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Stokes’ formula for stratified forms

by Guillaume Valette (Kraków)

Abstract. A stratified form is a collection of forms defined on the strata of a strati-
fication of a subanalytic set and satisfying a continuity property when we pass from one
stratum to another. We prove that these forms satisfy Stokes’ formula on subanalytic
singular simplices.

1. Introduction. In [P], W. Pawłucki establishes that C1 forms satisfy
Stokes’ formula for subanalytic (singular) leaves. A variation of this result
is given in [Ł] where the author deals with the subanalytic bounded (not
necessarily C1) forms. In this article, we prove a Stokes theorem for a more
general class of forms.

We introduce the notion of stratified forms. A stratified form on a sub-
analytic set X is, roughly speaking, a collection of forms (ωS)S∈Σ , where
Σ is a stratification of X, fulfilling a certain continuity property when we
pass from one stratum S to an adjacent stratum S′. We define integration of
stratified forms and show that they satisfy Stokes’ formula (Theorem 3.1).
Our differential forms are not assumed to be subanalytic.

Since every smooth differential form and every subanalytic bounded dif-
ferential form gives rise to a stratified form, our theorem implies the Stokes
theorems given in [P, Ł]. This more general approach is useful in showing for
instance that pull-backs of differential forms under subanalytic bi-Lipschitz
mappings satisfy Stokes’ formula. Such a mapping is not smooth everywhere
but just almost everywhere. However, it can be stratified in such a way that
the pull-back of a stratified form is a stratified form [V]. The novelty is
also that our theorem holds not only for leaves but for subanalytic singular
simplices.

2. Stratified forms. We shall work with subanalytic sets (see [DS] for
their definition and basic properties). Let Sn denote the set of all subanalytic
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subsets of Rn. A subanalytic family of subsets of Rn is a family (At)t∈B,
B ∈ Sm, of subanalytic subsets such that

⋃
t∈B{t} × At is a subanalytic

subset of Rm+n.
Given X ∈ Sn, the singular k-simplices of X will be the subanalytic

continuous mappings σ : ∆k → X, where∆k is the oriented standard simplex
of Rk. We denote by Ck(X) the group of singular k-chains with coefficients
in R.

By Xreg and Xsing, we respectively denote the regular and singular locus
of X. The regular locus is the set constituted by the points of X at which
X is a C∞ manifold of dimension dimX. The singular locus of X is the
complement of Xreg in X.

We will write int(X) for the interior of X, while cl(X) will stand for its
topological closure. We then set fr(X) := cl(X) \X. Given a point x ∈ Rn
and α > 0, we write B(x, α) for the ball of radius α centered at x (for the
Euclidean metric).

If ω is a differential k-form on a submanifold S ⊂ Rn, we denote by |ω(x)|
the norm of the linear form ω(x) : ⊗kTxS → R, where S is equipped with
the Riemannian metric inherited from the ambient space.

A stratification of X is a locally finite partition Σ of X into subanalytic
C∞ submanifolds of Rn, called strata. We then denote by Σ(k) the collection
of all the strata of Σ of dimension k (the union of all the elements of Σ(k),
denoted

⋃
Σ(k), is thus a k-dimensional manifold). A refinement of a strat-

ification Σ of a set X is a stratification Σ′ of X such that every stratum
of Σ is the union of some strata of Σ′. Two stratifications have a common
refinement [DS].

Definition 2.1. Let X ∈ Sn and let Σ be a stratification of X. A strat-
ified differential 0-form on (X,Σ) is a collection of functions ωS : S → R,
S ∈ Σ, that glue together into a continuous function on X. A stratified dif-
ferential k-form on (X,Σ), k > 0, is a collection (ωS)S∈Σ where, for every S,
ωS is a continuous differential k-form on S such that for any (xi, ξi) ∈ ⊗kTS,
with xi tending to x ∈ S′ ∈ Σ and ξi tending to ξ ∈ ⊗kTxS′, we have

limωS(xi, ξi) = ωS′(x, ξ).

We say that ω = (ωS)S∈Σ is differentiable if ωS is C1 for every S ∈ Σ and
if dω := (dωS)S∈Σ is a stratified form.

