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Asymptotic behavior of solutions to a class
of differential variational inequalities

by Nguyen Thi Van Anh and Tran Dinh Ke (Hanoi)

Abstract. We address some questions concerning a class of differential variational
inequalities with finite delays. The existence of exponential decay solutions and a global
attractor for the associated multivalued semiflow is proved.

1. Introduction. We consider the following differential variational in-
equality (DVI):

x′(t) = Ax(t) + h(x(t)) +B(x(t), xt)u(t), t ∈ J = [0, T ],(1.1)

〈v − u(t), F (x(t)) +G(u(t))〉 ≥ 0, ∀v ∈ K, for a.e. t ∈ J,(1.2)

x(s) = ϕ(s), s ∈ [−τ, 0],(1.3)

where x(t) ∈ Rn, u(t) ∈ K with K being a closed convex subset in Rm,
xt denotes the history of the state function up to time t; A,B, F,G and h
are given maps which will be specified in the next section.

The notion of differential variational inequality can be traced back to
Aubin and Cellina [2] in 1984. In a later work of Avgerinos and Papageor-
giou [3], this concept was revisited and expanded. However, DVIs were first
systematically studied by Pang and Stewart [15]. As mentioned in that pa-
per, DVIs are useful for representing models involving both dynamics and
constraints in the form of inequalities which arise in many problems in real-
ity, for example, mechanical impact problems, electrical circuits with ideal
diodes, Coulomb friction problems for contacting bodies, economical dynam-
ics and related problems such as dynamic traffic networks. In case K = Rm,
system (1.1)–(1.3) becomes a differential algebraic equation with the un-
known y = (x, u), while if K is a cone, it is a differential complementarity
problem. Some existence results for DVIs can be found in [9, 10, 13] and the
references therein.
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In the theory of differential equations, problem (1.1)–(1.3) is called a
differential system with unilateral constraints. As a matter of fact, it can
be seen as a control problem subject to constraints. In this work, we will
look for conditions ensuring the existence of solutions to this problem, and
study their behavior. Specifically, after giving a short proof for the solv-
ability of (1.1)–(1.3) on bounded intervals, we show that this system has a
compact set of exponentially decaying solutions. In addition, the multival-
ued semiflow generated by (1.1)–(1.3) admits a compact global attractor in
C([−τ, 0];Rn). Up to our knowledge, no attempt has been made to study the
behavior of solutions to (1.1)–(1.3) in the literature. So this is a motivation
of our work.

The rest of this paper is organized as follows. In the next section, we
recall the notion of measure of noncompactness (MNC), and construct a
regular MNC to determine the compactness in BC(0,∞;Rn). On the other
hand, the theory of global attractors for multivalued semiflows introduced
in [14] will be taken into account. Section 3 contains the existence result
for (1.1)–(1.3) on compact intervals. In Section 4, we prove the existence of
exponentially decaying solutions to our problem, and Section 5 is devoted
to showing that the multivalued semiflow associated with (1.1)–(1.3) has a
compact global attractor in C([−τ, 0];Rn).

2. Preliminaries

2.1. Measure of noncompactness. Let E be a Banach space. De-
note

P(E) = {B ⊂ E : B 6= ∅}, B(E) = {B ∈ P(E) : B is bounded}.

We recall the definition of measure of noncompactness introduced in [1].

Definition 2.1. A function β : B(E) → R+ is called a measure of
noncompactness (MNC) on E if

β(co Ω) = β(Ω) for every Ω ∈ B(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called

• monotone if Ω0, Ω1 ∈ B(E), Ω0 ⊂ Ω1 implies β(Ω0) ⊂ β(Ω1);
• nonsingular if β({a} ∪Ω) = β(Ω) for any a ∈ E, Ω ∈ B(E);
• invariant with respect to unions with compact sets if β(K ∪Ω) = β(Ω)

for every relatively compact set K ⊂ E and Ω ∈ B(E);
• algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any
Ω0, Ω1 ∈ B(E);
• regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.
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An important example of MNC is the Hausdorff MNC χ(·), which is
defined as follows: for Ω ∈ B(E),

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.
In particular, it is known that the Hausdorff MNC on C([0, T ];Rn), the space
of continuous functions on [0, T ] taking values in Rn, is given by (see [1])

(2.1) χT (D) =
1

2
lim
δ→0

sup
x∈D

max
t,s∈[0,T ], |t−s|<δ

‖x(t)− x(s)‖.

The measure χT (D) of a subset D can be seen as the modulus of equicon-
tinuity of a subset in C([0, T ];Rn).

Consider the space BC(0,∞;Rn) of bounded continuous functions on
[0,∞) taking values in Rn. Denote by πT the restriction operator on
BC(0,∞;Rn), that is, πT (x) is the restriction of x on [0, T ]. Then

(2.2) χ∞(D) = sup
T>0

χT (πT (D)), D ⊂ BC(0,∞;Rn),

is an MNC. One can check that χ∞ has all the properties given in Definition
2.1, but regularity. Indeed, we will prove this claim by choosing the sequence
{fk} ⊂ BC(0,∞;R) as follows:

fk(t) =


0, t 6∈ [k, k + 1],

2t− 2k, t ∈ [k, k + 1/2],

−2t+ 2k + 2, t ∈ [k + 1/2, k + 1].

