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Some global results for nonlinear Sturm–Liouville problems
with spectral parameter in the boundary condition

by Ziyatkhan S. Aliyev and Gunay M. Mamedova (Baku)

Abstract. We consider nonlinear Sturm–Liouville problems with spectral parameter
in the boundary condition. We investigate the structure of the set of bifurcation points,
and study the behavior of two families of continua of nontrivial solutions of this problem
contained in the classes of functions having oscillation properties of the eigenfunctions of
the corresponding linear problem, and bifurcating from the points and intervals of the line
of trivial solutions.

1. Introduction. We consider the following nonlinear eigenvalue prob-
lem:

`(y)(x) ≡ −y′′(x) + q(x)y(x)(1.1)

= λy(x) + h(x, y(x), y′(x), λ), 0 < x < 1,

b0y(0) = d0y
′(0),(1.2)

(a1λ+ b1)y(1) = (c1λ+ d1)y
′(1),(1.3)

where λ is a real parameter, q is a real continuous function on [0, 1], b0, d0,
a1, b1, c1, d1 are real numbers with |b0|+ |d0| > 0 and

(1.4) σ1 = a1d1 − b1c1 > 0.

We also assume that the nonlinear term h has the form h = g + f, where g
and f are continuous functions on [0, 1]× R3 satisfying the conditions:

(1.5)

∣∣∣∣f(x, u, s, λ)

u

∣∣∣∣≤M,∀x∈ [0, 1], ∀u, s∈R, 0 < |u| ≤ 1, |s| ≤ 1, ∀λ∈R,

where M is a positive constant; and

(1.6) g(x, u, s, λ) = o(|u|+ |s|)
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near (u, s) = (0, 0), uniformly for x ∈ [0, 1] and λ ∈ Λ, for every bounded
interval Λ ⊂ R.

In the study of nonlinear eigenvalue problems, an important role is
played, when it exists, by the linearization about zero of the problem un-
der consideration, i.e., its Fréchet derivative at the origin (cf. [12]). In the
context of linearizability, Rabinowitz [15] gives a nonlinear version of the
classical results for linear Sturm–Liouville problems, namely the existence
of two families of unbounded continua of nontrivial solutions of problem
(1.1)–(1.3) in the case

f ≡ 0 and a1 = c1 = 0,

and bifurcating from the points of the line of trivial solutions, corresponding
to the eigenvalues of the linear problem, and contained in the classes of
functions having the usual oscillation properties.

Because of the presence of the term f , problem (1.1)–(1.3) does not
in general have a linearization about zero. For this reason, the set of
bifurcation points for (1.1)–(1.3) with respect to the line of trivial solutions
need not be discrete (cf. the example in [3, p. 381]. Therefore, to investigate
bifurcation for (1.1)–(1.3), one has to consider bifurcation from intervals
rather than from bifurcation points. We say that bifurcation occurs from an
interval if this interval contains at least one bifurcation point [3].

Berestycki [3], Schmitt and Smith [17], Chiappinelli [6], Aliyev [1], Rynne
[16] and Dai [10] obtained a number of global results for bifurcation of
solutions of the nonlinear Sturm–Liouville problem (1.1)–(1.3) when a1 =
c1 = 0 (i.e., when the spectral parameter is not involved in the boundary
conditions) and f has a sublinear growth in y and y′. In these papers the
existence of two families of unbounded continua of solutions, corresponding
to the usual oscillation properties and bifurcating from intervals of the line
of trivial solutions is proved.

Problem (1.1)–(1.3) was previously considered in [2], where results sim-
ilar to those of [14] and [3] were obtained. It should be noted that in [2]
there is a gap, as the function (a1λ + b1)/(c1λ + d1) in the boundary con-
dition (1.3) is strictly increasing in each of the intervals (−∞,−d1/c1) and
(−d1/c1,∞), but is not increasing for all λ ∈ R. Therefore, in this case
the method of [3] cannot be applied. Also, the behavior of continua of solu-
tions having oscillation properties of the eigenfunctions of the corresponding
linear problems and bifurcating from the bifurcation points and intervals
has not been completely investigated. This is due to the fact that in the
case c1 6= 0 there is a positive integer N0 such that the eigenfunctions
corresponding to the N0th and (N0 + 1)th eigenvalues of the linear Sturm–
Liouville problem obtained from (1.1)–(1.3) for h ≡ 0 have the same number
of zeros.
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In [5], using an extension of the Prüfer transformation, the authors obtain
results similar to that of [9] for a nonlinear Sturm–Liouville problem with
spectral parameter in the boundary condition.

