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Chebyshev and Robin constants on algebraic curves

by Jesse Hart and Sione Ma‘u (Auckland)

Abstract. We define directional Robin constants associated to a compact subset of
an algebraic curve. We show that these constants satisfy an upper envelope formula given
by polynomials. We use this formula to relate the directional Robin constants of the set to
its directional Chebyshev constants. These constants can be used to characterize algebraic
curves on which the Siciak–Zaharjuta extremal function is harmonic.

1. Introduction. In [1], directional Chebyshev constants associated to
a compact subset of a complex algebraic curve were defined and studied.
The aim of the present paper is to relate these constants to pluripotential
theory.

Pluripotential theory has been studied in some depth on complex alge-
braic varieties by Sadullaev [11] and Zeriahi [15]. As in classical pluripo-
tential theory in CN , the Siciak–Zaharjuta extremal function (or the pluri-
complex Green function with pole at infinity) associated to a compact set K
plays a central role. We will denote this function by VK and usually refer to
it simply as the extremal function.

In classical potential theory in C, and for K ⊂ C compact, the logarith-
mic growth of VK is described by the Robin constant of K (denoted ρK),
and in CN , N > 1, this generalizes to the notion of Robin function. In this
paper we define, on an algebraic curve, an analogous notion of directional
Robin constant. Under some additional assumptions, we can construct d di-
rectional Robin constants associated to a compact subset of an algebraic
curve of degree d (d ∈ N). These constants describe the logarithmic growth
of the extremal function along the different directions the curve takes to in-
finity. Our main theorem directly relates these directional Robin constants
to the directional Chebyshev constants defined in [1].

The present paper relies on classical results about the extremal function
for regular compact sets (as given e.g. in [6]); results on curves and varieties
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follow from the classical theory by approximation. To make our approxima-
tion arguments work we need a recent result of Coman, Guedj, and Zeriahi
[5] on extending a psh function of logarithmic growth from a variety in CN
to the whole space.

The extremal function on an algebraic variety is only weakly plurisub-
harmonic, as a stronger notion of plurisubharmonicity may fail at singular
points. This is not a major issue for our main results, as the singular points
on a curve can be handled fairly easily in our proofs. Working on a curve
also allows us to exploit classical potential theory in the plane on occasion.

Section 2 recalls basic facts about the extremal function on an algebraic
variety A, and introduces the notions of A-regularity and A-maximality.
Some approximation lemmas for later use are also given. In Section 3 we
define directional Robin constants on an algebraic curve of degree d that
satisfies a certain condition (∗). This section in particular makes essential
use of the one-variable nature of algebraic curves. In Section 4 we prove an
‘upper envelope’ polynomial formula for directional Robin constants. This
follows by approximation from a polynomial formula for the Robin function
in CN . In Section 5 we prove our main theorem:

Theorem 5.7. Let K be a compact subset of an algebraic curve A that
satisfies (∗), and let λ be a direction of A. Then

e−ρA,K(λ) = τ(K,λ).

Here ρA,K(λ) is the directional Robin constant and τ(K,λ) the direc-
tional Chebyshev constant for the compact set K and the direction λ. The
proof is a straightforward application of the polynomial formula derived in
Section 4.

Finally, in Section 6, we relate the directional Robin and Chebyshev
constants on an algebraic curve to so-called extremal curves associated to
the extremal function of a nonpluripolar compact set in CN .

2. Preliminaries. We will use the following notation and terminology.
Suppose u : Ω → [−∞,∞) is a function on some metric space Ω and A ⊂ Ω
is a subset. Then u∗A : A→ [−∞,∞) is defined by

u∗A(z) := lim sup
t→z, t∈A

u(t).

If u(z) = u∗A(z) for all z ∈ A then we say that u is upper semicontinu-
ous (usc) on A. The function u∗A is called the upper regularization of u
on A. Taking A to be the whole space we recover the usual notions of upper
semicontinuity and upper regularization, and write u∗ = u∗Ω .

In our context Ω will be a domain in CN (usually all of CN ), and A will
be an analytic variety in Ω of pure dimension m ≤ N (usually m = 1). We
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write reg(A) to denote the set of regular points of A (at which A is locally
a complex m-dimensional manifold), and then sing(A) := A \ reg(A) is the
set of singular points.

Let Ω ⊂ CN be an open set, and let A be an analytic variety in Ω of
pure dimension m. Following Sadullaev [11], let P(A) denote the collection
of weakly plurisubharmonic (weakly psh) functions on A: here u ∈ P(A) if
u : A→ [−∞,∞) is usc on A and psh on reg(A). A set T ⊂ A is pluripolar
in A if for every point z ∈ T there is an open neighborhood U of z in CN
and a function u ∈ P(A ∩ U) such that U ∩ T ⊆ {z ∈ U : u(z) = −∞}.

We have the following properties of families of functions in P(A) (cf. [11,
1.1–1.2]):

Proposition 2.1.

(1) If {uj} ⊂ P(A) is a decreasing sequence of functions, then u(z) :=
limj uj(z) also belongs to P(A).

(2) If {uα} ⊂ P(A) is a locally uniformly bounded family of functions
and u(z) = supα uα(z), then the usc regularization of u on A,

u∗A(z) = lim sup
w→z, w∈A

u(w),

also belongs to P(A), and the set {z ∈ A : u(z) < u∗A(z)} is pluripo-
lar in A.

Suppose A is an analytic variety in CN of pure dimension m ≤ N . We
write L(A) for the collection of weakly psh functions of logarithmic growth,
i.e., u ∈ L(A) if u ∈ P(A) and

(2.1) u(z) ≤ log(1 + |z|) + c, ∀z ∈ A,
for some constant c depending on u.

