Generalized P-reducible (α, β)-metrics with vanishing S-curvature

by A. Tayebi and H. Sadeghi (Qom)

Abstract

We study one of the open problems in Finsler geometry presented by Matsumoto-Shimada in 1977, about the existence of a concrete P-reducible metric, i.e. one which is not C-reducible. In order to do this, we study a class of Finsler metrics, called generalized P-reducible metrics, which contains the class of P-reducible metrics. We prove that every generalized P-reducible (α, β)-metric with vanishing S -curvature reduces to a Berwald metric or a C-reducible metric. It follows that there is no concrete P-reducible (α, β)-metric with vanishing S-curvature.

1. Introduction. In 1975, the well-known the physicist Y. Takano published a paper which considered the field equation in a Finsler space and proposed certain geometrical problems in Finsler geometry [15]. He requested mathematicians to find some special forms of hv-curvature, interseting from the standpoint of physics. In 1978, Matsumoto introduced the notion of P-reducible Finsler metrics as an answer to Takano's request which was a generalization of C-reducible Finsler metrics [7]. For a Finsler metric of dimension $n \geq 3$, he found some conditions under which the Finsler metric was P-reducible.

Since the study of hv-curvature became necessary for Finsler geometry as well as for theoretical physics, Matsumoto-Shimada [10] studied the curvature properties of P-reducible metrics. They posed the following problem:

Is there any concrete P-reducible metric, i.e. one which is not C-reducible?
In [9], Matsumoto-Hōjo proved that F is C-reducible if and only if it is a Randers metric or a Kropina metric. These metrics are defined by $F=\alpha+\beta$ and $F=\alpha^{2} / \beta$, respectively, where $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric and $\beta:=b_{i}(x) y^{i}$ is a 1 -form on a manifold M. The Randers metrics were introduced by G. Randers in the context of general relativity, and have been widely applied in many areas of natural sciences, including biology, ecol-

[^0]Key words and phrases: P-reducible metric, C-reducible metric, S-curvature.
ogy, physics and psychology [3], [12]. The Kropina metric was introduced by L. Berwald in connection with a two-dimensional Finsler space with rectilinear extremals [1].

In [11, Numata introduced an interesting family of Finsler metrics which were called Numata-type metrics. They are defined by $F:=\bar{F}+\eta$, where $\bar{F}(y)=\sqrt{g_{i j}(y) y^{i} y^{j}}$ is a locally Minkowskian metric and $\eta=\eta_{i}(x) y^{i}$ a closed one-form on a manifold $M ; F$ is called a Randers change of \bar{F}. By a simple calculation, we get

$$
C_{i j k}=\bar{C}_{i j k}+\frac{1}{2 \bar{F}}\left\{h_{i j} D_{m}+h_{j k} D_{i}+h_{k i} D_{j}\right\},
$$

where $D_{i}:=\eta_{i}-\eta y_{i} /(\bar{F})^{2}$ and $h_{i j}:=F F_{i j}$ is the angular metric. Define $\eta_{i \mid j}$ by $\eta_{i \mid j} \gamma^{j}:=d \eta_{i}-\eta_{j} \gamma_{i}^{j}$, where $\gamma^{i}:=d x^{i}$ and $\gamma_{i}^{j}:=\Gamma_{i k}^{j} d x^{k}$ denote the coefficients of the linear connection form of \bar{F}. Set

$$
\mathfrak{D}_{i j}:=\frac{1}{2}\left(\eta_{i \mid j}+\eta_{j \mid i}\right) .
$$

Then the Landsberg curvature of F is given by

$$
\begin{equation*}
L_{i j k}=\lambda C_{i j k}+a_{i} h_{j k}+a_{j} h_{k i}+a_{k} h_{i j}, \tag{1}
\end{equation*}
$$

where
$\lambda=\frac{1}{2 F} \mathfrak{D}_{i j} y^{i} y^{j}, \quad a_{i}:=\frac{1}{2 F^{2} \bar{F}^{3}}\left[2 F \bar{F}^{2} \mathfrak{D}_{i k}-2 F \mathfrak{D}_{k l} y^{l} y_{i}-\left(1+\bar{F}^{2}\right) \mathfrak{D}_{k l} y^{l} D_{j}\right] y^{k}$.
We call a Finsler metric F generalized P-reducible if its Landsberg curvature is given by (11), where $a_{i}=a_{i}(x, y)$ and $\lambda=\lambda(x, y)$ are scalar functions on $T M$. Thus every Numata-type metric is a generalized P-reducible metric. By (1), if $a_{i}=0$ then F reduces to a general relatively isotropic Landsberg metric, and if $\lambda=0$ then F is P-reducible. Thus the study of this class of Finsler spaces will enhance our understanding of the geometric meaning of P-reducible metrics.

The notion of S-curvature was originally introduced by Shen [13] for the volume comparison theorem. Finsler metrics with vanishing S-curvature are important geometric structures which deserve a deeper study [16].

An (α, β)-metric is a Finsler metric of the form $F:=\alpha \phi(s), s=\beta / \alpha$, where $\phi=\phi(s)$ is a C^{∞} on $\left(-b_{0}, b_{0}\right), \alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. For example, $\phi=c_{1} \sqrt{1+c_{2} s^{2}}+c_{3} s$ is called a Randers-type metric, where $c_{1}>0, c_{2}$ and c_{3} are constants. In this paper, we characterize generalized P-reducible (α, β)-metrics with vanishing S -curvature and prove the following.

Theorem 1.1. Let $F=\alpha \phi(s), s=\beta / \alpha$, be an (α, β)-metric on a manifold M. Suppose that F is a generalized P-reducible metric with vanishing S-curvature. Then F is a Berwald metric or a C-reducible metric.