Then it is obvious that {πT (fk)} is compact (converging to 0 in C([0, T ];R))
for any T > 0. However,

sup
t≥0
|fk(t)− fl(t)| = 1 for k 6= l,

and so {fk} is not a Cauchy sequence in BC(0,∞;R). This tells us that
χT (πT ({fk}))) = 0 for any T > 0, and hence χ∞({fk}) = 0, but {fk} is not
relatively compact.

We now construct a regular MNC on BC(0,∞;Rn). Recall the following
MNCs on BC(0,∞;Rn) (see [4]):

dT (D) = sup
x∈D

sup
t≥T
‖x(t)‖, d∞(D) = lim

T→∞
dT (D).

Define

(2.3) χ∗(D) = χ∞(D) + d∞(D).

By a simple check, χ∗ is an MNC on BC(0,∞;Rn).

Lemma 2.2. The MNC χ∗ defined by (2.3) is regular.

Proof. Let D ⊂ BC(0,∞;Rn) be a bounded set such that χ∗(D) = 0.
We will show that D is relatively compact. Let PBC(0,∞;Rn) be the space
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of piecewise continuous and bounded functions on R+, taking values in Rn.
This is a Banach space with the norm

‖x‖PBC = sup
t≥0
‖x(t)‖,

and contains BC(0,∞;Rn) as a closed subspace.
For ε > 0, since d∞(D) = 0, one can choose T > 0 such that supt≥T ‖x(t)‖

< ε/2 for all x ∈ D. This means that

‖x− πT (x)‖PBC < ε/2, ∀x ∈ D,
here πT (x) is understood as a function in PBC(0,∞;Rn) in the following
manner:

πT (x)(t) =

{
x(t), t ∈ [0, T ],

0, t > T .

Now since D is bounded and χT (D) = 0, by the Arzelà–Ascoli theorem
πT (D) is a relatively compact set in C([0, T ];Rn), so we can write

(2.4) πT (D) ⊂
N⋃
i=1

BT (xi, ε/2),

where xi ∈ C([0, T ];Rn), i = 1, . . . , N , and BT (x, r) stands for the ball in
C([0, T ];Rn) centered at x with radius r. Set

x̂i(t) =

{
xi(t), t ∈ [0, T ],

0, t > T ;

then {x̂i}Ni=1 ⊂ PBC(0,∞;Rn). We assert that

D ⊂
N⋃
i=1

B∞(x̂i, ε),

where B∞(x, r) is the ball in PBC(0,∞;Rn) with center x and radius r.
Indeed, if x ∈ D then by (2.4) there is k ∈ {1, . . . , N} such that

‖πT (x)− xk‖C < ε/2,

where ‖ · ‖C is the norm in C([0, T ];Rn). This implies

‖πT (x)− x̂k‖PBC < ε/2.

Then

‖x− x̂k‖PBC ≤ ‖x− πT (x)‖PBC + ‖πT (x)− x̂k‖PBC ≤ ε/2 + ε/2 = ε.

Thus x ∈ B∞(x̂k, ε). We have D ⊂
⋃N
i=1B∞(x̂i, ε), and hence D is rela-

tively compact in PBC(0,∞;Rn). In order to show that D is also relatively
compact in BC(0,∞;Rn), we observe that if {xn} ⊂ D then one can find a
function x ∈ PBC(0,∞;Rn) such that

lim
n→∞

‖xn − x‖PBC = lim
n→∞

sup
t≥0
‖xn(t)− x(t)‖ = 0,
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up to a subsequence. This means that {xn} converges to x uniformly on R+.
As {xn} are continuous functions, we have x ∈ BC(0,∞;Rn).

We also make use of some notions and facts of set-valued analysis. Let
Y be a metric space.

Definition 2.3. A multivalued map (multimap) F : Y → P(E) is said
to be

• upper semicontinuous (u.s.c.) if F−1(V ) = {y ∈ V : F(y) ∩ V 6= ∅} is
a closed subset of Y for every closed set V ⊂ E;
• weakly upper semicontinuous (weakly u.s.c.) if F−1(V ) is a closed sub-

set of Y for all weakly closed sets V ⊂ E;
• closed if its graph ΓF = {(y, z) : z ∈ F(y)} is a closed subset of Y ×E;
• compact if F(B) is relatively compact in E for any bounded set B ⊂ Y ;
• quasicompact if its restriction to any compact subset A ⊂ Y is com-

pact.

Lemma 2.4 ([12, Theorem 1.1.12]). Let G : Y → P(E) be a closed
quasicompact multimap with compact values. Then G is u.s.c.

Lemma 2.5 ([5, Proposition 2]). Let X be a Banach space and Ω be a
nonempty subset of another Banach space. Assume that G : Ω → P(X) is
a multimap with weakly compact, convex values. Then G is weakly u.s.c. iff
{xn} ⊂ Ω, xn → x0 and yn ∈ G(xn) implies yn ⇀ y0 ∈ G(x0), up to a
subsequence.