Proposition 2.2. Let (X,Σ) be a stratified set with X closed. If ω =
(ωS)S∈Σ is a stratified form then, for every S ∈ Σ, |ωS(x)| is bounded on
every bounded subset of S.

Proof. If ω is a 0-form, this is clear since ωS is the restriction of a con-
tinuous function on X which is closed. Take a k-form ω with k > 0, and
assume that the result fails for ω. This means that there is a bounded se-
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quence (xi, ξi) ∈ ⊗kTS, S ∈ Σ, such that ωS(xi, ξi) goes to infinity. Since xi
is a bounded sequence, we may assume that it is convergent to some element
x ∈ S′, S′ ∈ Σ. Let

ξ′i :=
ξi

ωS(xi, ξi)
,

so that ωS(xi, ξ′i) = 1, for all i.
As |ωS(xi, ξi)| is going to infinity and ξi is bounded away from infinity,

the multivector ξ′i clearly goes to zero. Because ω is a stratified form, this
implies that

limωS(xi, ξ
′
i) = ωS′(x, 0) = 0,

contradicting ωS(xi, ξ′i) ≡ 1.

Definition 2.3. Let ω = (ωS)S∈Σ be a stratified form. Let Σ′ be a
refinement of Σ and take T ∈ Σ′. By definition of refinements, there is a
unique S ∈ Σ which contains T . Let ωT denote the differential form induced
by ωS on T . It is a routine to check that ω′ := (ωT )T∈Σ′ is also a stratified
form. We then say that ω′ is a refinement of ω.

2.1. Integration of stratified forms. Let (X,Σ) be a stratified set,
X ∈ Sn compact. Let ω = (ωS)S∈Σ be a stratified k-form on (X,Σ) and
let Y ⊂ X be a subanalytic subset of X of dimension k such that Yreg is
oriented. We are going to define the integral of ω on Y , denoted

	
Y ω.

Let Σ′ be a refinement of Σ such that Yreg is a union of some strata of Σ′
(such a stratification exists because Yreg is subanalytic [DS]). This refinement
induces a refinement ω′ of ω (as explained in Definition 2.3). We naturally
define �

Y

ω :=
∑

S∈Σ′(k)

�

S

ωS ,

where every stratum is endowed with the orientation induced by Yreg. That
this integral is finite follows from the fact that ωS is bounded (by Propo-
sition 2.2) on a set of finite measure (bounded subanalytic manifolds have
finite measure [LR]).

Let us check that this definition is independent of the refinement Σ′
chosen. Since two stratifications have a common refinement [DS], it is enough
to make sure that the integral will be the same if we use a refinement Σ′′ of
Σ′ (instead of Σ′). As Σ′′ is a refinement itself, dim

⋃
Σ′(k) \

⋃
Σ′′(k) < k

(which entails that this set is negligible) so that∑
S∈Σ′(k)

�

S

ωS =
∑

T∈Σ′′(k)

�

T

ωT .

This shows that the integral is independent of the refinement chosen.
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Integration on singular simplices. We now turn to define the integral
of the stratified k-form ω over an oriented singular simplex σ : ∆k → X. As
σ is subanalytic, there exist stratifications P of ∆k and Q of X such that for
any S in P there is T ∈ Q such that the mapping σ|S : S → T , induced by
the restriction of σ, is a C2 surjective submersion. Since two stratifications
have a common refinement, possibly refining ω (see Definition 2.3), we may
assume that ω is a stratified form on P. We now set�

σ

ω =
∑

S∈P(k)

�

S

σ∗ωσ(S).

Again, since the manifold
⋃
P(k) is independent of the stratification P up to

a negligible set, this definition is clearly independent of the stratifications
chosen. The integral over a subanalytic chain c ∈ Ck(X) is then defined
naturally.

Note. The form (σ∗ωσ(S))S∈P is not necessarily a stratified form on
(∆k,P). In particular, σ∗ωσ(S) is not necessarily bounded (σ is not assumed
to have bounded first derivative).

3. Stokes theorem for stratified forms. In this section we establish
the main result of this note:

Theorem 3.1. Let (X,Σ) be a subanalytic stratified set. If ω is a differ-
entiable stratified (j − 1)-form on (X,Σ), then for all c ∈ Cj(X),�

c

dω =
�

∂c

ω.

