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Abstract. This paper is concerned with strong chain recurrence introduced by Eas-
ton. We investigate the depth of the transfinite sequence of nested, closed invariant sets
obtained by iterating the process of taking strong chain recurrent points, which is a related
form of the central sequence due to Birkhoff. We also note the existence of a Lyapunov
function which is decreasing off the strong chain recurrent set. As an application, we give
a necessary and sufficient condition for the coincidence of the strong chain recurrence
set and the chain recurrence set. Several examples are given to illustrate the difference
between the concepts of strong chain recurrence and chain recurrence.

1. Introduction. We study the concept of strong chain recurrence in-
troduced by R. Easton.

Chains and chain recurrent points have been introduced and studied by
C. Conley [4] (see §2 for definition). They play an important role in the
theory of attractors and in several other aspects of the topological dynamics
of a map f defined on a space X. The key theorem is Conley’s Decomposition
Theorem which says that X decomposes into the chain recurrent set and the
rest, where the action is gradient-like. Moreover, the chain recurrent set is
the intersection of A∪A∗ over all attracting-repelling pairs (A,A∗) (see [4]).
Note that the chain recurrent set contains all nonwandering points including
the recurrent points, minimal subsets and periodic orbits.

Easton [5] strengthened the notion of an ε-chain to that of a strong ε-chain
by replacing the error estimate with

∑n
i=1 d(f(xi−1), xi) < ε. He obtained a

relation between strong chain transitivity and Lipschitz ergodicity (namely,
any Lipschitz function which is constant along orbits is globally constant). He
also gave an example of an Anosov homeomorphism of the torus which was
strong chain transitive on all of the space. Ghane and Fakhari [8] showed that
an isolated strong chain class S of a generic homeomorphism has a generic
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continuation in C0-topology; and they deduced the persistency of Lipschitz
ergodic behavior at S. They (with Sarizadeh) [6] exhibited general properties
of the strong chain recurrent set, and studied strong chain transitivity for a
map having a shadowing property. Some properties of strong chain transitive
components are discussed by Hu [9]. We also note the paper of Zheng [14] in
which the relationships between several variations of chain transitivity and
ergodicity are considered.

Motivated by the results above, we continue the study of strong chain re-
currence. In Sections 3 and 4 the differences between the concepts of strong
chain recurrence and chain recurrence are emphasized. We give some stan-
dard facts and examples concerning strong chain recurrence. One example
shows that strong chain recurrence is a metric property. We next turn our
attention to the depth of the transfinite sequence of nested, closed invari-
ant sets obtained by iterating the process of taking strong chain recurrent
points, which is a related form of the central sequence due to Birkhoff [1].
On the other hand, in the last section it is shown that strong chain recur-
rence behaves very much like chain recurrence. The concept of Lyapunov
functions with respect to strong chain recurrence is studied.

2. Preliminaries and definitions. We now give the terminology and
notation needed in what follows. A map on X is a continuous function
f : X → X from a space X to itself; f0 is the identity map, and for every
n ≥ 0, fn+1 = fn ◦ f .

We let f : X → X be a map from a compact metric space (X, d) to
itself. Let x, y ∈ X. A (strong) ε-chain from x to y is a finite sequence of
points {x0, x1, . . . , xn} of X such that x0 = x, xn = y and d(f(xi−1), xi) < ε
for i = 1, . . . , n (

∑n
i=1 d(f(xi−1), xi) < ε, respectively). We say x can be

(strongly) chained to y if for every ε > 0 there exists a (strong) ε-chain
from x to y, and we say x is (strong) chain recurrent if it can be (strongly,
respectively) chained to itself. The set of all (strong) chain recurrent points is
called the (strong) chain recurrent set of f and denoted by CR(f) (SCR(f),
respectively). The (strong) chain recurrent set is closed in X and f -invariant,
and the set CR(f) depends only on the topology (this statement is not true
of SCR(f), see Example 3.1).

An invariant set I is said to be (strong) chain transitive if for any x, y ∈ I,
x can be (strongly, respectively) chained to y in I. We define a relation ∼
on SCR(f) by x ∼ y if for every ε > 0 there exists a strong ε-chain from x
to y in SCR(f) and another from y to x. Then ∼ is an equivalence relation.
The equivalence classes of ∼ in SCR(f) are called the strong chain transitive
components of SCR(f). A map f : (X, dX) → (Y, dY ) is called Lipschitz if
there exists a real constant k ≥ 0 such that dY (f(x1), f(x2)) ≤ kdX(x1, x2)
for all x1, x2 ∈ X. Such a k is referred to as a Lipschitz constant for f .
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We need the following lemma due to Block and Franke which gives a
characteristic property of chain recurrent points.