We will use the following fixed point principle, which is a special case of
[12, Corollary 3.3.1].

Theorem 2.6. Let M be a bounded convex and closed subset of a Ba-
nach space E, and let F :M→ P(M) be a compact, u.s.c. multimap with
compact convex values. Then Fix(F) := {x ∈ E : x ∈ F(x)} is a nonempty
compact set.

2.2. Multivalued semiflows and their attractors. We summarize
some definitions and results regarding the theory of global attractors of
multivalued semiflows (m-semiflows) given in [14]. Let Γ be a nontrivial
subgroup of the additive group of real numbers R and Γ+ = Γ ∩ [0,∞).

Definition 2.7. A mapping G : Γ+×E → P(E) is called an m-semiflow
if:

(1) G(0, w) = {w} for all w ∈ E.
(2) G(t1 + t2, x) ⊂ G(t1, G(t2, x)) for all t1, t2 ∈ Γ+, x ∈ E,

where G(t, B) =
⋃
x∈B G(t, x) and B ⊂ E.

The m-semiflow is called strict if G(t1 + t2, w) = G(t1, G(t2, w)) for all
w ∈ E and t1, t2 ∈ Γ+, and eventually bounded if for each bounded set
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B ⊂ E, there is a number T (B) > 0 such that γ+T (B)(B) is bounded, where

γ+T (B)(B) =
⋃
t≥T (B)G(t, B).

Definition 2.8. A set A is called a global attractor of the m-semiflow
G if

(1) A is negatively semi-invariant, i.e. A ⊂ G(t,A) for all t ∈ Γ+;
(2) A attracts any B ∈ B(E), i.e. dist(G(t, B),A)→ 0 as t→∞, for all

bounded sets B ⊂ E, where dist(·, ·) is the Hausdorff semidistance
of two subsets in E:

dist(B1, B2) = sup
x∈B1

inf
y∈B2

‖x− y‖.

Definition 2.9. The m-semiflow G is called pointwise dissipative if
there is a bounded set B0 attracting any point x ∈ E, i.e. there exists
K > 0 such that for w ∈ E and u(t) ∈ G(t, w), one has ‖u(t)‖E ≤ K for
t ≥ t0(‖w‖E).

Definition 2.10. The m-semiflowG is called asymptotically upper semi-
compact if for each B ∈ B(E) such that γ+T (B) ∈ B(E) for some T (B) ∈ Γ+,
any sequence ξn ∈ G(tn, B) with tn →∞ is precompact in E.

Definition 2.11. A bounded set B1 ⊂ E which has the property that,
for any bounded set B ⊂ E there exists τ = τ(B) ≥ 0 such that γ+τ (B) ⊂ B1,
is called an absorbing set for the m-semiflow G.

It is obvious that if the m-semiflow G has an absorbing set, then it is
pointwise dissipative and eventually bounded.

The following theorem gives a sufficient condition for the existence of a
global attractor for the m-semiflow G.

Theorem 2.12 ([14]). Assume that the m-semiflow G has the following
properties:

(1) G(t, ·) is u.s.c. and has closed values for each t ∈ Γ+;
(2) G is pointwise dissipative;
(3) G is asymptotically upper semicompact.

If G is eventually bounded then it has a compact global attractor A in E.
Moreover, if G is a strict m-semiflow then A is invariant, that is, A =
G(t,A) for any t ∈ Γ+.

3. Existence result on compact intervals. Set

J = [0, T ], CT = C([0, T ];Rn), Cτ = C([−τ, 0];Rn), C = C([−τ, T ];Rn).

In what follows, we use the following assumptions:

(H1) A is a linear operator on Rn.
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(H2) B : Rn ×Cτ → Rn×m is a continuous map and there exist positive
constants ηB, ζB such that

‖B(v, w)‖ ≤ ηB(‖v‖+ ‖w‖Cτ ) + ζB

for all v ∈ Rn and w ∈ Cτ .
(H3) The function F : Rn → Rm is continuous and there is a positive

number ηF such that ‖F (v)‖ ≤ ηF for all v ∈ Rn.
(H4) G : K → Rm is a continuous function such that

(1) G is monotone on K, i.e.

〈u− v,G(u)−G(v)〉 ≥ 0, ∀u, v ∈ K;

(2) there exists v0 ∈ K such that

lim
v∈K, ‖v‖→∞

〈v − v0, G(v)〉
‖v‖2

> 0.

(H5) h : Rn → Rn is continuous and there are positive constants ηh, ζh
such that

‖h(u)‖ ≤ ηh‖u‖+ ζh, ∀u ∈ Rn.

We now give the definition of a solution for the DVI (1.1)–(1.3).

Definition 3.1. A continuous function x : [−τ, T ] → Rn is called a
solution of (1.1)–(1.3) if there exists an integrable function u : J → K such
that

x(t) = etAϕ(0) +

t�

0

e(t−s)AB(x(s), xs)u(s) ds+

t�

0

e(t−s)Ah(x(s)) ds, t ∈ J,

〈v − u(t), F (x(t)) +G(u(t))〉 ≥ 0 for a.e. t ∈ J and all v ∈ K,
x(s) = ϕ(s), s ∈ [−τ, 0].