From Theorem 1.1, it follows that there is no concrete P-reducible (α, β) metric with vanishing S-curvature (see Lemma 3.5).

In this paper, we use the Berwald connection. The h - and v - covariant derivatives of a Finsler tensor field are denoted by "|" and "," respectively.
2. Preliminaries. Let (M, F) be a Finsler manifold. Suppose $x \in M$ and $F_{x}:=\left.F\right|_{T_{x} M}$. We define $\mathbf{C}_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow \mathbb{R}$ by $\mathbf{C}_{y}(u, v, w)$ $:=C_{i j k}(y) u^{i} v^{j} w^{k}$, where

$$
C_{i j k}:=\frac{1}{2} \frac{\partial g_{i j}}{\partial y^{k}}=\frac{1}{4} \frac{\partial^{3} F^{2}}{\partial y^{i} \partial y^{j} \partial y^{k}},
$$

and $g_{i j}:=\frac{1}{2}\left[F^{2}\right]_{y^{i} y^{j}}$. The family $\mathbf{C}:=\left\{\mathbf{C}_{y}\right\}_{y \in T M_{0}}$ is called the Cartan torsion. It is well known that $\mathbf{C}=0$ if and only if F is Riemannian. For $y \in T_{x} M_{0}$, define the mean Cartan torsion \mathbf{I}_{y} by $\mathbf{I}_{y}(u):=I_{i}(y) u^{i}$, where $I_{i}:=g^{j k} C_{i j k}$.

For $y \in T_{x} M_{0}$, define the Matsumoto torsion $\mathbf{M}_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow \mathbb{R}$ by $\mathbf{M}_{y}(u, v, w):=M_{i j k}(y) u^{i} v^{j} w^{k}$, where

$$
M_{i j k}:=C_{i j k}-\frac{1}{n+1}\left\{I_{i} h_{j k}+I_{j} h_{i k}+I_{k} h_{i j}\right\}
$$

and $h_{i j}=g_{i j}-F_{y^{i}} F_{y^{j}}$ is the angular metric. F is said to be C-reducible if $\mathbf{M}_{y}=0$.

Lemma 2.1 ([9]). A Finsler metric F on a manifold M of dimension $n \geq 3$ is a Randers metric or a Kropina metric if and only if $\mathbf{M}_{y}=0$ for all $y \in T M_{0}$.

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

$$
\begin{equation*}
C_{i j k}=\frac{p}{n+1}\left\{h_{i j} I_{k}+h_{j k} I_{i}+h_{i k} I_{j}\right\}+\frac{q}{\|\mathbf{I}\|^{2}} I_{i} I_{j} I_{k}, \tag{2}
\end{equation*}
$$

where $p=p(x, y)$ and $q=q(x, y)$ are scalar functions on $T M$ satisfying $p+q=1$ and $\|\mathbf{I}\|^{2}=I^{m} I_{m}$ (see [8], [17], [18]).

Lemma 2.2 (图). Every non-Riemannian (α, β)-metric on a manifold M of dimension $n \geq 3$ is semi-C-reducible.

The horizontal covariant derivatives of the Cartan torsion \mathbf{C} and mean Cartan torsion I along geodesics give rise to the Landsberg curvature \mathbf{L}_{y} : $T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow \mathbb{R}$ and mean Landsberg curvature $\mathbf{J}_{y}: T_{x} M \rightarrow \mathbb{R}$, defined by $\mathbf{L}_{y}(u, v, w):=L_{i j k}(y) u^{i} v^{j} w^{k}$ and $\mathbf{J}_{y}(u):=J_{i}(y) u^{i}$, respectively, where

$$
L_{i j k}:=C_{i j k \mid s} y^{s}, \quad J_{i}:=I_{i \mid s} y^{s} .
$$

The families $\mathbf{L}:=\left\{\mathbf{L}_{y}\right\}_{y \in T M_{0}}$ and $\mathbf{J}:=\left\{\mathbf{J}_{y}\right\}_{y \in T M_{0}}$ are also called the Landsberg curvature and mean Landsberg curvature, respectively. A Finsler metric
is called a Landsberg metric or a weakly Landsberg metric if $\mathbf{L}=0$ or $\mathbf{J}=0$, respectively.

A Finsler metric F on an n-dimensional manifold M is called P-reducible if its Landsberg curvature is given by

$$
L_{i j k}=\frac{1}{n+1}\left\{J_{i} h_{j k}+J_{j} h_{i k}+J_{k} h_{i j}\right\}
$$

It is easy to see that every C-reducible metric is P-reducible. But the converse is not true [6].

Given an n-dimensional Finsler manifold (M, F), a global vector field \mathbf{G} is induced by F on $T M_{0}$, which in a standard coordinate $\left(x^{i}, y^{i}\right)$ for $T M_{0}$ is given by $\mathbf{G}=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i}(x, y) \frac{\partial}{\partial y^{i}}$, where $G^{i}=G^{i}(x, y)$ are called spray coefficients and are given by

$$
G^{i}:=\frac{1}{4} g^{i l}\left[\frac{\partial^{2} F^{2}}{\partial x^{k} \partial y^{l}} y^{k}-\frac{\partial F^{2}}{\partial x^{l}}\right], \quad y \in T_{x} M
$$