In this paper we study the structure of bifurcation points, and com-
pletely investigate the behavior of two families of continua of solutions of
problem (1.1)–(1.3) having the oscillation properties of the eigenfunctions
of the corresponding linear problem, and bifurcating from the points and
intervals of the line of trivial solutions.

2. Global bifurcation of solutions of the nonlinear problem (1.1)–
(1.3) for f ≡ 0. Alongside problem (1.1)–(1.3) we consider the spectral
problems 

−y′′(x) + q(x)y(x) = λy (x), x ∈ (0, 1),

b0y(0) = d0y
′(0),

y(1) = 0,

(2.1)


−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, 1),

b0y(0) = d0y
′(0),

(a1λ+ b1)y(1) = (c1λ+ d1)y
′(1).

(2.2)

The eigenvalues of the Sturm–Liouville problem (2.1) are denoted by ηk,
k = 1, 2, . . . , where ηk ↗∞.

For c1 6= 0 let N0 be the integer such that ηN0−1 < −d1/c1 ≤ ηN0 , where
η0 = −∞.

In [4] it is established that the eigenvalues of problem (2.2) are real,
simple, and form an infinite increasing sequence µk ↗ ∞; moreover, the
eigenfunctions of this problem have the following oscillation properties:

(A) if c1 = 0, then the eigenfunction yk(x), k ∈ N, corresponding to the
eigenvalue µk, has exactly k − 1 simple zeros, all lying in (0, 1);

(B) if c1 6= 0, then the eigenfunction yk(x), k ∈ N, corresponding to the
eigenvalue µk, has exactly k−1 simple zeros for k≤N0, and exactly
k − 2 simple zeros for k > N0, all lying in (0, 1).

In the Hilbert space H = L2(0, 1)⊕ C with the inner product

(ŷ, û) = ({y,m}, {u, s}) = (y, u)L2 + σ−11 ms̄,

define the operator

Lŷ = L{y,m} = {`(y), d1y
′(1)− b1y(1)}

with the domain

D(L) =
{
{y,m} ∈ H : y, y′ ∈ AC(0, 1), `(y) ∈ L2(0, 1),

b0y(0) = d0y
′(0), m = a1y(1)− c1y′(1)

}
,
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where (y, u)L2 =
	1
0 y (x)u(x) dx and AC(0, 1) is the class of absolutely con-

tinuous functions in (0, 1). Obviously, the operator L is well defined in H.
Thus problem (2.2) takes the form

(2.3) Lŷ = λŷ, ŷ ∈ D(L),

i.e., the eigenvalues of (2.2) and of the operator L coincide together with
their multiplicities, and between the root functions, there is a correspon-
dence

yk ↔ {yk,mk}, mk = a1yk(1)− c1y′k(1).

Define F : R×D(L)→ H and G : R×D(L)→ H as follows:

G(λ, ŷ) = G(λ, {y,m}) = {g(x, y, y′, λ), 0},
F (λ, ŷ) = F (λ, {y,m}) = {f(x, y, y′, λ), 0},

where m = a1y(1) − c1y′(1). Then problem (1.1)–(1.3) reduces to the non-
linear problem

(2.4) Lŷ = λŷ + F (λ, ŷ) +G(λ, ŷ),

i.e., between the solutions of these problems, there is a correspondence

(λ, ŷ)↔ (λ, y).

The set

Ê = {ŷ = {y,m} ∈ C1[0, 1]⊕ C : b0y(0) = d0y
′(0), m = a1y(1)− c1y′(1)}

is a Banach space with the norm ‖ŷ‖1 = ‖{y,m}‖1 = |y|1 + |m|, where
|y|1 = maxx∈[0,1] |y(x)|+ maxx∈[0,1] |y′(x)|.

It is known [18] that if λ = 0 is not an eigenvalue of the linear problem
(2.2), then L−1 exists and L−1 : Ê → Ê. Denote

L̂ = L−1, Ĝ(λ, ŷ) = L̂G(λ, ŷ), F̂ (λ, ŷ) = L̂F (λ, ŷ).

Then problem (2.4) can be written in the equivalent form

(2.5) ŷ = λL̂ŷ + Ĝ(λ, ŷ) + F̂ (λ, ŷ).

From [18] it follows that L̂ : Ê → Ê is compact. Hence Ĝ : R× Ê → Ê and
F̂ : R× Ê → Ê are completely continuous.

Let Ŝ+
k , k ∈ N, denote the set of vectors ŷ = {y,m} ∈ Ê such that

y has exactly k− 1 simple zeros in (0, 1) and is positive near x = 0, and set
Ŝ−k = −Ŝ+

k and Ŝk = Ŝ−k ∪ Ŝ
+
k . From now on ν will denote + or −. The sets

Sνk are disjoint and open in Ê. Moreover, if ŷ = {y,m} ∈ Ŝk, then y has at
least one double zero in [0, 1] (see [9]).