We denote

(3.1) SOL(K,Q) = {v ∈ K : 〈w − v,Q(v)〉 ≥ 0, ∀w ∈ K},

where Q : Rm → Rm is a given mapping.

Due to [15, Proposition 6.2], we get the following result.

Lemma 3.2. Let (H4) hold. Then for each z ∈ Rm, the solution set
SOL(K, z + G(·)) is nonempty, convex and closed. Moreover, there exists
ηG > 0 such that

(3.2) ‖v‖ ≤ ηG(1 + ‖z‖), ∀v ∈ SOL(K, z +G(·)).

In order to solve (1.1)–(1.3), we convert it into a differential inclusion.
Let

U(z) = SOL(K, z +G(·)), z ∈ Rm.



154 N. T. V. Anh and T. D. Ke

Then U : Rm → P(Rm) has compact convex values, thanks to Lemma 3.2.
Moreover, it is easy to verify that U is a closed map. By (3.2), we see that
U is locally bounded, so it is u.s.c.

Now we define Φ : Rn × Cτ → P(Rn) as follows:

(3.3) Φ(v, w) = {B(v, w)y + h(v) : y ∈ U(F (v))}.

Since B(v, w) is a linear operator for all v ∈ Rn and w ∈ Cτ , and U has com-
pact convex values, Φ also has compact convex values. Furthermore, thanks
to the continuity of B, F , h and the fact that U is u.s.c., the composition
multimap Φ is u.s.c. as well.

Due to the above setting, DVI (1.1)–(1.3) is converted into the following
differential inclusion:

x′(t) ∈ Ax(t) + Φ(x(t), xt), t ∈ J,(3.4)

x(t) = ϕ(t), t ∈ [−τ, 0].(3.5)

Denote

(3.6) PΦ(x) = {f ∈ L1(J ;Rn) : f(t) ∈ Φ(x(t), xt)} for x ∈ C.

Then we deduce that a solution x ∈ C of the DVI (1.1)–(1.3) is given by

x(t) = etAϕ(0) +

t�

0

e(t−s)Af(s) ds, f ∈ PΦ(x), t ∈ J,(3.7)

x(t) = ϕ(t), t ∈ [−τ, 0].(3.8)

For y ∈ CT and ϕ ∈ Cτ , we define y[ϕ] ∈ C as follows:

y[ϕ](t) =

{
y(t) if t ∈ [0, T ],

ϕ(t) if t ∈ [−τ, 0].

By defining

(3.9) W : L1(J ;Rn)→ CT , W(f)(t) =

t�

0

e(t−s)Af(s) ds,

we construct a solution operator F : CT → P(CT ) as follows:

F(y)(t) = {etAϕ(0) +W(f)(t) : f ∈ PΦ(y[ϕ])}, t ∈ J.

It is obvious that y ∈ CT is a fixed point of F iff y[ϕ] is a solution of
(1.1)–(1.3).

Lemma 3.3. Under the assumptions (H2)–(H5), PΦ is well-defined and
weakly u.s.c.
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Proof. Using the assumptions and the result of Lemma 3.2, we get

‖Φ(v, w)‖ := sup{‖z‖ : z ∈ Φ(v, w)}(3.10)

≤ ‖B(v, w)‖ηG(1 + ‖F (v)‖) + ‖h(v)‖
≤ ηG(1 + ηF )[ηB(‖v‖+ ‖w‖Cτ ) + ζB] + ηh‖v‖+ ζh.

Since Φ is u.s.c. with compact convex values, the multimap Λ(t) = Φ(x(t), xt)
is strongly measurable due to [12, Proposition 1.3.1]. Therefore it has a
Castaing representation (see [12, Definition 1.3.3]), and hence PΦ(x) 6= ∅ for
x ∈ C.

We prove the second assertion by using Lemma 2.5. Let {xk} ⊂ C be such

that xk → x∗ and fk ∈ PΦ(xk). Then {fk(t)} ⊂ C(t) := Φ({xk(t), (xk)t}),
and C(t) is a compact set for each t ∈ J . Furthermore, by (3.10), {fk}
is integrably bounded (bounded by an integrable function). Thus {fk} is
weakly relatively compact in L1(J ;Rn) (see [7, Corollary 2.6]). Let fk ⇀ f∗

in L1(J ;Rn). Then by Mazur’s lemma (see e.g. [8]) there are f̄k ∈ co{fi :
i ≥ k} such that f̄k → f∗ in L1(J ;Rn), and so f̄k(t)→ f∗(t) for a.e. t ∈ J ,
up to a subsequence. Observe that in our case, the upper semicontinuity of
Φ implies that for a given ε > 0,

Φ(xk(t), (xk)t) ⊂ Φ(x∗(t), x∗t ) +Bε for all large k,

where Bε is the ball in Rn centered at origin with radius ε. So

fk(t) ∈ Φ(x∗(t), x∗t ) +Bε for a.e. t ∈ J

and

f̄k(t) ∈ Φ(x∗(t), x∗t ) +Bε for a.e. t ∈ J,

thanks to the convexity of Φ(x∗(t), x∗t ) +Bε. The last inclusion implies that
f∗(t) ∈ Φ(x∗(t), x∗t ) + Bε for a.e. t ∈ J . Since ε is arbitrary, one obtains
f∗ ∈ PΦ(x∗).