\mathbf{G} is called the spray associated to F.
For $y \in T_{x} M_{0}$, define $\mathbf{B}_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow T_{x} M$ by $\mathbf{B}_{y}(u, v, w):=$ $\left.B^{i}{ }_{j k l}(y) u^{j} v^{k} w^{l} \frac{\partial}{\partial x^{i}}\right|_{x}$, where

$$
B_{j k l}^{i}:=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}
$$

\mathbf{B} is called the Berwald curvature and F is called a Berwald metric if $\mathbf{B}=\mathbf{0}$.
For an (α, β)-metric, let us define $b_{i \mid j}$ by $b_{i \mid j} \theta^{j}:=d b_{i}-b_{j} \theta_{i}^{j}$, where $\theta^{i}:=d x^{i}$ and $\theta_{i}^{j}:=\Gamma_{i k}^{j} d x^{k}$ denote the Levi-Civita connection form of α. Let

$$
\begin{aligned}
& r_{i j}:=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}:=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
& r_{i 0}:=r_{i j} y^{j}, \quad r_{00}:=r_{i j} y^{i} y^{j}, \quad r_{j}:=b^{i} r_{i j}, \\
& s_{i 0}:=s_{i j} y^{j}, \quad s_{j}:=b^{i} s_{i j}, \quad r_{0}:=r_{j} y^{j}, \quad s_{0}:=s_{j} y^{j} .
\end{aligned}
$$

Let $G^{i}=G^{i}(x, y)$ and $G_{\alpha}^{i}=G_{\alpha}^{i}(x, y)$ denote the coefficients of F and α respectively in the same coordinate system. Then

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\left(-2 Q \alpha s_{0}+r_{00}\right)\left(\Theta \frac{y^{i}}{\alpha}+\Psi b^{i}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q:=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \quad \Delta:=1+s Q+\left(b^{2}-s^{2}\right) Q^{\prime} \\
& \Theta:=\frac{Q-s Q^{\prime}}{2 \Delta}, \quad \Psi:=\frac{Q^{\prime}}{2 \Delta}
\end{aligned}
$$

The mean Landsberg curvature of an (α, β)-metric $F=\alpha \phi(s)$ is given by

$$
\begin{align*}
& J_{i}:=-\frac{1}{2 \alpha^{4} \Delta}\left(\frac{2 \alpha^{2}}{b^{2}-s^{2}}\left[\frac{\Phi}{\Delta}+(n+1)\left(Q-s Q^{\prime}\right)\right]\left(r_{0}+s_{0}\right) h_{i}\right. \tag{4}\\
&+\frac{\alpha}{b^{2}-s^{2}}\left[\Psi_{1}+s \frac{\Phi}{\Delta}\right]\left(r_{00}-2 \alpha Q s_{0}\right) h_{i}+\alpha\left[-\alpha Q^{\prime} s_{0} h_{i}\right. \\
&+\alpha Q\left(\alpha^{2} s_{i}-\bar{y}_{i} s_{0}\right)+\alpha^{2} \Delta s_{i 0}+\alpha^{2}\left(r_{i 0}-2 \alpha Q s_{0}\right) \\
&\left.\left.\quad-\left(r_{00}-2 \alpha Q s_{0}\right) \bar{y}_{i}\right] \frac{\Phi}{\Delta}\right)
\end{align*}
$$

where

$$
\begin{aligned}
\Psi_{1} & :=\sqrt{b^{2}-s^{2}} \Delta^{1 / 2}\left[\frac{\sqrt{b^{2}-s^{2}}}{\Delta^{3 / 2}}\right]^{\prime} \\
h_{i} & :=\alpha b_{i}-s \bar{y}_{i}, \quad \bar{y}_{i}:=a_{i j} y^{j} \\
\Phi & :=-\left(Q-s Q^{\prime}\right)(n \Delta+1+s Q)-\left(b^{2}-s^{2}\right)(1+s Q) Q^{\prime \prime}
\end{aligned}
$$

For more details, see [2]. We have

$$
\begin{equation*}
\bar{J}:=b^{i} J_{i}=-\frac{1}{2 \alpha^{2} \Delta}\left\{\Psi_{1}\left(r_{00}-2 \alpha Q s_{0}\right)+\alpha \Psi_{2}\left(r_{0}+s_{0}\right)\right\} \tag{5}
\end{equation*}
$$

where

$$
\Psi_{2}:=2(n+1)\left(Q-s Q^{\prime}\right)+3 \Phi / \Delta
$$

For a Finsler metric F on an n-dimensional manifold M, the BusemannHausdorff volume form $d V_{F}=\sigma_{F}(x) d x^{1} \cdots d x^{n}$ is defined by

$$
\sigma_{F}(x):=\frac{\operatorname{Vol}\left(\mathbb{B}^{n}(1)\right)}{\operatorname{Vol}\left\{\left(y^{i}\right) \in \mathbb{R}^{n} \left\lvert\, F\left(\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x}\right)<1\right.\right\}}
$$

Let $G^{i}(x, y)$ denote the geodesic coefficients of F in the same local coordinate system. The S-curvature is defined by

$$
\mathbf{S}(\mathbf{y}):=\frac{\partial G^{i}}{\partial y^{i}}(x, y)-y^{i} \frac{\partial}{\partial x^{i}}\left[\ln \sigma_{F}(x)\right]
$$

where $\mathbf{y}=\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x} \in T_{x} M$. If F is a Berwald metric then $\mathbf{S}=0$.
In [4], Cheng-Shen characterized (α, β)-metrics with isotropic S-curvature.