Let

T̂ νk =

{
Ŝνk if k ≤ N0,

Ŝνk−1 if k > N0,
T̂k = T+

k ∪ T̂
−
k , k ∈ N.
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We denote by =̂ the closure in R× Ê of the set of nontrivial solutions of
problem (2.5).

Now suppose that f ≡ 0 (in effect, we suppose that the nonlinearity
h ≡ 0 itself satisfies (1.6)). In this case problem (1.1)–(1.3) is equivalent to

(2.6) ŷ = λL̂ŷ + Ĝ(λ, ŷ).

The linearization of (2.6) at ŷ = 0̂ is the spectral problem

(2.7) ŷ = λL̂ŷ,

where 0̂ = {0, 0} ∈ Ê. Obviously, problem (2.7) is equivalent to the spectral
problem (2.2) (and also to problem (2.3)).

We denote by r(L̂) the set of characteristic values of L̂.

From properties (A) and (B) it follows that the eigenvector ŷk, k ∈ N,
of the operator L, corresponding to the eigenvalue λk, is in the set T̂k.

We will denote by ŷ+k the unique eigenfunction of (2.7) associated to λk
with

ŷ+k ∈ T̂
+
k and ‖ŷ+k ‖1 = 1.

Theorem 2.1. Let f ≡ 0. Then for each k ∈ N and each ν, there exists
a continuum Ŷ ν

k of solutions of problem (2.6) in (R× T̂ νk )∪{(λk, 0̂)}, which

contains (λk, 0̂) and is unbounded in R× Ê.

Proof. Note that if (λ, y) is a solution of (1.1)–(1.3) for f ≡ 0, and if
y has a double zero, then the growth estimate on g near the double zero
and linearity of ` imply that y ≡ 0 on [0, 1]. Therefore, in particular, any
solution (λ, ŷ) of problem (2.6) with ŷ ∈ ∂Sνk has ŷ = 0̂.

From (1.6) and the definition of Ĝ, it follows that Ĝ(λ, ŷ) = o(‖ŷ‖1) near
0̂ ∈ Ê uniformly for λ in each bounded interval of R. The eigenvalues of L
are the characteristic values of L̂ and are simple. Therefore the hypotheses
of Theorem 1.3 in [15] are satisfied, and there exists a continuum Ŷλk ≡ Ŷk
of solutions of (2.6) in =̂ which contains (λk, 0̂) and is either unbounded in
R× Ê, or contains (λs, 0̂), where λk 6= λs ∈ r(L̂).

If k ∈ N and k 6= N0, N0 + 1, then the proof is similar to that of [15,
Theorem 2.3].

Suppose now that k = N0 or N0 + 1. Note that T̂N0 = T̂N0+1. Lemma
1.24 from [15] implies that if (λ, ŷ) ∈ Ŷk and is near (λk, 0̂), then

(2.8) ŷ = αŷ+k + ϑ̂ with ϑ̂ = o(|α|), λ = λk + o(1) as α→ 0.

Since T̂k is open and ŷ+k ∈ T̂k, we have

(2.9) (λ, ŷ) ∈ R× T̂k and (Ŷk \ {(λk, 0̂)}) ∩ B̂z(λk) ⊂ R× T̂k
for all z > 0 small, where B̂z(λk) denotes the open ball in R× Ê of radius z

centered at (λk, 0̂). By the above remark, if ŷ ∈ ∂T̂k ∩ =̂, then ŷ = 0̂.
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Hence (Ŷk \ {(λk, 0̂)}) ∩ ∂T̂k = ∅. Thus Ŷk ⊂ (R× T̂k) ∪ {(λk, 0̂)}. Although
T̂N0 = T̂N0+1, we will prove that alternative (ii) of Theorem 1.3 of [15] is
not possible.

Now by a construction as in [11], we decompose ŶN0 into two subcon-
tinua Ŷ +

N0
and Ŷ −N0

which contain (λN0 , 0̂). We also decompose ŶN0+1 into

two subcontinua Ŷ +
N0+1 and Ŷ −N0+1 which contain (λN0+1, 0̂). If (λ, ŷ) is in

Ŷ ν
N0
\ {(λN0 , 0̂)} (resp. in Ŷ ν

N0+1 \ {(λN0+1, 0̂)}) and is near (λN0 , 0̂) (resp.