Lemma 3.4. The operator W defined by (3.9) is compact.

Proof. We have to show that W(Ω) is relatively compact in CT for any
bounded set Ω ⊂ L1(J ;Rn). Obviously, W(Ω)(t) is bounded in Rn. In ad-
dition, W(Ω) is equicontinuous since S(t) = etA is a norm-continuous semi-
group. So we get the conclusion by using the Arzelà–Ascoli theorem.

Lemma 3.5. Let (H1)–(H5) hold. Then the solution operator F is com-
pact and has a closed graph.

Proof. Since W is compact, it is easy to check that F(B) is relatively
compact for any bounded set B ⊂ CT . So F is a compact multimap.

Now let {xk} ⊂ CT , xk → x∗, yk ∈ F(xk[ϕ]) and yk → y∗. We will verify
that y∗ ∈ F(x∗). By the formulation of F , one can take fk ∈ PΦ(xk[ϕ]) such
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that

yk(t) = etAϕ(0) +W(fk)(t), t ∈ J.(3.11)

Since PΦ is weakly u.s.c. and {xk} is relatively compact, it follows that {fk}
is weakly relatively compact, so we can assume that fk ⇀ f∗ in L1(J ;Rn),
up to a subsequence. Moreover, f∗ ∈ PΦ(x∗[ϕ]). By the compactness of W,
we obtain W(fk)→W(f∗) in CT . Taking the limit of (3.11) as k →∞, we
get

y∗(t) = etAϕ(0) +W(f∗)(t), t ∈ J.

Thus y∗ ∈ F(x∗).

Theorem 3.6. Assume (H1)–(H5). Then problem (3.4)–(3.5) has at
least one solution on [−τ, T ]. Moreover, the solution set is compact.

Proof. Using Theorem 2.6 we will prove that Fix(F) 6= ∅. According to
Lemma 3.5, it suffices to show that there exists a bounded closed convex
set M0 ⊂ CT such that F(M0) ⊂M0. Let y ∈ F(x). Then it follows from
the definition of the solution operator and estimate (3.10) that there exists
f ∈ PΦ(x[ϕ]) such that

‖y(t)‖ =
∥∥∥etAϕ(0) +

t�

0

e(t−s)Af(s) ds
∥∥∥ ≤M‖ϕ(0)‖+

t�

0

‖e(t−s)A‖ ‖f(s)‖ ds

≤M‖ϕ(0)‖+M

t�

0

[
(η + ηh)‖x(s)‖+ η‖x[ϕ]s‖Cτ + ζ

]
ds, ∀t ∈ J,

where M = supt∈J ‖etA‖, η = ηG(1 + ηF )ηB and ζ = ηG(1 + ηF )ζB + ζh.

On the other hand, due to the estimate

‖x[ϕ]s‖Cτ = sup
θ∈[−τ,0]

‖x[ϕ](s+ θ)‖ ≤ ‖ϕ‖Cτ + sup
ρ∈[0,s]

‖x(ρ)‖,

one has

‖y(t)‖ ≤M1 +M

t�

0

(
(η + ηh)‖x(s)‖+ η sup

ρ∈[0,s]
‖x(ρ)‖

)
ds(3.12)

≤M1 +M(2η + ηh)

t�

0

sup
ρ∈[0,s]

‖x(ρ)‖ ds,

where M1 = M‖ϕ(0)‖ + MT [η‖ϕ‖Cτ + ζ]. Since the last term of (3.12) is
nondecreasing in t, we have

(3.13) sup
ρ∈[0,t]

‖y(ρ)‖ ≤M1 +M(2η + ηh)

t�

0

sup
ρ∈[0,s]

‖x(ρ)‖ ds.
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Denote

M0 =
{
x ∈ CT : sup

s∈[0,t]
‖x(s)‖ ≤ ψ(t), t ∈ [0, T ]

}
,

where ψ is the unique solution of the integral equation

ψ(t) = M1 +M(2η + ηh)

t�

0

ψ(s) ds, t ∈ J.

It is clear that M0 is a bounded closed convex subset of CT , and estimate
(3.13) ensures that F(M0) ⊂M0.

4. Decaying solutions. In this section, we consider the solution oper-
ator F on BC(0,∞;Rn). For a positive number γ and ϕ ∈ Cτ , denote

Bγ
ϕ(R) = {x ∈ C([0,∞);Rn) : x(0) = ϕ(0), eγt‖x(t)‖ ≤ R for all t ≥ 0}.

Then Bγ
ϕ(R) is a bounded closed convex subset of BC(0,∞;Rn). We need

to replace the assumptions (H1), (H2) and (H5) by stronger ones:

(H1∗) A is a linear operator on Rn such that there exists a > 0 satisfying
〈−Az, z〉 ≥ a‖z‖2 for all z ∈ Rn.

(H2∗) B satisfies (H2) with ζB = 0.
(H5∗) h obeys (H5) with ζh = 0.