Let K ⊂ A be a compact set. We denote by L(A,K) the class of functions
given by

(2.2) L(A,K) = {u ∈ L(A) : u(z) ≤ 0 if z ∈ K},
and define VA,K : A → (−∞,∞] by VA,K(z) := sup{u(z) : z ∈ L(A,K)}.
With this notation the classical Siciak–Zaharjuta extremal function in CN
is VCN ,K =: VK . We will call the VA,K the extremal function of K on A.
Sadullaev [11] has shown the following.

Theorem 2.2. Let K ⊂ A be compact, where A is an irreducible alge-
braic variety in CN . If K is non-pluripolar in A then (VA,K)∗A ∈ L(A), and
VK(z) = VA,K(z) for all z ∈ A.

While VA,K ≡ VK on A, we will usually write VA,K if we consider the
domain to be A, and VK if we consider the domain to be CN .

The function VA,K satisfies the well-known formula of Siciak and Zahar-
juta [15]:
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Theorem 2.3. For a compact set K ⊂ A, we have

VA,K(z) = sup
{

1
deg p log |p(z)| : p is a polynomial with ‖p‖K ≤ 1

}
.

We will verify a limiting version of this theorem later on.

Definition 2.4. A compact set K ⊂ A is said to be A-regular if VA,K
is continuous on reg(A). Recall also that a compact set K ⊂ CN is regular
if VK is continuous on CN .

We list some results concerning A-regularity. Proofs are omitted. They
follow standard arguments based on the fact that psh functions in L(A) can
be locally smoothed at regular points, and (for property (4)) the fact that
a finite set is (pluri-)polar.

Proposition 2.5. Suppose K ⊂ A is compact, where A is an irreducible
algebraic variety. Then

(1) VA,K is continuous at z ∈ reg(A) if and only if (VA,K)∗A(z) =
VA,K(z) (1).

(2) VA,K is continuous on reg(A) if and only if (VA,K)∗A(z) = 0 for all
z ∈ K.

(3) If K1,K2 are A-regular compact sets, then K1∪K2 is also A-regular.
(4) Let K ⊂ A be a compact set and ζ ∈ A. Set L = K ∪ {ζ}. Then for

all z ∈ A \ {ζ} we have VK(z) = VL(z).

The last property will be useful for handling singular points on an alge-
braic curve. It also provides easy examples of sets that are not A-regular:
if K ⊂ A and ζ ∈ reg(A) \ K, then K ∪ {ζ} is not A-regular whenever
VK(ζ) > 0.

Definition 2.6. Let A ⊂ CN be an algebraic variety. Given an open
subset Ω of reg(A), let us define a function u ∈ P(A) to be A-maximal on
Ω if, given a relatively compact domain D ⊂ Ω (i.e., D is open in reg(A))
and v ∈ P(A), we have

v(z) ≤ u(z) for all z ∈ ∂D ⇒ v(z) ≤ u(z) for all z ∈ D.
We remark that A-maximality of a psh function at regular points may

be given locally in terms of the complex Monge–Ampère operator in local
coordinates. When A is an algebraic curve (m = 1), this says that the
(generalized) Laplacian in local coordinates of an A-maximal function u is
zero, i.e., u is harmonic. The following is proved in [11].

Theorem 2.7. If A is an algebraic curve and K ⊂ A is a compact subset
such that VK is locally bounded on A, then VK is A-maximal on reg(A) \K.
Hence VK is harmonic on reg(A) \K.

(1) Equivalently, VA,K is lower semicontinuous at z, i.e., lim inf
t→z, t∈A

VA,K(t) = VA,K(z).
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We can compute some extremal functions explicitly. Suppose A is an
algebraic curve with the property that

(2.3) A ⊂ {z = (z1, . . . , zN ) ∈ CN : |z1|2 ≥ C(1 + |z2|2 + · · ·+ |zN |2)}
for some constant C > 0. Define π : A → C by π(z) = π(z1, . . . , zN ) := z1.
An easy argument using the maximum principle for harmonic functions
shows that for K := π−1({t ∈ C : |t− a| ≤ r}) (where a ∈ C), we have

(2.4) VK(z) = log+
|z1 − a|

r
.

Remark 2.8. The following example shows that if K is A-regular, then
VA,K may still be discontinuous at a singular point of A. Consider the curve

A = {z = (z1, z2) ∈ C2 : z22 = cz21 − z31},
where c > 0 is a fixed constant; then A has a singular point at (0, 0). There
is a parametrization of A given by

z1(t) = c− t2, z2(t) = t(c− t2), t ∈ C,
and the origin is given by the parameters t = ±

√
c. Consider the following

set parametrized by a small disk:

K = {(z1(t), z2(t)) : |t−
√
c| < ε}.

We claim that away from (0, 0) we have VA,K(z) = 3 log+(|t−
√
c|/ε). One

can check that the right-hand side defines a function in L(A,K) that is
continuous on reg(A), identically zero on K and harmonic on reg(A) \ K.
A standard argument using the maximum principle shows that it must be the
extremal function. However it is not continuous at (0, 0) for ε > 0 sufficiently
small (precisely, ε < 2

√
c), since

lim
z(t)→(0,0)
t→−

√
c

log+
|t−
√
c|

ε
= log

2
√
c

ε
6= 0 = lim

z(t)→(0,0)
t→
√
c

log+
|t−
√
c|

ε
.

We close this section by listing some approximation lemmas that we will
need. We use the following notation: if δ > 0 and K ⊂ CN then we write

(2.5) Kδ := {z ∈ CN : ∃w ∈ K such that |z − w| ≤ δ}.
The Hausdorff distance between compact sets A and B, which we will denote
simply by dist(A,B), is the smallest δ ≥ 0 for which A ⊆ Bδ and B ⊆ Aδ.