(λN0+1, 0̂)), then (2.8) holds for k = N0 (resp. k = N0 + 1). Taking into
account that αŷ+k ∈ T̂

ν
N0

for k = N0 (resp. k = N0 + 1) and α ∈ Rν \ {0},
from (2.9) we obtain

(Ŷ ν
N0
\ {(λN0 , 0̂)}) ∩ B̂z(λN0) ⊂ R× T̂ νN0

,

(resp. (Y ν
N0+1 \ {(λN0+1, 0̂)}) ∩ B̂z(λN0+1) ⊂ R× T̂ νN0

),

for all z > 0 small, where Rν = {γ ∈ R : 0 ≤ νγ ≤ ∞}. Since

(Ŷ ν
N0
\ {(λN0 , 0̂)}) ∩ (R× ∂T̂ νN0

) = ∅

(resp. (Ŷ ν
N0+1 \ {(λN0+1, 0̂)}) ∩ (R× ∂T̂ νN0

) = ∅),

Ŷ ν
N0
\{(λN0 , 0̂)} (resp. Ŷ ν

N0+1 \{(λN0+1, 0̂)}) cannot leave R× T̂ νN0
outside of

a neighborhood of (λN0 , 0̂) (resp. (λN0+1, 0̂)). Moreover, Ŷ −N0
(resp. Ŷ −N0+1)

does not intersect Ŷ +
N0

(resp. Ŷ +
N0+1) outside of a neighborhood of (λN0 , 0̂)

(resp. (λN0+1, 0̂)). By the remark to Theorem 2 in [11], either (i) Ŷ −N0
(resp.

Ŷ −N0+1) is unbounded in R × Ê, or (ii) Ŷ −N0
(resp. Ŷ −N0+1) meets Ŷ +

N0
(resp.

Y +
N0+1) outside of a neighborhood of (λN0 , 0̂) (resp. (λN0+1, 0̂)) (this also

shows that a similar result holds for Ŷ +
N0

(resp. Ŷ +
N0+1)). Consequently, all

these sets are unbounded in R× Ê.

The set E = C1[0, 1]∩B.C0. is a Banach space with the norm | · |1, where
B.C0. is the set of the boundary conditions (1.2).

Let

= = {(λ, y) ∈ R× E : (λ, ŷ) ∈ =̂},

T νk = {y ∈ E : ŷ = {y,m} ∈ T̂ νk }, Tk = T+
k ∪ T

−
k , k ∈ N.

Since between solutions of problem (2.6) and (1.1)–(1.3) for f ≡ 0 there
exists an isomorphism (λ, ŷ)↔(λ, y), Theorem 2.1 yields the following result.

Theorem 2.2. Let f ≡ 0. Then for each k ∈ N and each ν, there exists
a continuum Y ν

k of solutions of problem (1.1)–(1.3) in (R× T νk ) ∪ {(λk, 0)}
which contains (λk, 0) and is unbounded in R× E.
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3. Global bifurcation of solutions of (1.1)–(1.3). Problem (1.1)–
(1.3) need not have any linearization at the origin, but still can be related
to some linear problems. The general idea is to approximate this equation
by linearizable ones, for which we apply Theorem 2.1. Then we pass to the
limit using a priori bounds which are obtained with the aid of the maximum-
minimum properties of the eigenvalues of some linear problems.

We say that (λ, 0̂) is a bifurcation point of (2.3) with respect to the set
R×Ŝνk , k ∈ N, if in every small neighborhood of this point there is a solution

to this problem which is contained in R× Ŝνk .
To study the bifurcation of solutions of problem (1.1)–(1.3) with respect

to R× Ŝνk , k ∈ N, we introduce the approximate equation

(3.1)


`(y) = λy + f(x, |y|εy, y′, λ) + g(x, y, y′, λ), x ∈ (0, 1),

b0y(0) = d0y
′(0),

(a1λ+ b1)y(1) = (c1λ+ d1)y
′(1),

where ε ∈ (0, 1]; this form of approximation is similar to that used in [1, 3,
16].

Note that by (1.5) for ε ∈ (0, 1], the function f(x, |u|εu, s, λ) satisfies the
condition

(3.2) f(x, |u|εu, s, λ) = o(|u|+ |s|)

near (0, 0) uniformly for x ∈ [0, 1] and λ in a bounded real interval.

The following lemma will ensure that the set of bifurcation points of
problem (1.1)–(1.3) is nonempty.

Lemma 3.1. For each k ∈ N and each ν, and for sufficiently small
τ > 0, there exists a solution (ζτ,k, ŵτ,k) of (2.4) such that ŵτ,k ∈ T̂ νk and
‖ŵτ,k‖1 = τ .