Lemma 2.1 ([3, Theorem A], [2]). Let f be a map on a metrizable com-
pact space X and x ∈ X. Then x 6∈ CR(f) if and only if there exists an
open subset U of X such that x 6∈ ClU , f(x) ∈ U and f(ClU) ⊆ U .

Throughout this paper, Rn is n-dimensional Euclidean space with the
standard metric d.

3. Elementary properties of the strong chain recurrent set and
examples. It is worth pointing out that strong chain recurrence is a metric
property.

Example 3.1. The strong chain recurrent set may depend on the metric
even if two metrics induce the same topology.

Construction. The compact metric space X is defined by

X = {(x, y) | (x− 1/2)2 + y2 = (1/2)2, y < 0} ∪
∞⋃
p=0

Ip ⊆ R2,

where I0 = {(x, 0) | 0 ≤ x ≤ 1} and Ip = {(q/2p, 1/2p−1) | q = 0, 1, . . . , 2p}
for p ∈ N (see Figure 1). Define a map f on X with the fixed point
set F (f) = I0 by f(q/2p, 1/2p−1) = ((q − 1)/2p, 0) for q = 1, 2, . . . , 2p;
f(0, 1/2p−1) = (0, 0); and by a homeomorphism on the semicircle such that
the first coordinate of f(x, y) is greater than x ( 6= 0, 1).

Fig. 1

We show that for small ε > 0 there exists no strong ε-chain from (1, 0)
to (0, 0). Let x0,x1, . . . ,xn be any chain from x0 = (1, 0) to xn = (0, 0); we
may assume that the second coordinate of each xi is nonnegative. Then
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{d(f(x0),x1) + d(f(x1),x2) + · · ·+ d(f(xn−1),xn)}
+ {d1((x1)1, f(x1)1) + · · ·+ d1((xn−1)1, f(xn−1)1)}

≥ {d1(f(x0)1, (x1)1) + d1(f(x1)1, (x2)1) + · · ·+ d1(f(xn−1)1, (xn)1)}
+ {d1((x1)1, f(x1)1) + · · ·+ d1((xn−1)1, f(xn−1)1)}

≥ d1(f(x0)1, (xn)1) = 1,

where d1 is the 1-dimensional Euclidean metric, and (xi)1, f(xi)1 mean the
first coordinate of xi, f(xi), respectively. Using the inequalities

d1((xi)1, f(xi)1) ≤ 1
2(the second coordinate of xi) ≤ 1

2d(f(xi−1),xi)

for 1 ≤ i ≤ n− 1, it follows that

n∑
i=1

d(f(xi−1),xi) ≥ 2/3.

Hence SCRd(f) = I0, and note that CR(f) is the circle part S = I0∪{(x, y) |
(x−1/2)2+y2 = (1/2)2, y < 0} of X, because (1, 0) can be chained to (0, 0).

On the other hand, consider the new metric d∗ on X defined by

d∗((z1, z2), (z
′
1, z
′
2)) = d((z1, ξ(z2)), (z

′
1, ξ(z

′
2))),

where ξ(t) = t2 for 0 ≤ t ≤ 1 and ξ(t) = t for −1/2 ≤ t ≤ 0. This metric
induces the same topology as the original one. The sum

2p∑
q=1

d∗((q/2p, 0), (q/2p, 1/2p−1)) = 1/2p−2

shows that (1, 0) can be strongly chained to (0, 0) in (X, d∗); hence, SCRd∗(f)
= CR(f) is the circle part S of X.

Remark. Using the circle part S of (X, d) and f of Example 3.1, we
also have a simple map whose strong chain recurrent set does not coincide
with the chain recurrent set.

The following proposition will imply that the strong chain recurrent set
of a map is unique if two metrics on a set are Lipschitz equivalent.

Proposition 3.2. Let f : (X, dX)→ (X, dX) and g : (Y, dY )→ (Y, dY )
be maps which are semi-conjugate by a Lipschitz map ξ : (X, dX)→ (Y, dY ).
Then ξ(SCR(f)) ⊆ SCR(g).