Lemma 2.9 ([6, Corollary 5.1.5]). If K ⊂ CN is compact then Kδ is
regular for each δ > 0, and limδ→0 VKδ = VK .

We also want a similar result on an algebraic curve A ⊂ CN , and here
it is convenient to use classical potential theory in the plane. Suppose the
boundary of a compact body D ⊂ A is a union of smooth arcs, and all sin-
gular points of A are in the interior of D. Then using the standard methods
in [10] or [13] in solving the Dirichlet problem, one can construct a harmonic
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function A\D of logarithmic growth that goes to zero at every point of ∂D.
It is easy to see that this function coincides with VA,D, and therefore D is an
A-regular set. The lemma below now follows by approximating a compact
set K from above by compact bodies bounded by smooth arcs. We may
assume that sing(A) ⊂ K by Proposition 2.5(4).

Lemma 2.10. Let K ⊂ A be compact, where A ⊂ CN is an algebraic
curve. Then there is a sequence K1 ⊃ K2 ⊃ · · · of A-regular sets with⋂
jKj ⊇ K and limj→∞ VKj (z) = VK(z) for all z ∈ reg(A).

3. Directional Robin constants. Let A ⊂ CN be an irreducible al-
gebraic curve of degree d. Recall that a linear asymptote of A is a line L in
CN which may be characterized by the property that

lim
|z|→∞
z∈L

|z − zA| = 0;

here zA is the the closest point to L that lies on H ∩ A, where H is the
orthogonal hyperplane to L through z.

Following [1], we will assume that A satisfies the following condition:

(∗) A has d distinct non-parallel linear asymptotes L1, . . . , Ld and for
each j, Lj may be parametrized by t 7→ cj + tλj (t ∈ C), where
cj = (cj1, . . . , cjN ), λj = (1, λj2, . . . , λjN ), and

(3.1) λjm 6= λkm if j 6= k for all m = 2, . . . , N.

If A has d distinct non-parallel linear asymptotes, then almost any rotation
of coordinates will place us in this situation. In particular, no asymptote is
parallel to any hyperplane of the form z1 = c (c ∈ C), which we will refer
to as a vertical hyperplane. In other words, there are no vertical asymp-
totes, and this also means that A satisfies (2.3). We call {λj}dj=1 the set of
directions of A.

Remark 3.1. None of the proofs in this paper require (3.1), but it is
essential for the arguments in [1]. We use (3.1) implicitly in the next section
when we make use of results in that paper.

Lemma 3.2. Let ε > 0. Then there exists R = R(ε) > 0 and a ball
B = B(R) = {z : |z| < R} ⊂ CN such that:

(1) A \B ⊆ reg(A);
(2) A \B = D1 ∪ · · · ∪Dd, where D1, . . . , Dd are domains in A that are

pairwise disjoint; and
(3) for each j = 1, . . . , d, dist(Dj , Lj) < ε.

Proof. The singular points of A are a finite set. The set
⋃
j<k(Lj ∩ Lk)

is also finite. As non-parallel lines diverge, the distance between them grows
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linearly. Hence when j 6= k there is r0 > 0 and c = c(j, k) > 0 with
Lj ∩ Lk ⊂ B(r0) and dist(Lj \B(r), Lk \B(r)) ≥ cr when r > r0.

Given ε > 0, we can choose R0 > 0 sufficiently large that B(R0) contains
all singular points of A, dist(Lj \B(R0), Lk \B(R0)) > 3ε, and, by the fact

that the Lj ’s are asymptotes of A, A \B(R0) ⊂
⋃d
j=1(Lj)

ε.

For each j, let Dj := (A\B(R0))∩(Lj)
ε; then by the previous paragraph

dist(Dj , Dk) > ε if j 6= k. In particular, the Dj ’s are disjoint. The lemma
follows by choosing any R > R0.

Lemma 3.3. For each j = 1, . . . , d:

(1) The projection π : Dj → C given by z = (z1, . . . , zN ) 7→ z1 = π(z) is
one-to-one.

(2) The limit ρA,K(λj) := lim|z|→∞, z∈Dj (VK(z)− log |z1|) exists for any
compact set K that is non-pluripolar in A.

Proof. Since A is of degree d, for each c ∈ C the intersection A∩{z1 = c}
has precisely d points counting multiplicity. Choose R > 0 as in the previous
lemma. If |c| > R then (A ∩ {z1 = c}) ⊂ (A \B) =

⋃d
j=1Dj , and hence

A ∩ {z1 = c} =

d⋃
j=1

Dj ∩ {z1 = c}.

For each j, Lj ∩ {z1 = c} is non-empty, since Lj is not a vertical line.
As Lj is an asymptote of Dj , it follows easily that Dj ∩ {z1 = c} is also
non-empty. The intersection Dj ∩ {z1 = c} has precisely one point, since
the intersection A ∩ {z1 = c} has d points. Hence π : Dj → C given by
π(z) = π(z1, . . . , zN ) = z1 is one-to-one.

Let ζj : π(Dj) → Dj be the local inverse, π ◦ ζj(z) = z, and on a small
disk about the origin in C define

(3.2) h(s) := VK(ζj(1/s)) + log |s|.
By Theorems 2.2 and 2.7, VK is harmonic off K. Since VK ∈ L(A), it is
easy to see that h is harmonic away from s = 0 and bounded in a neighbor-
hood of s = 0. So h extends harmonically, hence smoothly, across s = 0. In
particular,

h(0) = lim
s→0

h(s) = lim
s→0

(VK(ζj(1/s)) + log |s|) = lim
|z1|→∞

(VK(ζj(z1))− log |z1|)

= lim
|z|→∞
z∈Dj

(VK(z)− log |z1|).

Finally, set ρA,K(λj) := h(0).