Proof. Problem (3.1) can be written in the equivalent form

(3.3) Lŷ = λŷ + Fε(λ, ŷ) +G(λ, ŷ),

where

Fε(λ, ŷ) = Fε(λ, {y,m}) = {f(x, |y(x)|εy(x), y′(x), λ), 0}.

Problem (3.3) is equivalent to

(3.4) ŷ = λL̂ŷ + F̂ε(λ, y) + Ĝ(λ, y),

where F̂ε(λ, ŷ) = L̂Fε(λ, ŷ).

By (3.2) we have F̂ε(λ, ŷ) = o(‖ŷ‖1) in a small neighborhood of 0̂ ∈ Ê
uniformly for λ in each bounded interval of R. Then by Theorem 2.1, for each
k ∈ N and each ν, there exists an unbounded continuum Ĉνk,ε of solutions of
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(3.4) (as well as of (3.3)) such that

(λk, 0̂) ∈ Ĉνk,ε ⊂ (R× T̂ νk ) ∪ {(λk, 0̂)}.

Then for any ε ∈ (0, 1], there exists a solution (ζτ,k,ε, ŵτ,k,ε) ∈ R× Ê of (3.3)

such that ŵτ,k,ε ∈ ∂B̂τ ∩ T̂ νk , where ∂B̂τ is the boundary of the open ball

B̂τ ⊂ Ê of radius τ centered at 0̂. By (3.1) we know that (ζτ,k,ε, wτ,k,ε) is a
solution of the nonlinear problem

(3.5)


`(y) + hεy = λy + g(x, y, y′, λ), x ∈ (0, 1),

b0y(0) = d0y
′(0),

(a1λ+ b)y(1) = (c1λ+ d)y′(1),

where

(3.6) hε(x) =


f(x, |wτ,k,ε(x)|εwτ,k,ε(x), w′τ,k,ε(x), ξτ,k,ε)/wτ,k,ε(x)

if wτ,k,ε(x) 6= 0,

0 if wτ,k,ε(x) = 0.

Define Lhε : H → H as follows:

(3.7) Lhε ŷ = Lhε{y,m} = {hε(x)y(x), 0}.

Then problem (3.5) can be rewritten in the following equivalent form:

(3.8) Lŷ + Lhε ŷ = λŷ +G(λ, ŷ).

Based on the maximum-minimum properties of the eigenvalues [7] (see
also [8, Ch. 4, §4]), the kth eigenvalue λkε of the linear problem

(3.9) Lŷ + Lhε ŷ = λŷ

is determined from the relation

(3.10) λkε = max
V (k−1)

min
ŷ∈Ê
{Rhε [ŷ] : (ŷ, ϕ̂) = 0, ϕ̂ ∈ V (k−1)},

where Rhε [ŷ] is the Rayleigh ratio

(3.11) Rhε[ŷ] =
((L+ Lhε)ŷ, ŷ)

(ŷ, ŷ)

and V (k−1) is any set of k − 1 linearly independent vectors in Ê.

From (3.11) we have

(3.12) Rhε[ŷ] =
(Lŷ, ŷ)

(ŷ, ŷ)
+

(Lhε ŷ, ŷ)

(ŷ, ŷ)
.

It is obvious that

(3.13) λk = max
V (k−1)

min
ŷ∈Ê

{
R[ŷ] =

(Lŷ, ŷ)

(ŷ, ŷ)
: (ŷ, ϕ̂) = 0, ϕ̂ ∈ V (k−1)

}
.
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By (1.5), from (3.6) we find that |hε(x)| ≤ M for all x ∈ [0, 1]. Then
taking into account (3.7), (3.11)–(3.13), from (3.10) we have

(3.14) λkε ∈ [λk −M,λk +M ].

By Theorem 2.1, (λkε, 0̂) is a bifurcation point of problem (3.8) with
respect to R × T̂ νk , and this bifurcation point corresponds to a continuous
branch of nontrivial solutions of (3.8). Consequently, for each τ > 0 there
exists ρτε > 0 such that

(3.15) ζτ,k,ε ∈ (λkε − ρτε, λkε + ρτε) ⊂ [λk −M − ρ0, λk +M + ρ0],

where ρ0 = supτ,ε ρτε > 0.

Since {ŵτ,k,ε : 0 < ε ≤ 1} is bounded in Ê and {ζτ,k,ε : 0 < ε ≤ 1} is

bounded in R, and since the operators F̂ε, Ĝ : R × Ê → Ê are completely
continuous, (3.4) implies that the set {ŵτ,k,ε ∈ Ê : 0 < ε ≤ 1} is compact

in Ê.