Proof. Let k be a Lipschitz constant of ξ, and let x ∈ X be a strong
chain recurrent point for f . For every ε > 0, we take a strong chain x0 =
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x, x1, . . . , xn = x with
∑n

i=1 dX(f(xi−1), xi) < ε/k. Then

n∑
i=1

dY (g(ξ(xi−1)), ξ(xi)) =
n∑
i=1

dY (ξ(f(xi−1)), ξ(xi))

≤ k
n∑
i=1

dX(f(xi−1), xi) < ε;

that is, ξ(x0), ξ(x1), . . . , ξ(xn) is a strong ε-chain for g from ξ(x) to itself.
This implies ξ(x) ∈ SCR(g).

Fakhari et al. [6] showed that if a homeomorphism f : X → X is recurrent
(i.e., each point x of X is an accumulation point of the (positive) orbit of x),
then SCR(f) = SCR(fn) for n ≥ 2. The Lipschitz property is also a sufficient
condition for the coincidence.

Proposition 3.3. Let f : (X, d) → (X, d) be a Lipschitz map. Then
SCR(f) = SCR(fn) for n ≥ 2.

Proof. Let k be a Lipschitz constant of f with d(f i(x), f i(y)) ≤ kd(x, y)
for i = 1, . . . , n.

Let x∈SCR(f). Given ε>0, take, by concatenating a strong ε/(kn)-chain
with itself n times if necessary, a strong chain x0 = x, x1, . . . , xn` = x with∑n`

i=1 d(f(xi−1), xi) < ε/k. Then it is easily seen that

∑̀
j=1

d(fn(xn(j−1)), xnj) ≤

{
k
∑n`

i=1 d(f(xi−1), xi) < ε if 1 ≤ k,∑n`
i=1 d(f(xi−1), xi) < ε/k if 0 < k < 1.

It follows that x ∈ SCR(fn). The reverse inclusion is clear.

Example 3.4. For n ≥ 2, there exists a map f : X → X such that
SCR(fn) ( SCR(f).

Construction. By modifying the construction of Example 3.1 slightly, we
consider it only for the case n = 2; the other cases are left to the reader. The
compact metric space X is drawn in Figure 2, and is defined analytically as
follows.

Let S1 = {z ∈ C | |z| = 1}; for p = 0, 1, 2, . . . and q = 0, 1, . . . , 2p, and
let

ap,q =

(
1 +

1

22p

)
exp

[
iπ

q

2p+1

]
, X = S1 ∪

∞⋃
p=0

{ap,q | q = 0, 1, . . . , 2p}.
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Fig. 2

Define the map g on X by

g(z) =
z if z = exp[iθ], mπ ≤ θ ≤ (2m+ 1)π/2, m = 0, 1,

exp[iξ(θ)] if z = exp[iθ], (2m+1)π/2≤θ≤(m+1)π, m=0, 1,

exp[iπ(q + 1)/2p+1] if z = ap,q, q = 0, 1, . . . , 2p − 1,

exp[iπ/2] if z = ap,2p ,

where ξ(θ) = θ + π
8 sin(2θ − π). Therefore, for q = 0, 1, . . . , 2p − 1, g(ap,q) is

obtained from ap,q by rotating it about the origin through angle π/2p+1, and
then changing its length to the radius 1 of S1; for q = 2p, we simply change
its length to 1. Then g|S1 is a homeomorphism which fixes z or satisfies
arg g(z) > arg z for z ∈ S1. The map h (on S1) is defined by rotation about
the origin through angle π, that is,

h(exp[iθ]) = exp[i(θ + π)] for 0 ≤ θ ≤ 2π.

Consider the composite map f = h ◦ g. Using

d(f2(ei0), ap,0) + d(f2(ap,0), ap,1) + · · ·+ d(f2(ap,2p−2), ap,2p−1)

+ d(f2(ap,2p−1), e
iπ/2) = 1/22p × 2p = 1/2p,

we find that ei0 can be strongly chained to eiπ/2 by f2 (hence by f); thus
eiπ can be strongly chained to ei3π/2 by f . On the other hand, eiπ cannot
be strongly chained to ei3π/2 by f2. Hence SCR(f) = S1 and SCR(f2) =
{exp[iθ] | 0 ≤ θ ≤ π/2 or π ≤ θ ≤ 3π/2}.

The following fact is needed later.

Proposition 3.5. Let f : X → X be a map on a compact metric space.
If x ∈ SCR(f), then fk(x) can be strongly chained to x for every k ∈ N.
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Proof. Uniform continuity yields this statement. The details are left to
the reader.