Definition 3.4. We call the number ρA,K(λj) the Robin constant for
K in the direction λj .
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Since, by construction, z/z1 → λj if and only if |z1| → ∞ and z ∈ Dj ,
we have

(3.3) ρA,K(λj) = lim
|z1|→∞
z/z1→λj
z∈A

(VK(z)− log |z1|).

Lemma 3.5. Suppose K1 ⊃ K2 ⊃ · · · is a sequence of compact subsets
of A with K =

⋂
nKn and limn→∞ VKn = VK . Let λ be a direction of A.

Then limn→∞ ρA,Kn(λ) = ρA,K(λ).

Proof. In a neighborhood of the origin in C one can construct harmonic
functions hn and h using VKn and VK , as in (3.2). It is easy to see (e.g.
by Harnack’s theorem) that hn(0) ↗ h(0) as n → ∞, and this implies the
conclusion.

4. A polynomial formula for directional Robin constants. Let
A be an irreducible algebraic curve that satisfies the condition (∗) in the
previous section, and let λ be one of the directions of A. The condition that
λ is a direction of A may be rephrased in terms of projective space: embed
CN into CPN via the usual map

(4.1) z = (z1, . . . , zN ) ↪→ [1 : z1 : · · · : zN ] = [1 : z] = Z,

where Z = [Z0 : Z1 : · · · : ZN ] denotes homogeneous coordinates and
H∞ := {Z0 = 0} is the hyperplane at infinity. Let us continue to denote by
A the closure of A in CPN ; then λ = (1, λ2, . . . , λN ) is a direction of A if
and only if

[0 : λ] = [0 : 1 : λ2 : · · · : λN ] ∈ A ∩H∞.

Given ε > 0, choose R > 0 as in the previous section such that A \B =
D1 ∪ · · · ∪Dd, where as in Lemma 3.2 the Dj ’s are disjoint and Dj ⊂ (Lj)

ε.

We recall some standard notation.

Notation 4.1.

(1) Given a multi-index α = (α1, . . . , αN ) ∈ ZN+ , write zα = zα1
1 · · · z

αN
N

and |α| = α1 + · · ·+ αN .
(2) For a polynomial p(z) =

∑
|α|≤m aαz

α, write p̂(z) =
∑
|α|=m aαz

α for
its leading homogeneous part.

(3) Write ‖p‖K = supK |p(z)| for the sup norm of p on the compact
set K.

The aim of this section is to prove the following formula.

Theorem 4.2. Let A ⊂ CN be an irreducible algebraic curve that satis-
fies (∗), and let K ⊂ A be a compact subset that is non-pluripolar on A. Let
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λ = (1, λ2, . . . , λN ) be a direction of A. Then

(4.2) ρA,K(λ) = sup
{

1
deg p log |p̂(λ)| : p is a polynomial, ‖p‖K ≤ 1

}
.

Proof. Let P be a polynomial with ‖P‖K ≤ 1. Then on A we have
1

degP log |P | ∈ L(A,K) so that 1
degP log |P | ≤ VA,K . Fix a direction λ of A.

We have

1
degP log |P̂ (λ)| = lim

t→0
z→λ

(
1

degP log |P (z/t)|+ log |t|
)

≤ lim
(t,z)→(0,λ)

[t:z]∈A

(VA,K(z/t) + log |t|) = ρA,K(λ).

Since P was arbitrary, we see that

(4.3) sup
{

1
degP |P̂ (λ)| : P a polynomial in CN with ‖P‖K≤1

}
≤ρA,K(λ).

We will end the proof for now and complete it at the end of the section.

We now review some basic results in classical pluripotential theory con-
cerning the Lelong class L of global psh functions, given by L ≡ L(CN ) as
in (2.1).

Let R ⊂ CN be a regular compact set. This means that R is non-
pluripolar and that its Siciak–Zaharjuta extremal function

(4.4) VR(z) := sup{u(z) : u ∈ L, u ≤ 0 on R}
is a continuous function in the class L.

The Robin function ρR : CN \ {0} → [−∞,∞) of R is defined by

ρR(z) := lim sup
|λ|→∞

(VR(λz)− log |λ|).

It is easy to verify that ρR is logarithmically homogeneous, i.e.,

ρR(λz) = ρR(z) + log |λ|, λ ∈ C.

The following proposition is a consequence of results of Bedford and
Taylor [2]. (See also [3, Corollaries 4.4 & 4.6].)

Proposition 4.3. Let R ⊂ CN be a regular compact set. Then ρR is
continuous on CN \ {0} and

(4.5) ρR(z) = lim
|λ|→∞

(VR(λz)− log |λ|),

i.e., the limit exists. Moreover, the limit is uniform on the sphere {|z| = 1},
i.e., |VR(λz)− log |λ|−ρR(z)| ≤ ε(λ), where the quantity ε(λ) is independent
of z and ε(λ)→ 0 as |λ| → ∞.

Let (t, z) denote coordinates in CN+1 where t ∈ C and z ∈ CN . Following
Siciak, define the function hR : CN+1 → R by
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(4.6) hR(t, z) =


|t|eVR(z/t) if t 6= 0,

eρR(z) if t = 0, z 6= 0,

0 if (t, z) = (0, 0).

It is easy to see that hR is homogeneous, i.e., hR(λt, λz) = |λ|hR(t, z) for
all λ ∈ C. As a consequence of Proposition 4.3, one can also verify that hR
is a non-negative, continuous psh function on CN+1 that satisfies h−1R (0) =
{(0, 0)}. The following is proved in [12] (see also [6, Theorem 5.1.6]).

Theorem 4.4. Let R ⊂ CN be a regular compact set. With hR defined
as in (4.6), we have

hR(t, z) = sup{|Q(t, z)|1/degQ : Q is a homogeneous polynomial

with |Q|1/degQ ≤ hR}.