Let {εn}∞n=1 ⊂ (0, 1) with εn ↓ 0 as n→∞ be such that (ζτ,k,εn , ŵτ,k,εn)

→ (ξτ,k, ŵτ,k) in R × Ê (hence (ζτ,k,εn , wτ,k,εn) → (ξτ,k, wτ,k) in R × E).
Letting n→∞ in (3.4), we find that (ξτ,k, ŵτ,k) is a solution of the nonlinear

problem(2.5).Consequently, it is a solution of(2.4).Moreover, ŵτ,k∈ T̂ νk ∪∂T̂ νk.
Since ‖ŵτ,k‖1 = τ, using the reasoning of [3, p. 379], we obtain ŵτ,k ∈ T̂ νk .
The proof of Lemma 3.1 is complete.

Remark 3.1. By Lemma 3.1, we have ŵτ,k ∈ Ŝνk if k < N0, ŵτ,k ∈ Ŝνk−1
if k > N0 + 1 and ŵτ,N0 , ŵτ,N0+1 ∈ ŜνN0

.

Corollary 3.1. The set of bifurcation points of (2.4) with respect to
R× Ŝνk is nonempty.

The next lemma will provide uniform a priori bounds for the solutions of
(3.3) near the trivial solutions, and will ensure that the bifurcation points of
problem (2.4) with respect to R× Ŝνk are contained in intervals of radius M

centered at (λk, 0̂).

Lemma 3.2. Let εn, 0 ≤ εn ≤ 1, be a sequence converging to 0. Let
(ξn, ŵn) ∈ R × Ŝνk be a solution of problem (3.3) corresponding to ε = εn,

and suppose {(ζn, ŵn)}∞n=1 converges to (ζ, 0̂) in R× Ê. Then ζ ∈ Jk, where

Jk =


[λk −M,λk +M ] if k < N0,

[λN0 −M,λN0 +M ] or [λN0+1 −M,λN0+1 +M ] if k = N0,

[λk+1 −M,λk+1 +M ] if k > N0.

Proof. Suppose that ξ /∈ Jk. We define ρ = dist{ζ, Jk}. Since ξn → ξ as
n→∞, there is an nρ ∈ N such that for all n > nρ we have |ξn − ξ| < ρ/2.
Hence, dist{ζn, Jk} > ρ/2 at n > nρ.
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Note that (ζn, ŵn) ∈ R× Ŝνk is a solution of the nonlinear problem (3.8)

corresponding to ε = εn. Since (λk,εn , 0̂) is a bifurcation point of (3.8) with

respect to R× T̂ νk , for each n > nρ, there is ρn > 0 such that ρn < ρ/2 and
ζn ∈ (λk,εn − ρn, λk,εn + ρn) if k < N0; either ζn ∈ (λN0,εn − ρn, λN0,εn + ρn)
or ζn ∈ (λN0+1,εn − ρn, λN0+1,εn + ρn) if k = N0 (by Remark 3.1); and ζn ∈
(λk+1,εn−ρn, λk+1,εn +ρn) if k > N0. By (3.14), we have dist{ζn, Jk} < ρ/2,
a contradiction.

Corollary 3.2. If (λ, 0̂) is a bifurcation point of (2.4) with respect to
R× Ŝνk , then λ ∈ Jk.

For each k ∈ N, we define
˜̂
Dν
k ⊂ =̂ to be the union of all the components

D̂ν
k,λ of =̂ which bifurcate from the bifurcation points (λ, 0̂) of (2.4) with

respect to R× Ŝνk . By Lemma 3.2 and Corollary 3.2, the set
˜̂
Dν
k is nonempty.

Let D̂ν
k =

˜̂
Dν
k ∪ (Ik × {0̂}), where

Ik =

{
Jk if k 6= N0,

[λN0 −M,λN0+1 +M ] if k = N0.

The set D̂ν
N0
∪ (IN0 × {0̂}) is connected in R× Ê, but

D̂ν
N0
∪
(
([λN0 −M,λN0 +M ] ∪ [λN0+1 −M,λN0+1 +M ])× {0̂}

)
may not be connected.

Theorem 3.3. For each k ∈ N and each ν, the set D̂ν
k is unbounded in

R× Ê, and lies in (R× Ŝνk ) ∪ (Ik × {0̂}).

Proof. Apply Lemmas 3.1, 3.2 and Corollaries 3.1, 3.2, and an argument
similar to that of [13, Theorem 2.1] (see also [14, Theorem 3.1]).

For each k ∈ N, we define D̃ν
k ⊂ = to be the union of all the components

Dν
k,λ of = which bifurcate from the bifurcation points (λ, 0) of (1.1)–(1.3)

with respect to R× Sνk . Let Dν
k = D̃ν

k ∪ (Ik × {0̂}).
Since between solutions of problem (2.4) and (1.1)–(1.3) there exists an

isomorphism (λ, ŷ)↔ (λ, y), Theorem 3.3 yields the following result.