Lemma 2.3 ([4]). Let $F=\alpha \phi(s), s=\beta / \alpha$, be a non-Riemannian (α, β) metric on a manifold M of dimension $n \geq 3$ and $b:=\left\|\beta_{x}\right\|_{\alpha}$. Suppose that F is not a Finsler metric of Randers type. Then F is of isotropic S-curvature, $\mathbf{S}=(n+1) c F$, if and only if one of the following holds:
(a) β satisfies

$$
\begin{equation*}
r_{i j}=\varepsilon\left(b^{2} a_{i j}-b_{i} b_{j}\right), \quad s_{j}=0 \tag{6}
\end{equation*}
$$

where $\varepsilon=\varepsilon(x)$ is a scalar function, and $\phi=\phi(s)$ satisfies

$$
\begin{equation*}
\Phi=-2(n+1) k \frac{\phi \Delta^{2}}{b^{2}-s^{2}} \tag{7}
\end{equation*}
$$

where k is a constant. In this case, $\mathbf{S}=(n+1) c F$ with $c=k \varepsilon$.
(b) β satisfies

$$
\begin{equation*}
r_{i j}=0, \quad s_{j}=0 \tag{8}
\end{equation*}
$$

In this case, $\mathbf{S}=0$.

3. Proof of Theorem 1.1

Lemma 3.1. Let $F=\alpha \phi(s), s=\beta / \alpha$, be a non-Randers type (α, β) metric on a manifold M of dimension $n \geq 3$. Suppose that F has vanishing S-curvature. Then

$$
\begin{align*}
y_{i} s_{0}^{i} & =0 \tag{9}\\
y_{i} s_{0 \mid 0}^{i} & =0 \tag{10}\\
y_{i} b^{j} s_{j \mid 0}^{i} & =\phi\left(\phi-s \phi^{\prime}\right) s_{0}^{j} s_{j 0} \tag{11}
\end{align*}
$$

where $y_{i}:=g_{i j} y^{j}$.
Proof. We have

$$
\begin{equation*}
g_{i j}=\rho a_{i j}+\rho_{0} b_{i} b_{j}+\rho_{1}\left(b_{i} \alpha_{j}+b_{j} \alpha_{i}\right)+\rho_{2} \alpha_{i} \alpha_{j} \tag{12}
\end{equation*}
$$

where $\alpha_{i}:=\alpha^{-1} a_{i j} y^{j}$ and

$$
\begin{align*}
\rho & :=\phi\left(\phi-s \phi^{\prime}\right) \tag{13}\\
\rho_{0} & :=\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}, \tag{14}\\
\rho_{1} & :=-\left[s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)-\phi \phi^{\prime}\right], \tag{15}\\
\rho_{2} & :=s\left[s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)-\phi \phi^{\prime}\right] . \tag{16}
\end{align*}
$$

Then

$$
\begin{equation*}
y_{i}:=\rho \bar{y}_{i}+\rho_{0} b_{i} \beta+\rho_{1}\left(b_{i} \alpha+s \bar{y}_{i}\right)+\rho_{2} \bar{y}_{i}, \tag{17}
\end{equation*}
$$

where $\bar{y}_{i}:=a_{i j} y^{j}$. Since $\bar{y}_{i} s_{0}^{i}=0$, by (8) we get $b_{i} s_{0}^{i}=0$. Thus (17) implies that

$$
\begin{equation*}
y_{i} s_{0}^{i}=0 \tag{18}
\end{equation*}
$$

Since $y_{i \mid 0}=0, \sqrt{18}$ implies that

$$
\begin{equation*}
y_{i} s_{0 \mid 0}^{i}=0 \tag{19}
\end{equation*}
$$

From $s_{j}=b^{j} s_{j}^{i}=0$, we have

$$
\begin{equation*}
0=\left.\left(b^{j} s_{j}^{i}\right)\right|_{0}=b_{\mid 0}^{j} s_{j}^{i}+b^{j} s_{j \mid 0}^{i}=\left(r_{0}^{j}+s_{0}^{j}\right) s_{j}^{i}+b^{j} s_{j \mid 0}^{i}, \tag{20}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
b^{j} s_{j \mid 0}^{i}=-s_{0}^{j} s_{j}^{i} . \tag{21}
\end{equation*}
$$

By (17) and (21), we get

$$
\begin{equation*}
y_{i} b^{j} s_{j \mid 0}^{i}=-\left(\rho+\rho_{1} s+\rho_{2}\right) s_{0}^{j} s_{j}^{0}=\left(\rho+\rho_{1} s+\rho_{2}\right) s_{0}^{j} s_{j 0} . \tag{22}
\end{equation*}
$$

Since $\rho_{1} s+\rho_{2}=0$, it follows that

$$
\begin{equation*}
y_{i} b^{j} s_{j \mid 0}^{i}=\rho s_{0}^{j} s_{j 0}=\phi\left(\phi-s \phi^{\prime}\right) s_{0}^{j} s_{j 0} \tag{23}
\end{equation*}
$$

This completes the proof.
Lemma 3.2. Let $F=\alpha \phi(s), s=\beta / \alpha$, be a non-Randers type (α, β) metric on a manifold M of dimension $n \geq 3$. Suppose that F has vanishing S-curvature. Then

$$
\begin{align*}
b^{j} b^{k} b^{l} L_{j k l} & =0 \tag{24}\\
b^{i} J_{i} & =0 . \tag{25}
\end{align*}
$$

Proof. Since F has vanishing S-curvature, (3) reduces to

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i} \tag{26}
\end{equation*}
$$

Taking third order vertical derivatives of (26) with respect to y^{j}, y^{l} and y^{k} yields

$$
\begin{align*}
B_{j k l}^{i}= & s_{l}^{i}\left[Q \alpha_{j k}+Q_{k} \alpha_{j}+Q_{j} \alpha_{k}+\alpha Q_{j k}\right] \tag{27}\\
& +s_{j}^{i}\left[Q \alpha_{l k}+Q_{k} \alpha_{l}+Q_{l} \alpha_{k}+\alpha Q_{l k}\right] \\
& +s_{k}^{i}\left[Q \alpha_{j l}+Q_{j} \alpha_{l}+Q_{l} \alpha_{j}+\alpha Q_{j l}\right] \\
& +s_{0}^{i}\left[\alpha_{j k l} Q+\alpha_{j k} Q_{l}+\alpha_{l k} Q_{j}+\alpha_{l j} Q_{k}\right. \\
& \left.+\alpha Q_{j k l}+\alpha_{l} Q_{j k}+\alpha_{j} Q_{l k}+\alpha_{k} Q_{j l}\right] .
\end{align*}
$$