Corollary 4.5. Let R ⊂ CN be a regular compact set. Then

(4.7) ρR(z) = sup
{

1
deg p log |p̂(z)| : p is a polynomial with ‖p‖R ≤ 1

}
.

Sketch of proof. The result is well-known, so we will only sketch a
proof (2). Using continuity of hR at points of the form (0, z) with z 6= 0, one
shows that

eρR(z) = sup{|Q(0, z)|1/degQ : Q is a homogeneous polynomial

with |Q|1/degQ ≤ hR}.
The desired formula (4.7) is essentially the logarithm of the above equation.
To see this, suppose p(z) := Q(1, z). If deg p = degQ then it is easy to verify
that p̂(z) = Q(0, z) and ‖p‖R ≤ 1.

Recall that an algebraic variety W ⊂ CN is said to be homogeneous if
z ∈W implies λz ∈W for all λ ∈ C. Equivalently, there are a finite number
of homogeneous polynomials p1, . . . , pm such that

W = {z ∈ CN : p1(z) = · · · = pm(z) = 0}.
Proposition 4.6. Let W ⊂ CN be a homogeneous algebraic variety and

u : W → [−∞,∞) a psh function on W that is continuous on W \ {0} and
logarithmically homogeneous, i.e., u(λz) = u(z) + log |λ| for all λ 6= 0. Let
Z := {z ∈ W : u(z) ≤ 0}. Then u+(z) := max{u(z), 0} = VW,Z(z) for all
z ∈W .

Proof. Clearly VW,Z = u+ on Z, so take z ∈ W \ Z. Then ϕ(λ) :=
VW,Z(λz)−u+(λz) defines a bounded subharmonic function on the open set
Ω = {λ ∈ C : λz 6∈ Z} with limλ→ζ ϕ(ζ) = 0 for all ζ ∈ ∂Ω. Hence by the
maximum principle, ϕ ≤ 0 on Ω; in particular ϕ(1) ≤ 0, so VW,Z(z) ≤ u+(z).

(2) The result is a simple consequence of [14, Theorem 2].
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On the other hand, VW,Z(z) ≥ u+(z) is immediate since u+ ∈ L(W,Z). The
result follows.

Let W ⊂ CN be an algebraic variety. Recall that a compact set K ⊂W
is W -regular if VW,K is continuous.

Lemma 4.7. Let W ⊂ CN be an algebraic variety and let K1,K2 be
compact sets with K1 ⊂ K2 ⊂W . If K1 is W -regular then ‖VK1 −VK2‖W ≤
‖VK1‖K2.

Proof. Define u : W → (−∞,∞] by u(z) := VW,K1(z) − ‖VK1‖K2 . Since
VW,K1 is continuous, VW,K1 ∈ L(W ) and hence u ∈ L(W,K2), so that u ≤
VW,K2 . On the other hand, VK2 ≤ VK1 on W since L(W,K2) ⊂ L(W,K1).
The result follows.

Corollary 4.8. Let K ⊂ W be a W -regular compact set. Given
δ > 0 define Kδ

W := Kδ ∩W (where Kδ ⊂ CN is as defined in (2.5)). Then
‖VK − VKδ

W
‖W → 0 as δ → 0.

To compare an extremal function in CN with an extremal function on
an algebraic variety W ⊂ CN , we will use an extension result proved in [5].
For this we need a stronger notion than weak plurisubharmonicity.

Definition 4.9. A function u : W → [−∞,∞) is plurisubharmonic
(psh) at z ∈ W if there exists a neighborhood U of z in CN and a psh
function ũ : U → [−∞,∞) such that ũ|U∩W = u. If u is psh at each z ∈ W
then u is said to be psh on W .

Remark 4.10. Obviously if u is psh on W then it is weakly psh on W .
Observe also that a weakly psh function is psh at each point of reg(A): if
W is of pure dimension m then one can make a local (holomorphic) change
of coordinates at a regular point a so that a is the origin and W is the
hyperplane given by zm+1 = · · · = zN = 0, and we may define ũ(z) :=
u(z1, . . . , zm, 0, . . . , 0).

Proposition 4.11 (cf. [5, Proposition 3.1]). Let W be an algebraic vari-
ety in CN , which we extend projectively to W ⊂ CPN = CN ∪H∞. Suppose
for all a ∈W∩H∞ that the germ of W at a is irreducible. Suppose u ∈ L(W )
is psh at each point of W . Then there exists v ∈ L(CN ) such that v|W ≡ u.

In this proposition CN is extended to CPN via the usual embedding
CN ↪→ CPN given by (4.1).

We only need a special case of the previous result. Let A ⊂ CN be
an algebraic curve of degree d with d distinct directions λ1, . . . , λd. Then
extending A projectively, we obtain A ∩H∞ = {λj}dj=1. These are all reg-
ular points of A since by Bézout’s theorem they must intersect H∞ with
multiplicity one. Hence the germ of A at each of these points is irreducible.
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Corollary 4.12. Suppose A is an algebraic curve of degree d with d
distinct directions. Then for every u ∈ L(A) that is psh on A there exists
v ∈ L(CN ) such that v|A ≡ u.

Suppose K ⊂ A is an A-regular compact set that covers the singular
points of A. Precisely, if a ∈ A is a singular point then there is a neighbor-
hood U of a in CN such that (U ∩A) ⊆ K. Equivalently,

(4.8) A \K ⊆ reg(A) (where we take the usual closure in CN ).

This guarantees that VK is continuous on A, and hence weakly psh. It is
easy to see that VK is in fact psh on A: it extends locally at each regular
point (see the previous remark), and extends locally at each singular point
using the zero function.

Lemma 4.13. Suppose K ⊂ A is compact and A-regular, and A \K ⊂
reg(A). Then

(4.9) ‖VK − VKε‖A → 0 as ε→ 0.