Theorem 3.4. For each k ∈ N and each ν, the set Dν
k is unbounded in

R× E, and lies in (R× Sνk ) ∪ (Ik × {0}).

Now suppose that

(3.16) g ≡ 0

and that the nonlinearity f satisfies the condition (1.5) for any (x, u, s, λ)
in [0, 1]× R3. In this case problem (1.1)–(1.3) is equivalent to

(3.17) Lŷ = λŷ + F (λ, ŷ).
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Following the arguments used in the proof of Lemma 3.1, we find that if (λ, ŷ)
is a solution of problem (3.17) such that ŷ ∈ Ŝνk , then λ ∈ Ik. Consequently,
by Theorems 3.3 and 3.4 we have the following

Theorem 3.5. Suppose that (3.16) holds. Then for each k ∈ N and
each ν,

D̂ν
k ⊂ Ik × (Ŝνk ∪ {0̂}) and Dν

k ⊂ Ik × (Sνk ∪ {0}).
Remark 3.2. When problem (1.1)–(1.3) is not linearizable, the struc-

ture of the set of bifurcation points within Ik × {0} is not clear.

In the following example the bifurcation points of problem (1.1)–(1.3)
with respect to R× Sk are discretely arranged in the interval Ik × {0}, and
two of them are bifurcation points of this problem with respect to R× S+

1 ,
and the other two with respect to R × S−1 . Explicit representations of the
sets D+

1 and D−1 are also given.

Example 3.1. Consider the nonlinear eigenvalue problem

−y′′(x) = λy(x) + |y(x)|, 0 < x < π,(3.18)

y(0) = 0, λy(π) = (λ+ 1)y′(π),(3.19)

which is obtained from (1.1)–(1.3) for q ≡ 0, h(x, y, y′, λ) = |y| (i.e., g ≡ 0)
and d0 = b1 = 0, b0 = 1, a1 = c1 = d1 = 1.

The linear problem

−y′′(x) = λy(x), 0 < x < π,

y(0) = 0, λy(π) = (λ+ 1)y′(π),

has only the eigenfunctions yk(x) = sin
√
λk x, k ∈ N, with eigenvalues

determined by the equation cot
√
λπ =

√
λ/(λ+ 1), which has one negative

root λ1 ∈ (−2.7,−2.5) and infinitely many positive roots λk, k ≥ 2, where
λ2 ∈ (0, 0.25) and λk > 1 for k ≥ 3.

Since the eigenvalues of the problem

−y′′(x) = λy(x), 0 < x < π, y(0) = y(π) = 0,

are positive and −d1/c1 = −1, it follows that N0 = 1. Consequently, I1 =
[λ1 − 1, λ2 + 1] and Ik = [λk+1 − 1, λk+1 + 1], k = 2, 3, . . . .

Note that any eigenfunction y ∈ S+
1 of problem (3.18)–(3.19) is also an

eigenfunction of the linear problem

−y′′(x) = (λ+ 1)y(x), 0 < x < π,

y(0) = 0, λy(π) = (λ+ 1)y′(π),

which has only the eigenfunctions vk(x) = sin
√
ζk + 1x, k ∈ N, with eigen-

values ζk, k ∈ N, found from the equation cot
√
ζ + 1π = ζ/(ζ + 1)

√
ζ + 1.

It is easy to verify that ζ1 ∈ (−3.25,−3), ζ2 ∈ (−0.75, 0) and ζk > 0.75
for k ≥ 3.
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Therefore, the set D+
1 admits the following representation:

D+
1 = {(ζ1, α sh

√
|ζ1 + 1|x) : α ∈ (0,∞)}

∪ {(ζ2, β sin
√
ζ2 + 1x) : β ∈ (0,∞)} ∪ (I1 × {0}) ⊂ (I1 × (S+

1 ∪ {0})).

If y ∈ S−1 , then problem (3.18)–(3.19) reduces to

−y′′(x) = (λ− 1)y(x), 0 < x < π,

y(0) = 0, λy(π) = (λ+ 1)y′(π),

which has only the eigenfunctions wk(x) = sin
√
ξk − 1x, k ∈ N, with eigen-

values ξk, k ∈ N, found from the equation cot
√
ξ − 1π = ξ/(ξ + 1)

√
ξ − 1.

It can be verified that ξ1 ∈ (−2.4,−2.2), ξ2 ∈ (0.75, 1) and ξk > 1 for k ≥ 3.