Multiplying (27) with y_{i} and using (9) implies that

$$
\begin{align*}
-2 L_{j k l}= & y_{i} s^{i}{ }_{l}\left[Q \alpha_{j k}+Q_{k} \alpha_{j}+Q_{j} \alpha_{k}+\alpha Q_{j k}\right] \tag{28}\\
& +y_{i} s^{i}{ }_{j}\left[Q \alpha_{l k}+Q_{k} \alpha_{l}+Q_{l} \alpha_{k}+\alpha Q_{l k}\right] \\
& +y_{i} s^{i}{ }_{k}\left[Q \alpha_{j l}+Q_{j} \alpha_{l}+Q_{l} \alpha_{j}+\alpha Q_{j l}\right] .
\end{align*}
$$

By (8), we have $s_{j}=b^{j} s_{i j}=0$. Multiplying (28) with $b^{j} b^{k} b^{l}$ yields (24). By (5) and (8), we get (25).

Lemma 3.3. Let (M, F) be a generalized P-reducible Finsler manifold. Then the Matsumoto torsion of F satisfies

$$
\begin{equation*}
M_{i j k \mid s} y^{s}=\lambda(x, y) M_{i j k} \tag{29}
\end{equation*}
$$

Proof. Let F be a generalized P-reducible metric

$$
\begin{equation*}
L_{i j k}=\lambda C_{i j k}+a_{i} h_{j k}+a_{j} h_{k i}+a_{k} h_{i j} \tag{30}
\end{equation*}
$$

Contracting 30 with $g^{i j}:=\left(g_{i j}\right)^{-1}$ and using the relations $g^{i j} h_{i j}=n-1$ and $g^{i j}\left(a_{i} h_{j k}\right)=g^{i j}\left(a_{j} h_{i k}\right)=a_{k}$ implies that

$$
\begin{equation*}
J_{k}=\lambda I_{k}+(n+1) a_{k} \tag{31}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{i}=\frac{1}{n+1} J_{i}-\frac{\lambda}{n+1} I_{i} \tag{32}
\end{equation*}
$$

Putting (32) in (30) yields

$$
\begin{align*}
L_{i j k}= & \lambda C_{i j k}+\frac{1}{n+1}\left\{J_{i} h_{j k}+J_{j} h_{k i}+J_{k} h_{i j}\right\} \tag{33}\\
& -\frac{\lambda}{n+1}\left\{I_{i} h_{j k}+I_{j} h_{k i}+I_{k} h_{i j}\right\}
\end{align*}
$$

By simplifying (33), we get (29).
Lemma 3.4. Let $F=\alpha \phi(s), s=\beta / \alpha$, be a non-Randers type (α, β) metric on a manifold M of dimension $n \geq 3$. Suppose that F is a generalized P-reducible metric with vanishing S-curvature. Then F is a P-reducible metric.

Proof. Let F be a generalized P-reducible metric. By Lemma 3.3, we have

$$
\begin{align*}
L_{i j k}-\frac{1}{n+1}\left(J_{i} h_{j k}+\right. & \left.J_{j} h_{i k}+J_{k} h_{i j}\right) \tag{34}\\
& =\lambda\left[C_{i j k}-\frac{1}{n+1}\left(I_{i} h_{j k}+I_{j} h_{i k}+I_{k} h_{i j}\right)\right]
\end{align*}
$$

Contracting (34) with $b^{i} b^{j} b^{k}$ and using and 24 implies that

$$
\begin{equation*}
\lambda\left[b^{i} b^{j} b^{k} C_{i j k}-\frac{3}{n+1}\left(b^{i} I_{i}\right)\left(b^{j} b^{k} h_{j k}\right)\right]=0 \tag{35}
\end{equation*}
$$

By (35), we get two cases:
CASE (1): $\lambda=0$. In this case, F reduces to a P-reducible metric.
CASE (2): $\lambda \neq 0$. In this case, by 35 we get

$$
\begin{equation*}
b^{i} b^{j} b^{k} C_{i j k}=\frac{3}{n+1}\left(b^{i} I_{i}\right)\left(b^{j} b^{k} h_{j k}\right) \tag{36}
\end{equation*}
$$

Multiplying (2) with $b^{i} b^{j} b^{k}$ gives

$$
\begin{equation*}
b^{i} b^{j} b^{k} C_{i j k}=\frac{3 p}{n+1}\left(b^{i} I_{i}\right)\left(b^{j} b^{k} h_{j k}\right)+\frac{q}{\|\mathbf{I}\|^{2}}\left(b^{i} I_{i}\right)^{3} . \tag{37}
\end{equation*}
$$

By (36) and (37), it follows that

$$
\begin{equation*}
\frac{3 q}{n+1}\left(b^{i} I_{i}\right)\left[b^{j} b^{k} h_{j k}-\frac{(n+1)\left(b^{m} I_{m}\right)^{2}}{3\|\mathbf{I}\|^{2}}\right]=0 \tag{38}
\end{equation*}
$$

By (38), we get three cases:

CASE (2a): Let $b^{i} I_{i}=0$. By a direct computation, we can obtain a formula for the mean Cartan torsion of (α, β)-metrics as follows:

$$
\begin{equation*}
I_{i}=-\frac{\Phi\left(\phi-s \phi^{\prime}\right)}{2 \Delta \phi \alpha^{2}}\left(\alpha b_{i}-s y_{i}\right) \tag{39}
\end{equation*}
$$

If $b^{i} I_{i}=0$, then by contracting $\sqrt{39}$ with b^{i} we get

$$
\begin{equation*}
\frac{\Phi\left(\phi-s \phi^{\prime}\right)}{2 \Delta \phi \alpha^{3}}\left(b^{2} \alpha^{2}-\beta^{2}\right)=0 \tag{40}
\end{equation*}
$$

By (40), we have $\Phi=0$ or $\phi-s \phi^{\prime}=0$, which implies that $\mathbf{I}=0$, and thus F is a Riemannian metric. This contradicts our assumptions.