Proof. Let η>0. Using Corollary 4.8, choose δ ∈ (0, η) with ‖VK−VKδ
A
‖A

< η, where Kδ
A = Kδ ∩ A. By Lemma 2.10, we can find an A-regular set

Lδ ⊃ Kδ
A for which ‖VK − VLδ‖A < 2η.

Now, Lδ satisfies (4.8), so by the previous paragraph, VLδ is psh on A.
Let uδ be the extension to L(CN ) of VA,Lδ given by Corollary 4.12. For

all z ∈ K, the set Ωδ := {z ∈ CN : uδ(z) < δ} is an open neighborhood
of K in CN , since uδ is usc. Hence we can find ε0 ∈ (0, δ) such that for
all ε ∈ (0, ε0), K

ε ⊂ Ωδ; it follows that uδ(z) − δ ∈ L(CN ,Kε) and thus
uδ(z)− δ ≤ VKε(z) for all z ∈ CN . When z ∈ A this means that

VA,Lδ(z)− δ ≤ VKε(z) ≤ VK(z),

so that 0 ≤ VK(z)− VKε(z) ≤ VK(z)− VA,Lδ(z) + δ. Hence

‖VK − VKε‖A ≤ ‖VK − VA,Lδ‖A + δ ≤ 3η if ε ∈ (0, ε0).

As η > 0 is arbitrary, the right-hand side can be made arbitarily small with
an appropriately chosen ε.

Remark 4.14. Classical pluripotential theory already gives the point-
wise convergence VKδ(z)↗ VK(z) for all z ∈ CN , but it is not uniform since
it includes convergence to +∞ for points z ∈ CN \A.

Define Ah ⊂ CN+1 as the closure in CN+1 of the set {(t, tz) ∈ CN+1 :
z ∈ A}. It is easy to see that Ah is a homogeneous variety, and

(t, w) ∈ Ah \ {(0, 0)} if and only if [t : w] ∈ A
in homogeneous coordinates (cf. (4.1)). In addition, Ah is irreducible if and
only if A is irreducible. If λ is a direction of A and K ⊂ A is a compact
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A-regular set, then by (3.3),

(4.10) ρK(λ) = lim
(t,z)→(0,λ)
(t,z)∈Ah

(VK(z/t) + log |t|).

Lemma 4.15. Let K ⊂ A be an A-regular compact set that satisfies
(4.8), where A ⊂ CN is an irreducible algebraic variety. Given δ > 0, define
the function hKδ : CN+1 → [0,∞) as in (4.6), replacing R by Kδ. Define
hK : Ah → [0,∞) similarly by

hK(t, z) =


|t|eVK(z/t) if t 6= 0 and (t, z) ∈ Ah,
eρA,K(z) if t = 0, z 6= 0 and (0, z) ∈ Ah,
0 if (t, z) = (0, 0).

Then hKδ ↗ hK on Ah as δ ↘ 0.

Proof. The conclusion is obvious at (0, 0), and when (t, z) ∈ Ah with
t 6= 0 it follows from the convergence VKδ ↗ VK .

When t = 0, z 6= 0, we need to show that ρKδ(z)↗ ρA,K(z) as δ ↘ 0. Fix
z 6= 0 with (0, z) ∈ Ah and let ε > 0. Then by Lemma 3.3 and Proposition 4.3
we can choose λ sufficiently large and z̃ sufficiently close to z such that
λz̃ ∈ A and

|VKδ(λz̃)− log |λ| − ρKδ(z)| < ε, |VK(λz̃)− log |λ| − ρA,K(z)| < ε.

By Lemma 4.13,

|ρA,K(z)− ρKδ,A(z)| ≤ |VK(λz̃)− VKδ(λz̃)|+ 2ε ≤ ‖VK − VKδ‖A + 2ε.

Since ε was arbitrary, |ρK(z)−ρKδ(z)| ≤ ‖VK −VKδ‖A, and by Lemma 4.13
again, this goes to zero as δ → 0. Since ρKδ is monotone in δ, ρKδ ↗ ρK .

Corollary 4.16. Under the hypotheses of the previous lemma, the con-
vergence hKδ ↗ hK as δ ↘ 0 is uniform on some open neighborhood in Ah
of the set {(t, z) ∈ Ah : t = 0, z1 = 1}.

Proof. If z 6= 0 then (0, z) ∈ Ah if and only if [0 : z] ∈ A ∩H∞, so

S := {(t, z) = (t, z1, . . . , zN ) ∈ Ah : t = 0, z1 = 1}
is a finite set. Hence it is contained in a bounded open set D (in Ah). Since
K is A-regular, the continuity of VA,K together with equation (4.10) shows
that hK is continuous on Ah \ {(0, 0)}. Hence the convergence hKδ ↗ hK is
uniform on D by Dini’s theorem.

Proposition 4.17. Suppose K ⊂ A is an A-regular set satisfying (4.8).
Then

(4.11) ρA,K(λ) ≤ sup
{

1
degP |P̂ (λ)| :

P is a polynomial in CN with ‖P‖K ≤ 1
}
.
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Proof. Given δ > 0, define Kδ as in (2.5). Then Kδ is regular, so by
Theorem 4.4,

(4.12) hKδ(t, z) = sup{|Q(t, z)|1/degQ : Q is a homogeneous polynomial

in CN+1 with |Q|1/degQ ≤ hKδ}.

Let Q be a homogeneous polynomial in CN+1 for which |Q|1/degQ ≤ hKδ .
Define the polynomial P on CN by P (z) := Q(1, z). If z ∈ K then

|P (z)| = |Q(1, z)| ≤ (hKδ(1, z))degQ ≤ (hK(1, z))degQ = eVK(z) degQ = 1.