Hence, the set D−1 admits the following representation:

D−1 = {(ξ1, γ sh
√
|ξ1 − 1|x) : γ ∈ (−∞, 0)}

∪ {(ξ2, δ sh
√
|ξ2 − 1|x) : δ ∈ (−∞, 0)} ∪ (I1 × {0}) ⊂ (I1 × (S−1 ∪ {0})).

Remark 3.3. It would be interesting to have more information about
the set of bifurcation points of problem (1.1)–(1.3) in Ik × {0}, e.g.: under
what conditions is this set finite? Or when does it contain an interval?, etc.

Acknowledgements. The authors express their gratitude to the refer-
ees for useful comments which have greatly improved the presentation and
readability of the text.

References

[1] Z. S. Aliyev, Global bifurcation of solutions of some nonlinear Sturm–Liouville prob-
lems, News of Baku State Univ. Ser. Phys.-Math. Sci. 2 (2001), 115–120.

[2] T. I. Allakhverdiev, Investigation of some linear and nonlinear Sturm–Liouville
problem with a spectral parameter in the boundary conditions, PhD thesis, Baku,
1991.

[3] H. Berestycki, On some nonlinear Sturm–Liouville problems, J. Differential Equa-
tions 26 (1977), 375–390.

[4] P. A. Binding, P. J. Browne and K. Seddici, Sturm–Liouville problems with eigen-
parameter dependent boundary conditions, Proc. Edinburgh Math. Soc. 37 (1993),
57–72.

[5] P. A. Binding, P. J. Browne and B. A. Watson, Spectral problem for nonlinear
Sturm–Liouville equations with eigenparameter dependent boundary conditions,
Canad. J. Math. 52 (2000), 248–264.

[6] R. Chiappinelli, On eigenvalues and bifurcation for nonlinear Sturm–Liouville op-
erators, Boll. Un. Mat. Ital. A 4 (1985), 77–83.

[7] R. Courant, Zur Theorie der linearen Integralgleichungen, Math. Ann. 89 (1923),
161–178.

[8] R. Courant and D. Hilbert, Methods of Mathematical Physics, I, Interscience, New
York, 1953.

http://dx.doi.org/10.1016/0022-0396(77)90086-9
http://dx.doi.org/10.4153/CJM-2000-011-1
http://dx.doi.org/10.1007/BF01455975


Nonlinear Sturm–Liouville problems 87

[9] M. G. Crandall and P. H. Rabinowitz, Nonlinear Sturm–Liouville eigenvalue prob-
lems and topological degree, J. Math. Mech. 19 (1970), 1083–1102.

[10] G. Dai, Global bifurcation from intervals for Sturm–Liouville problems which are
not linearizable, Electron. J. Qualit. Theory Differential Equations, 2013, no. 65,
7 pp.

[11] E. N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, In-
diana Univ. Math. J. 23 (1974), 1069–1076.

[12] M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equa-
tions, Macmillan, New York, 1965.

[13] A. P. Makhmudov and Z. S. Aliev, Global bifurcation of solutions of certain nonlin-
earizable eigenvalue problems, Differential Equations 25 (1989), 71–76.

[14] G. M. Mamedova, Local and global bifurcation for some nonlinearizable eigenvalue
problems, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan 40 (2014), no. 2,
45–51.

[15] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct.
Anal. 7 (1971), 487–513.

[16] B. P. Rynne, Bifurcation from zero or infinity in Sturm–Liouville problems which
are not linearizable, J. Math. Anal. Appl. 228 (1998), 141–156.

[17] K. Schmitt and H. L. Smith, On eigenvalue problems for nondifferentiable mappings,
J. Differential Equations 33 (1979), 294–319.

[18] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary
conditions, Math. Z. 133 (1973), 301–312.

Ziyatkhan S. Aliyev
Baku State University
and
IMM NAS of Azerbaijan
Baku, Azerbaijan
E-mail: z aliyev@mail.ru

Gunay M. Mamedova
Baku State University

Baku, Azerbaijan
E-mail: m.g.m.400@mail.ru

Received 12.11.2014
and in final form 8.5.2015 (3544)

http://dx.doi.org/10.1512/iumj.1974.23.23087
http://dx.doi.org/10.1016/0022-1236(71)90030-9
http://dx.doi.org/10.1006/jmaa.1998.6122
http://dx.doi.org/10.1016/0022-0396(79)90067-6
http://dx.doi.org/10.1007/BF01177870



	1 Introduction
	2 Global bifurcation of solutions of the nonlinear problem (1.1)–(1.3) for f0
	3  Global bifurcation of solutions of (1.1)–(1.3)
	References