4. The restriction property and the depth of the transfinite
sequence. The depth of the centre of a map has been widely studied. Here
we extend this concept to the strong chain recurrent case. Before stating the
definition and results, we note, by using the map f on the compact metric
space (X, d∗) of Example 3.1, that:

Example 4.1. The strong chain recurrent set does not generally satisfy
the restriction property SCR(f |SCR(f)) = SCR(f).

We introduce the notion of the ∗-depth of the transfinite sequence of
nested, closed f -invariant sets obtained by iterating the process of taking
strong chain recurrent points, which is a related form of the central sequence
due to Birkhoff [1]. We consider a map f on a compact metric space X. Let
SCR0(f) = X and SCR1(f) = SCR(f). For any ordinal λ ≥ 1, we define
SCRλ(f) as follows: If λ = α + 1, then we set SCRλ(f) = SCR(f |SCRα(f)).
If λ is a limit ordinal, we set SCRλ(f) =

⋂
α<λ SCRα(f). We note that

there exists a countable ordinal β such that SCRβ(f) = SCRβ+1(f), since
X has a countable open base. The minimal such β is called the ∗-depth of
the transfinite sequence generated by f , and is denoted by D(f).

Theorem 4.2. For any countable ordinal α, there exists a map f :X→X
with D(f) = α.

Remark. Kato [11] showed the existence of a homeomorphism fα on a
compactum Zα for which the depth of the centre is α for any α < ω1. Since
the compactum is countable, it follows that the ∗-depth of fα is at most 1
(see Corollary 5.6 below).

Remark. Xiong [13] proved that if f is a self-map of the closed interval,
then the depth of the centre of f is at most 2. Mai and Sun [12] showed that
this is also true for maps on graphs. We do not know whether or not it is
true for the ∗-depth.

Proof of Theorem 4.2. We construct f by a process similar to that used
in [11, Proposition 2.1]. In this proof, L = R means the Euclidean line, and
ξ a homeomorphism on R with ξ(n) = n+ 1 for n ∈ Z.

The construction is by transfinite induction on α. For α = 0, we let

K0 = {(x, 0) | 0 ≤ x ≤ 4} ⊆ R2

and f0 be the identity map on K0; then D(f0) = 0. For α = 1, we let

K1 = K0 ∪ L1 ⊆ R2

and f1 be a homeomorphism on K1 satisfying
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(11) L1 is a topological copy of L with limn→∞ z1(n) = {(0, 0)} and
limn→−∞ z1(n) = {(2, 0)}, where {z1(n)}n∈Z is the bi-sequence in
L1 corresponding to {n}n∈Z in L;

(21) f1|K0 = f0, and f1|L1 is topologically conjugate to ξ.

We find that SCR0(f1) = K1 and SCR1(f1) = SCR2(f1) = K0; that is,
D(f1) = 1.

Let α = 2. We let
K2 = K1 ∪ L2 ⊆ R2

and f2 be a homeomorphism on K2 such that

(12) L2 is a topological copy of L with limn→−∞ z2(n) = {(3, 0)} and
the Hausdorff distance dH(Cl{z2(n) | n ≥ i}, [0, 2]×{0}) converges
to zero as i→∞, where {z2(n)}n∈Z is the bi-sequence in L2 corre-
sponding to {n}n∈Z in L;

(22) f2|K1 = f1, and f2|L2 is topologically conjugate to ξ.

We find that SCR0(f2) = K2, SCR1(f2) = K1 and SCR2(f2) = SCR3(f2)
= K0; that is, D(f2) = 2.

We continue in this fashion obtaining Kα and fα for α < ω0. Suppose
that we have constructed Kα and fα for α ≤ m < ω0.

We take
Km+1 = Km ∪ Lm+1 ⊆ R2

and a homeomorphism fm+1 on Km+1 (see Figure 3) such that

(1m+1) Lm+1 is a topological copy of L with

lim
n→−∞

zm+1(n) = {(4− 1/2m−1, 0)}
and

dH
(
Cl{zm+1(n) | n ≥ i}, [4− 1/2m−3, 4− 1/2m−2]× {0}

)
→ 0

as i→∞, where {zm+1(n)}n∈Z is the bi-sequence in Lm+1 cor-
responding to {n}n∈Z in L;

(2m+1) fm+1|Km = fm, and fm+1|Lm+1 is topologically conjugate to ξ.