Hence ‖P‖K ≤ 1. Also, we have degP ≤ degQ, and Q(0, z) = 0 if degQ >

degP ; otherwise, if degQ = degP then Q(0, z) = P̂ (z). Equation (4.12)
implies, for all z ∈ CN and δ > 0, that

hKδ(0, z) ≤ sup{|P̂ (z)|1/degP : P is a polynomial in CN with ‖P‖K ≤ 1}.
Now take z = λ where λ = (1, λ2, . . . , λN ) is a direction of A. Then

(0, λ) ∈ Ah, so applying Corollary 4.16 we get

eρA,K(λ) = hK(0, λ) = lim
δ→0

hKδ(0, λ)

≤ sup{|P̂ (λ)|1/degP : P is a polynomial in CN with ‖P‖K ≤ 1
}
.

Equation (4.11) follows upon taking logarithms.

The above proposition together with (4.3) yields Theorem 4.2 for A-
regular sets that cover singular points. The general case will follow by ap-
proximation.

End of the proof of Theorem 4.2. Let L := K ∪ sing(A). Then L is a
compact set such that VA,K(z) = VA,L(z) for all z 6∈ L (using Proposition
2.5(4)), and hence ρA,L(λ) = ρA,K(λ). Next, by Lemma 2.10 we can find a
sequence L1 ⊃ L2 ⊃ · · · of A-regular sets with

⋂
n Ln = L. Then for each n,

we have

ρA,Ln(λ) ≤ sup
{

1
deg p log |p̂(λ)| : P is a polynomial in CN with ‖P‖Ln ≤ 1

}
≤ sup

{
1

deg p log |p̂(λ)| : P is a polynomial in CN with ‖P‖K ≤ 1
}

≤ ρA,K(λ),

where the first inequality uses (4.11) and the last inequality uses (4.3). Let-
ting n→∞, we have ρA,Ln(λ)↗ ρA,L(λ) = ρA,K(λ) on the left-hand side by
Lemma 3.5. Hence the last inequality is an equality, proving the theorem.

5. Directional Chebyshev constants. In this section we use Theo-
rem 4.2 to relate directional Robin constants to directional Chebyshev con-
stants. Throughout this section A ⊂ CN is an irreducible algebraic curve
that satisfies condition (∗) in Section 3.
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Directional Chebyshev constants for a compact set K ⊂ A were studied
in [1]. We recall the basic notions and results. For a positive integer n we
will denote by D(n) an unspecified polynomial of degree ≤ n.

Consider the factor ring of polynomials on A; polynomials p and q are
considered to be equivalent if p(z) = q(z) for all z ∈ A. For each equivalence
class, one can construct a standard representative by a generalized division
algorithm; this polynomial is called a normal form. The collection of normal
forms is denoted by C[A].

Recall also the notation p̂ from the previous section (Notation 4.1).

Proposition 5.1 (see [1, Section 4]). Let λ = (1, λ2, . . . , λN ) be a direc-
tion of A. Then there is a unique polynomial vλ ∈ C[A] of minimal degree
such that:

(1) vλ(λ) = 1 and vλ(λ̃) = 0 for any other direction λ̃ 6= λ.
(2) For any polynomial p in CN ,

p(z)vλ(z) = p̂(λ)zdeg p1 vλ(z) +D(deg p+ degvλ − 1).

If w is any other polynomial with the above properties, then w(z) = za1vλ(z)
where a = degw − degvλ.

Definition 5.2. Given a direction λ of A, we call vλ the minimal di-
rectional polynomial for the direction λ. We also define for a positive integer
n the directional polynomial

vλ,n(z) := zn−degvλ1 vλ(z)

of degree n.

Directional Chebyshev constants are defined in terms of directional poly-
nomials:

Definition 5.3. Suppose K ⊂ A is compact and λ is a direction of A.
Define

Tn(K,λ) := inf{‖p‖K : p = vλ,n(z) +D(n− 1)}1/n,
τ(K,λ) := lim sup

n→∞
Tn(K,λ).

We call a polynomial of degree n which attains the infimum in the defini-
tion of Tn(K,λ) a Chebyshev polynomial of degree n in the direction λ, and
Tn(K,λ) itself is the directional Chebyshev constant of K of order n in the
direction λ. Finally τ(K,λ) is the directional Chebyshev constant of K for
the direction λ.

It was proved in [1] that

(5.1) τ(K,λ) = lim
n→∞

Tn(K,λ),

i.e., the lim sup in Definition 5.3 may be replaced by the limit.
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For a compact set K let

Λn(z,K) := sup{|q̂(z)| : ‖q‖K ≤ 1, deg q ≤ n}.
An easy consequence of Theorem 4.2 is the following:

Lemma 5.4. Let K⊂A be compact. Then eρA,K(λ)=limn→∞ Λn(λ,K)1/n

for any direction λ = (1, λ2, . . . , λN ) of A.

We relate Λn(z,K) to directional Chebyshev constants:

Lemma 5.5. Suppose that K ⊂ A is compact and non-pluripolar in A,
and suppose that λ is a direction of A. Then

Λn(λ,K) ≤ ‖vλ‖KTn+degvλ(K,λ)−(n+degvλ)

for a sufficiently large positive integer n.

Proof. Let {pj} be a sequence of polynomials satisfying ‖pj‖K ≤ 1,
deg pj = n, and limj→∞ |p̂j(λ)| = Λn(λ,K). Since K is not pluripolar in A,
it follows that Λn(λ,K)1/n → eρK(λ) 6= 0 as n → ∞. When n and j are
sufficiently large, then |p̂j(λ)| 6= 0 and

vλ(z)pj(z)

|p̂j(λ)|
= vλ,n+degvλ(z) +D(n− 1),

by property (2) of vλ in Proposition 5.1, and this implies that

Tn+degvλ(K,λ)n+degvλ ≤ ‖vλpj‖K
|p̂j(λ)|

≤ ‖vλ‖K
|p̂j(λ)|

.