Lemma 4.1. Under the assumptions (H1∗), (H2∗), (H3)–(H4) and (H5∗),
we have F(Bγ

ϕ(R)) ⊂ Bγ
ϕ(R) for some R > 0, provided that

(4.1) ηG(1 + ηF )ηB(1 + eγτ ) + ηh + γ < a.

Proof. By (H1∗) we have

(4.2) ‖etA‖ ≤ e−at, t ≥ 0.

Assume the opposite: for each n ∈ N there exist xn ∈ Bγ
ϕ(n) and yn ∈ F(xn)

with yn 6∈ Bγ
ϕ(n). Then one can find fn ∈ PΦ(xn[ϕ]) such that

yn(t) = etAϕ(0) +

t�

0

e(t−s)Afn(s) ds, ∀t ≥ 0.

Using (4.2) and estimate (3.10), we get

‖yn(t)‖ ≤ e−at‖ϕ‖Cτ(4.3)

+ ηG(1 + ηF )ηB

t�

0

e−a(t−s)(‖xn(s)‖+ ‖xn[ϕ]s‖Cτ ) ds

+ ηh

t�

0

e−a(t−s)‖xn(s)‖ ds.
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Now one observes that eγt‖xn(t)‖ ≤ n for all t ≥ 0. Then for all t ≥ τ ,

eγt‖xn[ϕ]t‖Cτ = eγt sup
ρ∈[−τ,0]

‖xn(t+ ρ)‖

= eγt sup
ρ∈[−τ,0]

e−γ(t+ρ)eγ(t+ρ)‖xn(t+ ρ)‖

≤ eγte−γ(t−τ) sup
ρ∈[−τ,0]

eγ(t+ρ)‖xn(t+ ρ)‖ ≤ neγτ .

On the other hand, for t ∈ [0, τ ] one has eγt‖xn[ϕ]t‖Cτ ≤ eγτ‖ϕ‖Cτ . Hence

eγt‖xn[ϕ]t‖Cτ ≤ eγτ (n+ ‖ϕ‖Cτ ) for all t ≥ 0.

So it can be deduced from (4.3) that

eγt‖yn(t)‖ ≤ e−(a−γ)t‖ϕ‖Cτ +[ηG(1+ηF )ηB+ηh]

t�

0

e−(a−γ)(t−s)eγs‖xn(s)‖ ds

+ηG(1+ηF )ηB

t�

0

e−(a−γ)(t−s)eγs‖xn[ϕ]s‖Cτ ds

≤ ‖ϕ‖Cτ +{n[ηG(1+ηF )ηB+ηh]+(n+‖ϕ‖Cτ )eγτηG(1+ηF )ηB}I,
where

I =

t�

0

e−(a−γ)(t−s) ds =
1

a− γ
(1− e−(a−γ)t).

Therefore

(4.4)
1

n
sup
t≥0

eγt‖yn(t)‖ ≤ 1

a− γ
[
ηG(1 + ηF )ηB(1 + eγτ ) + ηh

]
+
C

n
,

where

C = ‖ϕ‖Cτ +
1

a− γ
[
‖ϕ‖Cτ ηG(1 + ηF )ηBe

γτ
]
.

Taking the limit of (4.4) as n→∞, we get a contradiction of (4.1).

We now prove the main result of this section.

Theorem 4.2. Assume that (H1∗)–(H2∗), (H3)–(H4) and (H5∗) hold,
and there exists γ > 0 such that

ηG(1 + ηF )ηB(1 + eγτ ) + ηh + γ < a.

Then the DVI (1.1)–(1.3) has a nonempty compact set of solutions on
[−τ,∞) satisfying

eγt‖x(t)‖ = O(1) as t→∞.
Proof. By Lemma 4.1, one can consider F : Bγ

ϕ(R) → P(Bγ
ϕ(R)) for a

number R > 0. Due to Theorem 2.6 it remains to show that F is compact
and u.s.c. We first prove that F is a compact multimap. Let D ⊂ Bγ

ϕ(R).
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Recall that χ∗(D) = χ∞(D) + d∞(D), where χ∞ and d∞ are defined in
Section 2.

By the same arguments as in the proof of Lemma 3.5, we have

χT (πT (F(D))) = 0.

Therefore

(4.5) χ∞(F(D)) = 0.

To show that d∞(F(D)) = 0, let x ∈ D and y ∈ F(x). Then in view of
Lemma 4.1 we have

‖y(t)‖ ≤ Ce−γt, ∀t ≥ 0,

where C = C(R, a, γ, ηB, ηF , ηG, ηh). Thus for T > 0,

sup
t≥T
‖y(t)‖ ≤ Ce−γT , ∀y ∈ D.

This implies dT (D) ≤ Ce−γT , so d∞(D) = limT→∞ dT (D) = 0. Combining
this with (4.5) yields

χ∗(F(D)) = 0.

Since the MNC χ∗ is regular, we conclude that F(D) is relatively compact.
To prove that F is u.s.c., it suffices to show that F has closed graph.

This is done as in the proof of Lemma 3.5.