L

L

L

L

2

3

4

5

Fig. 3. K5
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We find that

SCR0(fm+1) = Km+1, . . . ,SCRm(fm+1) = K1,

SCRm+1(fm+1) = SCRm+2(fm+1) = K0;

that is, D(fm+1) = m+ 1.
Through the construction above, we may represent Km+1 as Km+1 =

K1 ∪ L2 ∪ · · · ∪ Lm+1; and furthermore, one can take L2 ∪ · · · ∪ Lm+1 close
to [0, 4− 1/2m−1]× {0} as needed.

Let α be a countable limit ordinal. Take a sequence of ordinals α1 <
α2 < · · · converging to α. We set Kα =

⋃∞
i=1Kαi ∪ {∗} in R3, which is the

one-point compactification of
⋃∞
i=1Kαi , and define a homeomorphism fα on

Kα by fα|Kαi = fαi and fα(∗) = ∗. Then D(fα) = α.
Let α = ω0 + s (s ∈ N). We construct naturally

Kω0+s =
( ∞⋃
i=s+1

Ki

)
∪Ks

in R3 and a homeomorphism fω0+s on Kω0+s (see Figure 4) such that

(1) Ks ⊆ R2 × {0} and Ki ⊆ R2 × {1/2i} for i ≥ s+ 1;
(2) dH(Ki,Ks) → 0 as i → ∞ (note the remark following the construc-

tion for the case m+ 1);
(3) fω0+s|Kj = fj for j ≥ s.

(We call Ks the base space of Kω0+s.)

K

K

K

K

2

3

4

5

Fig. 4. Kω0+2

Then we see that SCRω0(fω0+s) = (
⋃∞
i=s+1K

i
0)∪Ks and SCRω0+s(fω0+s)

= SCRω0+s+1(fω0+s) = (
⋃∞
i=s+1K

i
0) ∪ Ks

0 , where Ki
0 is the subset of Ki

corresponding to K0 for i = s, s+ 1, . . . ; hence, D(fω0+s) = ω0 + s.
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Let α = β + s (β is a countable limit ordinal with ω0 < β, s ∈ N). Take
a sequence of nonlimit ordinals ω0 < α1 < α2 < · · · which converges to β
satisfying αi = βi +mi, where βi is a limit ordinal and ω0 > mi ≥ s+ 1 for
i = 1, 2, . . . . We construct naturally

Kα =
( ∞⋃
i=1

Kαi

)
∪Ks

in R3 and a homeomorphism fα on Kα (see Figure 5) such that

(1) Ks ⊆ R2 × {0} and (Kαi ,Kmi) ⊆ (R2 × [1/2i, 1/2i−1),R2 × {1/2i})
for i = 1, 2, . . . , where Kmi is the base space of Kαi ;

(2) dH(Kαi ,Ks)→ 0 as i→∞;
(3) fα|Kγ = fγ for γ = αi (i = 1, 2, . . . ) or γ = s.

(We also call Ks the base space of Kα = Kβ+s.)



1

1/2

1/22

1/23

0

Km1

Km2

Km3

Ks

Kα1

Kα2

Kα3...

Fig. 5. The height map of Kβ+s

The construction shows that D(fβ+s) = β + s = α.

5. Lyapunov functions. This section examines real-valued functions
defined on the phase space of a dynamical system which reflect the dynamical
behavior.

Definition 5.1. A pseudo-complete Lyapunov function for the dynam-
ical system f : X → X is a continuous map ϕ : X → [0,∞) satisfying the
following conditions:

(L1) ϕ(f(x)) ≤ ϕ(x) for all x ∈ X;
(L2) ϕ(f(x)) = ϕ(x) if and only if x is strong chain recurrent for f ;
(L3) ϕ is constant on each strong chain transitive component.

The following theorem is essentially a result of C. Conley. We have
changed the setting from “chain recurrence” to “strong chain recurrence”.
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Franks [7] had a proof of Conley’s results for discrete dynamical systems.
Hurley [10] also extended those results to noncompact spaces. Since the
statement is effective and the key to the proof of Theorem 5.3, we include a
proof for completeness.

Theorem 5.2 (Conley). For a map f : X → X, there exists a pseudo-
complete Lyapunov function for f .

Proof. We define a real-valued function L on X ×X by setting

L(x, y) = inf
{ n∑
i=1

d(f(xi−1), xi)
∣∣∣ x0 = x, x1, . . . , xn = y, xi ∈ X, n ∈ N

}
.