CASE (2b): Suppose that

$$
\begin{equation*}
b^{j} b^{k} h_{j k}-\frac{n+1}{3\|\mathbf{I}\|^{2}}\left(b^{i} I_{i}\right)^{2}=0 \tag{41}
\end{equation*}
$$

Since $h_{j k}=g_{j k}-F^{-2} g_{j m} g_{k l} y^{m} y^{l}$, we have

$$
\begin{equation*}
b^{j} b^{k} h_{j k}=b^{j} b^{k} g_{j k}-\frac{1}{F^{2}}\left(g_{j k} b^{j} b^{k}\right)^{2} \tag{42}
\end{equation*}
$$

By (41) and (42), we obtain

$$
\begin{equation*}
b^{j} b^{k}\left[g_{j k}-\frac{n+1}{3\|\mathbf{I}\|^{2}} I_{j} I_{k}\right]=\left[\frac{1}{F} g_{j k} b^{j} b^{k}\right]^{2} \tag{43}
\end{equation*}
$$

Since $y^{i} I_{i}=0$, by 43 we get

$$
\begin{equation*}
\left[\left(g_{i j}-\frac{(n+1) I_{i} I_{j}}{3\|\mathbf{I}\|^{2}}\right) b^{i} \frac{y^{j}}{F}\right]^{2}=\left[\left(g_{i j}-\frac{(n+1) I_{i} I_{j}}{3\|\mathbf{I}\|^{2}}\right) b^{i} b^{j}\right] \tag{44}
\end{equation*}
$$

Set

$$
G_{i j}:=g_{i j}-\frac{n+1}{3\|\mathbf{I}\|^{2}} I_{i} I_{j} .
$$

It follows from (44) that

$$
\begin{equation*}
\left[G_{i j} b^{i} \frac{y^{j}}{F}\right]^{2}=G_{i j} b^{i} b^{j} \tag{45}
\end{equation*}
$$

Since $G_{i j} y^{i} y^{j}=F^{2}$, 45 implies that

$$
\begin{equation*}
\left[G_{i j} b^{i} \frac{y^{j}}{F}\right]^{2}=\left[G_{i j} b^{i} b^{j}\right]\left[G_{i j} \frac{y^{i}}{F} \frac{y^{j}}{F}\right] \tag{46}
\end{equation*}
$$

By the Cauchy-Schwarz inequality and (46), we have

$$
\begin{equation*}
b^{i}=k \frac{y^{i}}{F} \tag{47}
\end{equation*}
$$

where k is a real constant. Multiplying 47 with b_{i} and \bar{y}_{i}, respectively, implies that

$$
\begin{equation*}
F=\frac{k \beta}{b^{2}} \quad \text { and } \quad F=\frac{k \alpha^{2}}{\beta} \tag{48}
\end{equation*}
$$

By (48), it follows that $\left(b^{2}-s^{2}\right) \alpha^{2}=0$, which is a contradiction.
Case (2c): If $q=0$ then $p=1$, and from (2) it follows that F is C-reducible. In any case, F is a P-reducible Finsler metric.

Now, we are going to consider P-reducible (α, β)-metrics with vanishing S-curvature.

Lemma 3.5. Let $F=\alpha \phi(s), s=\beta / \alpha$, be a non-Randers type (α, β) metric on a manifold M of dimension $n \geq 3$. Suppose that F is a P-reducible metric with vanishing S-curvature. Then F reduces to a Berwald metric or a C-reducible metric.

Proof. The Landsberg curvature of an (α, β)-metric is given by

$$
\begin{equation*}
L_{i j k}=\frac{-\rho}{6 \alpha^{5}}\left\{h_{i} h_{j} C_{k}+h_{j} h_{k} C_{i}+h_{i} h_{k} C_{j}+3 E_{i} T_{j k}+3 E_{j} T_{i k}+3 E_{k} T_{i j}\right\} \tag{49}
\end{equation*}
$$ where