5. Existence of a global attractor. The m-semiflow governed by the
DVI (1.1)–(1.3) is defined as follows:

G : R+ × Cτ → P(Cτ ),

G(t, ϕ) = {xt : x[ϕ] is a solution of (1.1)–(1.3) on [−τ, T ] for any T > 0}.
By the same argument as in [6], we see that

G(t1 + t2, ϕ) = G(t1, G(t2, ϕ)) for all t1, t2 ∈ R+, ϕ ∈ Cτ .
For each ϕ ∈ Cτ we denote

Σ(ϕ) =
{
x ∈ C([0,∞);Rn) : x[ϕ] is a solution of (1.1)–(1.3)

on [−τ, T ] for any T > 0
}
.

It is clear that

(5.1) πt ◦ Σ(ϕ) ⊂ S(·)ϕ(0) +W ◦ PΦ(πt ◦ Σ(ϕ)[ϕ]).

In addition, G(t, ϕ) = {x[ϕ]t : x ∈ Σ(ϕ)}. On the other hand, by Theorem
3.6, πt ◦ Σ(ϕ) is a compact set in C([0, t];Rn) for any t > 0. It follows that
G(t, ϕ) is compact in Cτ , and so G(t, ·) has compact values. In fact, we have
the following result.

Lemma 5.1. Let the hypotheses (H1)–(H5) hold. Then G(t, ·) is a com-
pact multimap for each t > τ .
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Proof. Let Ω ⊂ Cτ be a bounded set and {zn} ⊂ G(t, Ω) be a sequence.
Then for each n one can find a function ϕn ∈ Ω and xn ∈ Σ(ϕn) such that
zn = xn[ϕn]t.

Since t > τ , we have

zn = xn(t+ ·) = e(t+·)Aϕn(0) +W(fn)(t+ ·),

where fn ∈ PΦ(xn[ϕn]). Since {ϕn(0)} ⊂ Rn is a bounded set, the set
{e(t+·)Aϕn(0)} is relatively compact in Cτ . On the other hand, it is easily
seen that {xn} is a bounded sequence, and {fn} is integrably bounded due to
estimate (3.10). Since W is a compact operator, we see that {W(fn)(t+ ·)}
is relatively compact in Cτ as well. Thus {zn} is relatively compact, as
desired.

Corollary 5.2. Let the hypotheses (H1)–(H5) hold. Then the m-semi-
flow G is asymptotically upper semicompact.

Proof. Taking t1 > τ , we find that G(t1, ·) is compact, due to Lemma 5.1.
Then the conclusion follows from [14, Proposition 1].

Lemma 5.3. Let the hypotheses (H1)–(H5) hold. Then G(t, ·) is u.s.c.
for each t ≥ 0.

Proof. Since G(t, ·) is a compact multimap with compact values, it suf-
fices to prove that G(t, ·) is closed for each t ≥ 0, thanks to Lemma 2.4.
Let ϕn → ϕ∗ in Cτ and zn ∈ G(t, ϕn) be such that zn → z∗. We show that
z∗ ∈ G(t, ϕ∗), i.e. z∗ = x∗[ϕ∗]t for an x∗ ∈ Σ(ϕ∗). Taking xn ∈ Σ(ϕn) such
that zn = xn[ϕn]t, one can find fn ∈ PΦ(xn[ϕn]) satisfying

(5.2) xn = e(·)Aϕn(0) +W(fn).

Since {ϕn} is bounded in Cτ , {xn} is a bounded sequence in C([0, T ];Rn)
for any T > 0. Thus {fn} is integrably bounded in L1(0, T ;Rn). The com-
pactness of W implies that {W(fn)} is relatively compact in C([0, T ];Rn).
In addition, {e(·)Aϕn(0)} is a convergent sequence in C([0, T ];Rn), so taking
into account (5.2), we see that {xn} has a convergent subsequence (still de-
noted by {xn}). Let x∗ = limn→∞ xn in C([0, T ];Rn). Then xn[ϕn]→ x∗[ϕ∗]
in C([−τ, T ];Rn). Since PΦ is weakly u.s.c., we have fn ⇀ f∗ ∈ PΦ(x∗[ϕ∗])
up to a subsequence, thanks to Lemma 2.5. Therefore one can take the limit
of (5.2) to get

x∗ = e(·)Aϕ∗(0) +W(f∗)

for a selection f∗ ∈ PΦ(x∗[ϕ∗]). That is, x∗[ϕ∗] is a solution of (1.1)–(1.3)
and then x∗[ϕ∗]t ∈ G(t, ϕ∗). Obviously, zn = xn[ϕn]t → z∗ = x∗[ϕ∗]t and
z∗ ∈ G(t, ϕ∗).
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In order to apply Theorem 2.12, it remains to show that G has an ab-
sorbing set in Cτ . To this end, we make use of the following result (see [11]).

Proposition 5.4 (Halanay’s inequality). Let f : [t0 − τ, T ) → R+,
0 ≤ t0 < T <∞, satisfy the functional differential inequality

f ′(t) ≤ −γf(t) + ν sup
s∈[t−τ,t]

f(s)

for t ≥ t0, where γ > ν > 0. Then

f(t) ≤ κe−`(t−t0), t ≥ t0,

where κ = sups∈[t0−τ,t0] f(s) and ` is the solution of γ = `+ νe`τ .