The proof of this theorem requires some preliminary lemmas.

Definition 3.2. Let L ∈ Sn be a compact set of dimension k. We say
that L is a leaf if there is a dense subanalytic subset Z ⊂ fr(Lreg) such that
cl(Lreg) is a C1 submanifold with boundary (of Rn) at every point of Z. We
then set ∂L := fr(Lreg). A leaf L is orientable if Lreg is. Observe that any
orientation of Lreg induces an orientation of ∂L.

Lemma 3.3. Let L ∈ Sn be a leaf of dimension k. Any subanalytic closed
subset L′ ⊂ L of dimension k is a leaf.

Proof. Let L′ ⊂ L be as in the statement of the lemma and observe that
L′reg ⊂ Lreg. Let x be a generic regular point of fr(L′reg). If x lies in Lreg

then, as fr(L′reg) is a C1 submanifold of Lreg at x (x is generic), it is clear
that cl(L′reg) is a C1 manifold with boundary at x (the closure of an open
subanalytic set in a manifold is a manifold with boundary at every regular
point of the frontier). We thus can suppose that x ∈ ∂L. As x is generic in
fr(L′reg), we can assume that x /∈ fr(fr(L′reg) ∩ Lreg) (this set has dimension
strictly less than k − 1). This means that if x lies in fr(Lreg) then, for x
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generic, fr(Lreg) and fr(L′reg) coincide locally near x, and the result follows
from the fact that L is itself a leaf.

We denote by Hj the j-dimensional Hausdorff measure.

Lemma 3.4. Let (Bδ,ε)(δ,ε)∈R2 be a subanalytic family of j-dimensional
subsets of Rn. Assume that

⋃
(δ,ε)∈R2{(δ, ε)} × Bδ,ε is compact and that

dimB0,0 < j. Then
lim

(δ,ε)→(0,0)
Hj(Bδ,ε) = 0.

Proof. Given a vector space P ⊂ Rn of dimension j we set

KP
l (Bδ,ε) := {x ∈ P : cardπ−1P (x) ∩Bδ,ε = l},

where πP is the orthogonal projection onto P and cardπ−1P (x)∩Bδ,ε stands
for the cardinality of this set (this cardinality is finite for almost every P and
can only take finitely many values 1, . . . , N). In view of the Cauchy–Crofton
formula [F], we have

Hj(Bδ,ε) =
N∑
l=1

l
�

P∈Gnj

Hj(KP
l (Bδ,ε)) dγj,n,

where Gn
j stands for the Grassmannian of j-dimensional vector spaces in Rn

and γj,n is a Radon measure (induced by the Haar measure of the group of
orthogonal linear mappings acting on Gn

j ). It is therefore enough to show
that

lim
(δ,ε)→(0,0)

Hj(KP
l (Bδ,ε)) = 0.

Thanks to Lebesgue’s Dominated Convergence Theorem, it suffices to
show that for almost every x ∈ P , x /∈ πP (Bδ,ε) for δ and ε small enough.
But if x /∈ πP (B0,0) (which is Hj-negligible) then, as

⋃
(δ,ε)∈R2{(δ, ε)}×Bδ,ε

is a closed subset, x cannot belong to πP (Bδ,ε) if δ and ε are chosen small
enough.

Lemma 3.5. Every compact subanalytic set may be decomposed into a
finite union of leaves (not necessarily disjoint).

Proof. Let X be a compact subanalytic set and consider a subanalytic
triangulation h : |K| → X, K a simplicial complex. For every j-dimensional
simplex σ ∈ K (j = dimX), h(σ) is a C0 manifold with boundary, C1 at
the interior points. It is actually a C1 manifold with boundary at every
generic point of the boundary (for instance, the points at which Whitney (b)
regularity holds do have this property [P]).

Lemma 3.6. Let M be a subanalytic C1 manifold with boundary that we
endow with its canonical stratification Σ := {M \ ∂M, ∂M}. Take a suban-
alytic function ρ :M → R which is C1 and nonnegative with ρ−1(0) = ∂M .
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For any differentiable stratified differential form ω on (M,Σ) vanishing out-
side a compact subset of M we have

(3.1) lim
ε→0, ε>0

�

ρ=ε

ω =
�

∂M

ω.

