) _ o,
(46) g TG

éfW):fu+«1G», 0= (C, es).

Let us distinguish the following cases:
1. If ¢; = 0, then from (C,e2) = 0 we can obtain

c29(u) coshv — c3g(u) sinhv = 0.
Since {sinh v, coshv} forms a set of linearly independent functions, we get
Cy = 0, C3 = O,

because g(u) is a positive function. In this case, the constant vector C' van-
ishes identically. This is a contradiction.

2. If ¢; # 0, then from (C,e;) = c1, (Cye2) = 0 and (C,G) = 0 the
constant vector C' becomes C' = cjeq, which is impossible because e is a
non-constant vector except for ¢’(u) = 0. If ¢’(u) = 0, from (4.6) the smooth
function f is identically zero.

THEOREM 4.3. There do not exist rotation surfaces defined by (4.1) in
G% with Li-pointwise 1-Gauss map of the second kind.

5. Rotation surface generated by isotropic curve. In this sec-
tion, we consider isotropic rotations. By rotating an isotropic curve a(u) =
(0, h(u), g(u)) about the z-axis by an isotropic rotation, we obtain a rotation
surface parameterized by

2

(5.1) Mm@z@ﬁ@+;gW)

where b is a non-zero constant. We assume that the isotropic curve is pa-
rameterized by arc length, that is,

(5.2) R (u)? — ¢'(u)? = —e.
Then the orthonormal frame {ej, e} of the tangent space of M is given by

€1 = (Oa h'(u),g’(u)),

(5:3) ez = (1,v/b,0).
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On the other hand, the Gauss map G of M is
(5.4) G = (0,—4'(u), —h'(u)).

From (3.1) and (3.2), the Gaussian curvature K and the mean curvature H
are given by

h”(u)’ oo el (u)
b 29’ (u)
Thus the operator L1G of the Gauss map G can be expressed as
h”’(u) 6h//(u)2
o1 —
b by'(u)

5.1. Rotation surface with Li;-harmonic Gauss map. Suppose
that a rotation surface M satisfies L1G = 0. Then, from (5.6), h(u) = au+b
and g(u) = £va? + eu + ¢ with a,b,c € R.

THEOREM 5.1. Let M be a rotation surface defined by (5.1) in the three-

dimensional pseudo-Galilean space G};. Then M has Li-harmonic Gauss
map if and only if M is parameterized by

(5.5) K=-—

(5.6) LG =

2
x(u,v) = <v, c1u+ co + %, c3u + C4> ,

where ¢; (i =1,...,4) are constants.

5.2. Rotation surface with L;-pointwise 1-type Gauss map of
the first kind. Let M be a rotation surface with Li-pointwise 1-type Gauss
map of the first kind. Then from (5.6) we have

h///(u) 6h//(u)2
5.7 - G=fG
7 b gy © I
which implies b’ (u) = 0, and it follows that the Gaussian curvature K is a
constant K. Combining this with the result in [I5] we have the following
theorem:

THEOREM 5.2. Let M be a rotation surface generated by an isotropic
curve in the three-dimensional pseudo-Galilean space G%. Then M has L;-
pointwise 1-type Gauss map of the first kind if and only if M is parameterized

as
2

)
X(“a U) - <’U, h(u) + %7 g(u)>7
where either

h(u) = bKou?/2 + ciu + c3,
g(u) =

1
_TKO((Q — bKou)\/(c1 — bKo)2 — 1 — cosh™ (¢1 — bKou) + &),
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or

h(u) = bKou?/2 + c1u + c2,

1
g(u) = —m((cl — bKou)\/(c; — bKg)2 + 1 +sinh ™! (¢; — bKou) + c2).

5.3. Rotation surface with L;-pointwise 1-type Gauss map of
the second kind. We suppose that a rotation surface M satisfies the con-
dition L1G = f(G + C) for some smooth function f and non-zero constant
vector C' = (¢, ¢2,c3). Then from (5.6) we have

(5.8) —ehmb(u) = f{C,e1),

" U 2
(5.9) —’;g,(( 3) — f(e+1(C,G),
(5.10) (C,e3) =0.

From the scalar product of C' and ey of (5.10), we find ¢; = 0. By taking
the covariant derivative of (5.10) with respect to es we have

/ /
0= T, (C, e9) = <C, _ é“)el _ g é“>G>,

which implies that ca(h/(u)? — ¢'(u)?) = 0. Thus ¢ = 0. Combining (5.8)
and (5.9) we get

h”(u)2
g'(u)

from this equation, we have the following ODE:

eh” (u)(e + (C,G)) — (C,e1) = 0;
(5.11) (1 + ec3h/(u))W" (uw) + c3h” (u)? = 0.
To solve (5.11), we set h'(u) = y(u); then
(1 + ecy(u))y” (u) + c3y/ (u)? = 0.
Again, we set y/(u) = p(u) then the above equation becomes
d
(1+ €C3Z/)£ +e3p =0,

and its general solution is

(5.12) p(u) = di (1 + ecsy(u))™c,

where d; € R.
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If e = 1, then from (5.12) we find

2 2
y(u)? + =y(u) — =(diu+dg) = 0,
C3 C3
that is,
1 1
y(u) =——4 *\/1 + 203(d1u + dg),
C3 C3

where d2 € R. Thus the general solution of (5.11) is
1 1
C3 3C3d1

where d3 € R. On the other hand, from (5.2) the function g(u) is given by

(5.14) g(u) ==\ <1 + <—1 + l\/l + 2¢3(diu + d2)>2> v du.

€3 €3
If e = —1, then from (5.12) we get
_dh 1

_ 0 = 1 o —03(d1u+d2)
y(“’) du 03( e )7

it follows that we have the general solution of (5.11) as

1 1
5.15 h —— _ = —c3(diutde) d
(5.15) W)= (wt ge +d;
with d3 € R, and from (5.2) the function g(u) is given by
1 1/2
(5.16) g(u) = :|:S <2<1 _ 6—03(d1u+d2))2 o 1> du.
3

Consequently, we have the following theorem:

THEOREM 5.3. Let M be a rotation surface generated by an isotropic
curve in the three-dimensional pseudo-Galilean space Gzl,). Then M has Lq-
pointwise 1-type Gauss map of the second kind if and only if M is parame-
terized as

2
x(u,0) = (0, h(w) + - g(u) ),
2b
where etther

1
h(u) =—-——ux% Td(l +203(d1u+d2))3/2 + ds,

g(u) = %\ <1 + (—; + 013\/1 + 2¢3(dyu + d2)>2> v du
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1
R T )
c3dy

C3

1 1/2
g(u) = j:S (2(1 - e‘c3(d1“+d2))2 - 1> du,

with dy,ds, ds € R.
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