Using Halanay’s inequality, we prove the following result.

Lemma 5.5. Let the assumptions (H1∗) and (H2)–(H5) hold. Then the
m-semiflow G admits an absorbing set provided that

2ηBηG(1 + ηF ) + ηh < a.

Proof. For t > 0 and ϕ ∈ Cτ , we consider the solution x[ϕ] given by

x(t) = etAϕ(0) +

t�

0

e(t−s)Af(s) ds

for f ∈ PΦ(x[ϕ]). Using (H1∗) and estimate (3.10), we obtain

‖x(t)‖ ≤ e−at‖ϕ(0)‖

+

t�

0

e−a(t−s)
[
(η + ηh)‖x(s)‖+ η‖x[ϕ]s‖Cτ + ηG(1 + ηF )ζB + ζh

]
ds,

where η = ηBηG(1+ηF ). Since a− (2η+ηh) > 0, one can choose R > 0 such
that η+(ηG(1 + ηF )ζB + ζh)/R = d < a−(η+ηh). Firstly, we prove that for
ϕ ∈ Cτ satisfying ‖ϕ‖Cτ ≤ C, there exists t0 > 0 such that ‖x[ϕ]t0‖Cτ ≤ R.
Assume to the contrary that ‖x[ϕ]t‖Cτ > R for all t > 0. Then

η‖x[ϕ]s‖Cτ + ηG(1 + ηF )ζB + ζh ≤ d‖x[ϕ]s‖Cτ , ∀s ≥ 0.

Therefore

‖x(t)‖ ≤ e−at‖ϕ(0)‖+

t�

0

e−a(t−s)
[
(η + ηh)‖x(s)‖+ d‖x[ϕ]s‖Cτ

]
ds, t ≥ 0.

Let

y(t) =

{
e−at‖ϕ(0)‖+

	t
0 e
−a(t−s)[(η + ηh)‖x(s)‖+ d‖xs‖Cτ ] ds, t ≥ 0,

‖x(t)‖, t ∈ [−τ, 0].
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Then ‖x(t)‖ ≤ y(t) for all t ≥ −τ , and

y′(t) ≤ −[a− (η + ηh)]y(t) + d sup
s∈[t−τ,t]

y(s).

Applying Halanay’s inequality yields

‖x(t)‖ ≤ ‖ϕ‖Cτ e−`t ≤ Ce−`t, ∀t ≥ 0,

where ` is a positive number. Then

R < ‖xt‖Cτ = sup
θ∈[−τ,0]

‖x(t+ θ)‖ ≤ Ce`τe−`t, ∀t ≥ 0.

This indicates that ‖xt‖Cτ tends to zero as t → ∞, so one can find t1 > 0
such that ‖xt1‖Cτ < R, a contradiction.

We have just proved that if ‖ϕ‖Cτ ≤ C, then there exists t0 > 0 such
that ‖xt0‖Cτ ≤ R. We claim that ‖ut‖Cτ ≤ R for all t ≥ t0. Assume the
opposite: there exists t1 ≥ t0 satisfying

‖xt1‖Cτ ≤ R but ‖xt‖Cτ > R for all t ∈ (t1, t1 + θ),

where θ > 0. Regarding the solution x[ϕ] on [t1, t1 + θ), we have

x(t) = e(t−t1)Ax(t1) +

t�

t1

e(t−s)Af(s) ds, f ∈ PΦ(x[ϕ]).

Then

‖x(t)‖ ≤ e−a(t−t1)‖ϕ(0)‖+

t�

t1

e−a(t−s)[(η + ηh)‖x(s)‖+ d‖xs‖Cτ ] ds

for t ∈ [t1, t1 + θ). Using the same arguments as above, we see that

‖x(t)‖ ≤ ‖xt1‖Cτ e−`(t−t1) ≤ ‖xt1‖Cτ ≤ R, ∀t ∈ [t1, t1 + θ).

Hence for t ∈ [t1, t1 + θ) we have

‖xt‖Cτ = sup
s∈[−τ,0]

‖x(t+ s)‖ = sup
r∈[t−τ,t]

‖x(r)‖

≤ sup
r∈[t1−τ,t]

‖x(r)‖ = max
{

sup
r∈[t1−τ,t1]

‖x(r)‖, sup
r∈[t1,t]

‖x(r)‖
}

= max
{
‖xt1‖Cτ , sup

r∈[t1,t]
‖x(r)‖

}
≤ R,

a contradiction. In summary, we can take a ball centered at origin with
radius R as an absorbing set for the m-semiflow G, where R is chosen such
that

R >
ηG(1 + ηF )ζB + ζh
a− (2η + ηh)

.
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Theorem 5.6. Let the assumptions (H1∗) and (H2)–(H5) hold. Then
the m-semiflow G generated by (1.1)–(1.3) admits a compact global attractor
provided that

2ηBηG(1 + ηF ) + ηh < a.

Proof. The conclusion follows from Corollary 5.2 and Lemmas 5.3, 5.5.
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