Proof. Up to a partition of unity we may assume that the support of
ω fits in one chart of M and, up to a coordinate system, we may iden-
tify M with B(0, α) ∩ {(x1, . . . , xk) ∈ Rk : xk ≥ 0}, α > 0. The coeffi-
cients of the form ωxk := ω|Rk−1×{xk} are continuous with respect to xk.
Hence, in the case where ρ is the function given by ρ(x1, . . . , xk) = xk for
all (x1, . . . , xk), the result follows from Lebesgue’s Dominated Convergence
Theorem.

As a matter of fact, it is enough to check that the limit always exists
and is independent of ρ. Let ρ be a function satisfying the assumptions
of the lemma. By Stokes’ formula we have, for relevant orientations and
0 < ε < ε′, �

ρ=ε

ω −
�

ρ=ε′

ω =
�

ρ−1([ε,ε′])

dω.

The measure of ρ−1([ε, ε′]) tends to zero as (ε, ε′) goes to zero. As dω is
bounded, this implies that the right-hand side goes to zero. Consequently,
the limit exists for all such functions ρ. That the limit is independent of ρ
follows from an analogous argument.

We first establish Stokes’ formula for stratified forms on a stratum whose
closure is a leaf.

Lemma 3.7. Let X ∈ Sn be compact and let Σ be a stratification of X.
Let ω = (ωS)S∈Σ be a differentiable stratified differential (k−1)-form on X.
Fix a stratum S of dimension k. If cl(S) is an oriented leaf then

(3.2)
�

S

dωS =
�

fr(S)

ω,

where fr(S)reg is endowed with the induced orientation.

Proof. Let ρ : Rn → R be a C1 subanalytic positive function such that
ρ−1(0) = fr(S) (the function x 7→ d(x, fr(S)) has this property; one may
approximate this function by a C1 subanalytic function [S] to get such a
function ρ). Set

Sε := {x ∈ cl(S) : ρ(x) ≥ ε}.

Note that for ε > 0 small enough, by Sard’s theorem, Sε is a smooth manifold
with boundary and ω is a smooth form on it. Thus, by the classical Stokes
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formula, �

Sε

dωS =
�

∂Sε

ωS .

As dωS is bounded, it easily follows from Lebesgue’s Dominated Convergence
Theorem that

lim
ε→0

�

Sε

dωS =
�

S

dωS .

We thus only have to show that

(3.3) lim
ε→0

�

∂Sε

ωS =
�

fr(S)

ω.

As cl(S) is a leaf, there is a subanalytic subset S′ ⊂ ∂S such that cl(S)
is a C1 manifold with boundary at every point of fr(S) \ S′ and such that
dimS′ < k − 1. Set, for δ ≥ 0,

Uδ := {x ∈ Rn : d(x, S′) ≤ δ},
and let (ϕδ, ψδ) denote a partition of unity subordinated to the covering
(int(Uδ),Rn \ Uδ/2).

As (by Proposition 2.2) ωS is bounded and because ϕδ has support in Uδ,
we can write, for some constant C,

(3.4)
�

∂Sε

ϕδ ω ≤ CHk−1(Uδ ∩ ∂Sε).

Applying Lemma 3.4 to the subanalytic family Bδ,ε := Uδ ∩ ∂Sε we see that

lim sup
δ→0

lim sup
ε→0

Hk−1(Uδ ∩ ∂Sε) = 0.

By (3.4), this entails that

lim
δ→0

lim
ε→0

�

∂Sε

ϕδ ωS = 0.

As a matter of fact, since for each δ > 0 we have ω = ϕδω+ψδω, proving (3.3)
reduces to showing that

(3.5) lim
δ→0

lim
ε→0

�

∂Sε

ψδ ωS =
�

fr(S)

ω.

It follows from Lemma 3.6 (applied to ψδω, which induces a stratified
form with compact support on the manifold with boundary S \ Uδ/2) that

lim
ε→0

�

∂Sε

ψδ ω =
�

fr(S)\Uδ/2

ψδ ω =
�

fr(S)

ψδ ω.