This function has been used previously by Zheng [14]. Following an argument
in [14, proof of Theorem 1], we find that

(1) L(x, y) = 0 if and only if for each ε > 0, there exists a strong ε-chain
from x to y;

(2) L(x, y) ≤ L(x, z) + L(z, y);
(3) L is continuous.

(1) and (2) are obvious. It follows from |L(x, y)−L(x′, y)|≤d(f(x), f(x′))
and |L(x′, y)−L(x′, y′)| ≤ d(y, y′) for (x, y), (x′, y′) ∈ X×X that |L(x, y)−
L(x′, y′)| ≤ d(f(x), f(x′)) + d(y, y′). This shows (3).

Let {zi | i ∈ N} be a countable dense set in X. We define a real-valued
function ϕ on X by setting

ϕ(x) =
∞∑
i=1

1

2i
L(zi, x).

We show that ϕ is a pseudo-complete Lyapunov function for f .
(L1): Since L(z, f(x)) ≤ L(z, x) + L(x, f(x)) and L(x, f(x)) = 0, it

follows that ϕ(f(x)) ≤ ϕ(x) for all x ∈ X.
(L2): Let x 6∈ SCR(f). Since L(x, f(x)) = 0 < L(x, x), there is i0 with

L(zi0 , f(x)) < L(zi0 , x) by (3). It follows that ϕ(f(x)) =
∑∞

i=1 2−iL(zi, f(x))
<
∑∞

i=1 2−iL(zi, x) = ϕ(x).
Let x ∈ SCR(f). Then using L(z, x) ≤ L(z, f(x)) (note that L(f(x), x)

= 0 by Proposition 3.5) together with (L1), we find that ϕ(f(x)) = ϕ(x).
(L3): If x and x′ are strong chain transitive, then L(z, x) = L(z, x′) for

each z ∈ X, because L(x, x′) = L(x′, x) = 0. Hence ϕ must be constant on
each strong chain transitive component.

Remark (1). One might hope that a pseudo-complete Lyapunov func-
tion ϕ takes different values on different strong chain transitive components
[7, 10]. However, for example, let f be the identity map on S1. Then every

(1) This remark was suggested by the referee.
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point is strong chain recurrent, and each strong chain transitive component
is a single point. Since there exist no continuous one-to-one maps from S1

to R, the condition above cannot be satisfied.

As an application of the theorem above, we obtain a necessary and suf-
ficient condition for the coincidence of SCR(f) and CR(f).

Theorem 5.3. For a map f : X → X, there exists a pseudo-complete
Lyapunov function ϕ with ϕ(SCR(f)) totally disconnected if and only if

SCR(f) = CR(f).

Proof. The “if” part is a direct consequence of the existence of a Lya-
punov function ϕ with ϕ(CR(f)) totally disconnected (see [7, 10]).

Now, we show the “only if” part. The inclusion SCR(f) ⊆ CR(f) is
obvious. Conversely, let x 6∈ SCR(f). Since ϕ(x) > ϕ(f(x)) and ϕ(SCR(f))
is totally disconnected, we can take a real number t0 satisfying ϕ(f(x)) <
t0 < ϕ(x) and t0 6∈ ϕ(SCR(f)). Set U = ϕ−1([0, t0)). Then we can easily see
that U is open in X, x 6∈ ClU , f(x) ∈ U and f(ClU) ⊆ U . Thus x 6∈ CR(f)
by Lemma 2.1.

Example 5.4. There may exist a pseudo-complete Lyapunov function
ϕ such that ϕ(SCR(f)) is an interval.

Let f be the identity map on I = [0, 1]. Take a dense set {an | n ∈ N}
in [0, 1/2], and set zi = an for i = 2n − 1 and zi = 1 − an for i = 2n; then
{zi | i ∈ N} is dense in [0, 1]. As in the proof of Theorem 5.2, construct
a pseudo-complete Lyapunov function ϕ for f . Then it is easily seen that
ϕ(1) − ϕ(0) > 0 (note that L(z, x) = |z − x| for each z, x ∈ I). Thus,
ϕ(SCR(f)) = ϕ(I) is an interval.

An immediate consequence of Theorem 5.3 is the following.

Corollary 5.5. If f is a map on a compact metric space X and SCR(f)
is countable, then SCR(f) = CR(f). In particular, if X is countable, then
SCR(f) = CR(f).

Corollary 5.6. If f is a map on a countable compact metric space X,
then D(f) ≤ 1.

Proof. Corollary 5.5 guarantees SCR(f) = CR(f) = CR(f |CR(f)) =
SCR(f |SCR(f)).
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