$$
\begin{align*}
h_{i} & :=\alpha b_{i}-s \bar{y}_{i} \tag{50}\\
T_{i j} & :=\alpha^{2} a_{i j}-\bar{y}_{i} \bar{y}_{j}, \\
C_{i} & :=\left(X_{4} r_{00}+Y_{4} \alpha s_{0}\right) h_{i}+3 \Lambda D_{i}, \\
E_{i} & :=\left(X_{6} r_{00}+Y_{6} \alpha s_{0}\right) h_{i}+3 \mu D_{i} \\
D_{i} & :=\alpha^{2}\left(s_{i 0}+\Gamma r_{i 0}+\Pi \alpha s_{i}\right)-\left(\Gamma r_{00}+\Pi \alpha s_{0}\right) \bar{y}_{i} \\
X_{4} & :=\frac{1}{2 \Delta^{2}}\left\{-2 \Delta Q^{\prime \prime \prime}+3\left(Q-s Q^{\prime}\right) Q^{\prime \prime}+3\left(b^{2}-s^{2}\right)\left(Q^{\prime \prime}\right)^{2}\right\} \\
X_{6} & :=\frac{1}{2 \Delta^{2}}\left\{\left(Q-s Q^{\prime}\right)^{2}+\left[2\left(s+b^{2} Q\right)-\left(b^{2}-s^{2}\right)\left(Q-s Q^{\prime}\right)\right] Q^{\prime}\right\}, \\
Y_{4} & :=-2 Q X_{4}+\frac{3 Q^{\prime} Q^{\prime \prime}}{\Delta}, \quad Y_{6}:=-2 Q X_{6}+\frac{\left(Q-s Q^{\prime}\right) Q^{\prime}}{\Delta} \\
\Lambda & :=-Q^{\prime \prime}, \quad \mu:=-\frac{1}{3}\left(Q-s Q^{\prime}\right), \quad \Gamma:=\frac{1}{\Delta}, \quad \Pi:=\frac{-Q}{\Delta}
\end{align*}
$$

For more details see [14]. Since $r_{i j}=0$ and $s_{i}=0,4$ and (49) reduce to

$$
\begin{align*}
J_{i} & =-\frac{\Phi}{2 \alpha \Delta} s_{i 0} \tag{52}\\
L_{i j k} & =V_{i j} s_{k 0}+V_{j k} s_{i 0}+V_{k i} s_{j 0} \tag{53}
\end{align*}
$$

where

$$
V_{i j}:=\frac{\rho}{2 \alpha^{3}}\left[Q^{\prime \prime} h_{i} h_{j}+\left(Q-s Q^{\prime}\right) T_{i j}\right] .
$$

We shall divide the problem into two cases: (a) $s_{i 0}=0$ and (b) $s_{i 0} \neq 0$.

CASE (a): Let $s_{i 0}=0$. In this case, by (52) and (53), F reduces to a Landsberg metric. By Shen's Theorem of [14], F reduces to a Berwald metric.

CASE (b): Let $s_{i 0} \neq 0$. Then by (52) and (53), we have

$$
\begin{equation*}
L_{i j k}=Z_{i j} J_{k}+Z_{j k} J_{i}+Z_{k i} J_{j}, \tag{54}
\end{equation*}
$$

where $Z_{i j}:=-(2 \alpha \Delta / \Phi) V_{i j}$. Thus the Landsberg curvature of an $(\alpha, \beta)-$ metric with vanishing S-curvature satisfies (54). Set

$$
A:=-\frac{\Delta \rho\left(Q-s Q^{\prime}\right)}{\Phi}, \quad B:=-\frac{\Delta \rho Q^{\prime \prime}}{\Phi} .
$$

Then by putting (50) and (51) in the formula for $Z_{i j}$ it follows that

$$
\begin{equation*}
Z_{i j}=A a_{i j}+B b_{i} b_{j}-s B\left(b_{i} \alpha_{j}+b_{j} \alpha_{i}\right)-\left(A-s^{2} B\right) \alpha_{i} \alpha_{j} . \tag{55}
\end{equation*}
$$

By assumption, F is P-reducible

$$
\begin{equation*}
L_{i j k}=\frac{1}{n+1}\left(J_{i} h_{j k}+J_{j} h_{i k}+J_{k} h_{i j}\right), \tag{56}
\end{equation*}
$$

where the angular metric $h_{i j}:=g_{i j}-F_{y^{i}} F_{y^{j}}$ is given by
$h_{i j}=\phi\left[\phi-s \phi^{\prime}\right] a_{i j}+\phi \phi^{\prime \prime} b_{i} b_{j}-s \phi \phi^{\prime \prime}\left[b_{i} \alpha_{j}+b_{j} \alpha_{i}\right]-\left[\phi\left(\phi-s \phi^{\prime}\right)-s^{2} \phi \phi^{\prime \prime}\right] \alpha_{i} \alpha_{j}$.
By (54) and (56), we obtain

$$
\begin{equation*}
\left(Z_{i j}-\frac{1}{n+1} h_{i j}\right) J_{k}+\left(Z_{j k}-\frac{1}{n+1} h_{j k}\right) J_{i}+\left(Z_{i k}-\frac{1}{n+1} h_{i k}\right) J_{j}=0 . \tag{57}
\end{equation*}
$$

Since $\alpha_{i} s_{0}^{i}=0$ and $b_{i} s_{0}^{i}=0$, we have

$$
\begin{aligned}
& s_{0}^{i} s_{0}^{j} Z_{i j}=-\frac{\Delta \rho}{\Phi}\left(Q-s Q^{\prime}\right) s_{0}^{m} s_{m 0}, \\
& s_{0}^{i} s_{0}^{j} h_{i j}=\phi\left[\phi-s \phi^{\prime}\right] s_{0}^{m} s_{m 0}, \quad s_{0}^{i} J_{i}=-\frac{\Phi}{2 \alpha \Delta} s_{0}^{m} s_{m 0} .
\end{aligned}
$$

Therefore, contracting (57) with $s_{0}^{i} s_{0}^{j} s_{0}^{k}$ implies that

$$
\begin{equation*}
\frac{1}{n+1} \phi\left[\phi-s \phi^{\prime}\right]=A . \tag{58}
\end{equation*}
$$