Passing to the limit as δ > 0 tends to zero and applying Lebesgue’s Domi-
nated Convergence Theorem, we see that this yields (3.5).
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Proof of Theorem 3.1. It is of course enough to carry out the proof for
a single simplex σ : ∆j → X. Denote by Γ the graph of σ and take two
Whitney stratifications S and Σ′ of Γ and X respectively such that the
mapping π : Γ → X, (x, y) 7→ y, maps submersively strata onto strata.
By Lemmas 3.3 and 3.5, we may suppose that the closures of all the strata
of Σ′ and S are leaves. We may also assume that if π induces an immersion
on a stratum then it induces an injective mapping on this stratum (this
property is clearly preserved under refinement, and it is easy to construct
a stratification satisfying this property using cell decompositions). Because
Σ and Σ′ are Whitney stratifications, they satisfy the frontier condition
(i.e. the closure of each stratum is a union of strata).

Since the projection (x, y) 7→ x induces a subanalytic homeomorphism
on Γ , we will identify ∆j with Γ , and S with Σ, and work as if σ were the
mapping π. Refining the stratifications Σ and Σ′, we may assume that ω is
a stratified form on Σ′. We endow the strata of Σ of dimension j with the
orientation induced by ∆j .

Let S ∈ Σ and let i := dimS. Either σ|S is a diffeomorphism onto its
image or dimσ(S) < i. In the former case, if we endow S and σ(S) with
coherent orientations, we obviously have, for any continuous bounded i-form
α on S,

(3.6)
�

S

σ∗|Sα =
�

σ(S)

α.

If dim σ(S) < i, then both sides are zero (since σ∗|Sα is identically zero) and
this equality continues to hold.

Observe also that if dimS = j and if σ|S is a diffeomorphism then
σ(fr(S)) = fr(σ(S)), which entails that (putting on fr(S)reg the orientation
induced by the leaf cl(S))

(3.7)
�

fr(σ(S))

ω =
�

σ(fr(S))

ω.

We claim that this formula is true even if σ|S fails to be a diffeomorphism.
Indeed, assume dimσ(S) < j and take a stratum T ⊂ fr(σ(S)) of dimen-
sion j − 1, on which we choose an orientation. As the left-hand side of (3.7)
vanishes in this case (since dim fr(σ(S)) < j − 1), it is enough to check
that so does the right-hand side. For any stratum S′ ⊂ fr(S) ∩ σ−1(T )
of dimension j − 1, as σ|S′ : S′ → T is a diffeomorphism, we have
σ(S′) = ±T (here −T means T with the opposite orientation). As
dimσ(S) < j, we must have

∑
S′∈Σ(j−1), S′⊂fr(S) σ(S

′) = 0 (as formal sums
of oriented manifolds). This shows that the right-hand side of (3.7) vanishes,
as claimed.
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By Lemma 3.7, for any stratum S of dimension j, (since the closure of
every stratum is a leaf) we have

(3.8)
�

σ(S)

dω =
�

fr(σ(S))

ω
(3.7)
=

�

σ(fr(S))

ω.

We thus obtain�

σ

dω =
∑

S∈Σ(j)

�

S

σ∗|S dωσ(S)(3.9)

(3.6)
=

∑
S∈Σ(j)

�

σ(S)

dωσ(S)
(3.8)
=

∑
S∈Σ(j)

�

σ(fr(S))

ω.

Observe that every stratum T ∈ Σ(j−1) lies in the frontier of exactly two
strata of Σ (inducing on T opposite orientations) if T ∩ ∂∆j = ∅ and one
such stratum whenever T ⊂ ∂∆j (we may assume that ∂∆j is a union of
strata). Therefore∑

S∈Σ(j)

�

σ(fr(S))

ω =
∑

S∈Σ(j−1), S⊂∂∆j

�

σ(S)

ω
(3.6)
=

�

∂σ

ω.

Together with (3.9), this yields the desired formula.

Remark 3.8. If (X,Σ) is a stratified set, any smooth differential form
ω which is defined in a neighborhood of X gives rise to a stratified form
(ωS)S∈Σ on (X,Σ) obtained by considering the respective restrictions of
ω to the strata. The Stokes formula that we have proved is therefore a
generalization of the Stokes formula for smooth forms on singular varieties.
For the same reasons, it also implies the generalized Stokes formulas given
in [Ł, P].
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