By (58), it follows that

$$
\begin{equation*}
Z_{i j}-\frac{1}{n+1} h_{i j}=\chi\left[b_{i} b_{j}-s\left(b_{i} \alpha_{j}+b_{j} \alpha_{i}\right)+s^{2} \alpha_{i} \alpha_{j}\right], \tag{59}
\end{equation*}
$$

where

$$
\chi:=B-\frac{1}{n+1} \phi \phi^{\prime \prime} .
$$

Since $J_{i} \neq 0$ and $b^{m} J_{m}=0$, multiplying (57) with $b^{i} b^{j}$ we get

$$
\begin{equation*}
b^{i} b^{j}\left(Z_{i j}-\frac{1}{n+1} h_{i j}\right)=0 \tag{60}
\end{equation*}
$$

By contracting (59) with $b^{i} b^{j}$ and considering 60 , it follows that

$$
\begin{equation*}
\chi=0 \tag{61}
\end{equation*}
$$

Then (58) and (61) imply that

$$
\begin{align*}
\frac{1}{n+1} \phi\left[\phi-s \phi^{\prime}\right] & =-\frac{\Delta \rho}{\Phi}\left(Q-s Q^{\prime}\right) \tag{62}\\
\frac{1}{n+1} \phi \phi^{\prime \prime} & =-\frac{\Delta \rho}{\Phi} Q^{\prime \prime} \tag{63}
\end{align*}
$$

By (62) and (63), we obtain

$$
\begin{equation*}
\phi-s \phi^{\prime}=c\left(Q-s Q^{\prime}\right) \tag{64}
\end{equation*}
$$

where c is a non-zero real constant. Solving (64) implies that

$$
\begin{equation*}
Q=c_{1} \phi+c_{2} s \tag{65}
\end{equation*}
$$

where $c_{1} \neq 0$ and c_{2} are real constants. By 65), it follows that

$$
\begin{equation*}
c_{2} s^{2}+2 c_{1} s \phi+1=d \phi^{2} \tag{66}
\end{equation*}
$$

where d is a real constant. We divide the problem into two cases: (b1) $d \neq 0$ and (b2) $d=0$.

Subcase (b1): If $d \neq 0$, then by (66) we have

$$
\begin{equation*}
\phi=\frac{c_{1}}{d} s+\sqrt{\left[\left(\frac{c_{1}}{d}\right)^{2}+\frac{c_{2}}{d}\right] s^{2}+1} \tag{67}
\end{equation*}
$$

which is a Randers-type metric. This is a contradiction.
Subcase (b2): If $d=0$, then (66) yields

$$
\begin{equation*}
\phi=-\frac{1}{2 c_{1} s}+\frac{c_{2}}{2 c_{1}} s \tag{68}
\end{equation*}
$$

which is a Randers change of a Kropina metric. It is known that Kropina metrics are C-reducible. On the other hand, every Randers change of a C-reducible metric is C-reducible [5]. Thus the Finsler metric defined by (68) is C-reducible.

Proof of Theorem 1.1. Every two-dimensional Finsler surface is C-reducible. For Finsler manifolds of dimension $n \geq 3$, by Lemmas 3.4 and 3.5 the proof is complete.

References

[1] L. Berwald, On Finsler and Cartan geometries III. Two-dimensional Finsler spaces with rectilinear extremals, Ann of Math. 42 (1941), 84-112.
[2] X. Cheng, On (α, β)-metrics of scalar flag curvature with constant S-curvature, Acta. Math. Sinica English Ser. 26 (2010), 1701-1708.
[3] X. Cheng and Z. Shen, Finsler Geometry. An Approach via Randers Spaces, Springer, 2012.
[4] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169 (2009), 317-340.
[5] M. Matsumoto, Projective Randers change of P-reducible Finsler spaces, Tensor (N.S.) 59 (1998), 6-11.
[6] M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14 (1974), 477-498.
[7] M. Matsumoto, Finsler spaces with the hv-curvature tensor $P_{h i j k}$ of a special form, Rep. Math. Phys. 14 (1978), 1-13.
$[8]$ M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31 (1992), 43-84.
[9] M. Matsumoto and S. Hōjō, A conclusive theorem for C-reducible Finsler spaces, Tensor (N.S.) 32 (1978), 225-230.
[10] M. Matsumoto and H. Shimada, On Finsler spaces with the curvature tensors $P_{h i j k}$ and $S_{\text {hijk }}$ satisfying special conditions, Rep. Math. Phys. 12 (1977), 77-87.
[11] S. Numata, On the torsion tensors $R_{j h k}$ and $P_{h j k}$ of Finsler spaces with a metric $d s=\left(g_{i j}(d x) d x^{i} d x^{j}\right)^{2}+b_{i}(x) d x^{i}$, Tensor (N.S.) 32 (1978), 27-32.
[12] L. Pişcoran, From Finsler geometry to noncommutative geometry, Gen. Math. 12 (4) (2004), 29-38.
[13] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), 306-328.
[14] Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canad. J. Math. 61 (2009), 1357-1374.
[15] Y. Takano, On the theory of fields in Finsler spaces, in: Proc. Int. Sympos. Relativity and Unified Field Theory (Calcutta, 1975-1976), Bose Inst. Phys., Calcutta, 1978, 17-26.
[16] A. Tayebi and B. Najafi, On isotropic Berwald metrics, Ann. Polon. Math. 103 (2012), 109-121.
[17] A. Tayebi, E. Peyghan and B. Najafi, On semi-C-reducibility of (α, β)-metrics, Int. J. Geom. Methods Modern Phys. 9 (2012), no. 4, 1250038, 10 pp.
[18] A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen 82 (2013), 461-471.

A. Tayebi, H. Sadeghi
Department of Mathematics
Faculty of Science
University of Qom
Qom, Iran
E-mail: akbar.tayebi@gmail.com
sadeghihassan64@gmail.com

Received 8.7.2014 and in final form 20.10.2014

[^0]: 2010 Mathematics Subject Classification: 53C60, 53C25.