We note that this inequality holds for each member of the sequence {pj}j∈N
and so we may take the limit on the right-hand side as j →∞. This gives

Tn+degvλ(K,λ)n+degvλ ≤ ‖vλ‖K
Λn(λ,K)

.

Hence Λn(λ,K) ≤ ‖vλ‖KTn+degvλ(K,λ)−(n+degvλ).

Lemma 5.6. Suppose that K ⊂ A is compact and non-pluripolar, and
suppose that λ is a direction of the curve A. Then Tn(K,λ)−n ≤ Λn(λ,K).

Proof. Let p be a Chebyshev polynomial of degree n for K in the direc-
tion λ. We note that this means that p̂(z) = vλ,n(z) and ‖p‖K = Tn(K,λ)n.
Let q(z) = p(z)/‖p‖K . Since ‖q‖K = 1 it follows that

Tn(K,λ)−n =
1

‖p‖K
=
|p̂(λ)|
‖p‖K

= |q̂(λ)| ≤ Λn(λ,K).

Hence Tn(K,λ)−n ≤ Λn(λ,K).

We close this section with the main theorem of the paper.

Theorem 5.7. Let K ⊂ A be compact and let λ be a direction of A.
Then

e−ρA,K(λ) = τ(K,λ).
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Proof. Using Lemmas 5.5 and 5.6 we have

Λn(λ,K) ≤ ‖vλ‖KTn+degvλ(K,λ)−(n+degvλ) ≤ ‖vλ‖KΛn+degvλ(λ,K).

Noting that ‖vλ‖K is just a constant, taking nth roots and the limit as
n→∞ gives the result by Lemma 5.4.

6. Extremal curves. Let K ⊂ CN be a regular compact set. It is
known that in certain special cases the extremal function VK has extremal
curves, i.e., holomorphic curves in CN \ K on which the restriction of VK
is harmonic. When K is the closure of a bounded strictly lineally convex
domain with smooth boundary, it was shown by Lempert ([7], [8]) that
through each point of CN \K there is an extremal curve, and the collection
of these curves gives a smooth foliation of CN \K.

When K ⊂ RN ⊂ CN is a real convex body, the existence of extremal
curves through each point of CN \ K was shown in [9] for K symmetric,
and in [4] for an arbitrary convex body. In both cases the extremal curves
are contained in complex ellipses (algebraic curves of degree 2) whose real
points are inscribed in K. Proving the existence of extremal curves for VK
is a hard problem and more general existence results are not known. All of
the results just described make essential use of the fact that K is assumed
to be convex or lineally convex.

In this section, we relate extremal curves to the Robin and Chebyshev
constants considered earlier.

Lemma 6.1. Let K ⊂ CN be a regular compact set for which A∩K 6= ∅,
where A ⊂ CN is an irreducible algebraic curve. Then VK ≤ VK∩A, and if
A ∩K is A-regular then e−ρA,K∩A(λ) ≤ e−ρK(λ).

Proof. Since K ∩A ⊂ K it follows that VK ≤ VK∩A.
If A ∩K is A-regular then VA,A∩K ∈ L(A) and

ρA,K(λ) = lim
(t,z)→(0,λ)
(t,z)∈Ah

(VA,K∩A(z/t) + log |t|)

≥ lim
(t,z)→(0,λ)
(t,z)∈Ah

(VK(z/t) + log |t|) = ρK(λ),

where we use Proposition 4.3 for the last equality. The conclusion follows
immediately.

For convenience we will use the following notation below. Given a com-
pact set K ⊂ CN and a variety A ⊂ CN , write

VA,K := VA,K∩A and ρA,K := ρA,K∩A.

Let Lλ be the linear asymptote of A in the direction λ. Choose ε > 0 and
R > 0 such that Dλ := (Lλ)ε ∩ (A \ B(R)) is a connected manifold whose
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projection to the z1-axis, π : Dλ → C given by π(z) = π(z1, . . . , zN ) = z1,
is one-to-one (as in Lemmas 3.2–3.3).

Lemma 6.2. Suppose that K ⊂ CN is a regular compact set and that
K ∩ A is A-regular, where A is an irreducible algebraic curve. If ρK(λ) =
ρA,K(λ) then VK(z) = VK,A(z) for all z ∈ Dλ.

Proof. Let Ω := {0}∪{s ∈ C : ∃z ∈ Dλ such that π(z) = 1/s}. It is easy
to see that Ω is an open neighborhood of the origin. Define u : Ω \ {0} →
[−∞,∞) by

u(s) := VK(ζ(1/s))− VA,K(ζ(1/s)),

where ζ : π(Dλ) → Dλ is the local inverse of the projection π (as in the
proof of Lemma 3.3). Clearly u ≤ 0. Also, u is subharmonic on Ω \ {0}
since VK is psh, s 7→ ζ(1/s) is holomorphic, and VA,K is harmonic on Dλ

(Theorem 2.7). Since K is regular, VK(ζ(1/s)) → ρK(λ) (Proposition 4.3);
similarly, VA,K(ζ(1/s))→ ρA,K(λ) by equation (3.3). Hence u extends con-
tinuously, and therefore subharmonically, to all of Ω with u(0) = 0. By the
maximum principle for subharmonic functions, u ≡ 0 on Ω. The conclusion
follows easily for all z = ζ(1/s) ∈ Dλ.

Proposition 6.3. Let A be an irreducible algebraic curve and λ a di-
rection of A. Suppose that K ⊂ CN is a regular compact set and A ∩K is
A-regular. If ρK(λ) = ρA,K(λ) then VK(z) = VA,K(z) for all z in the con-
nected component (in reg(A)) of reg(A) \ K that contains the direction λ
(i.e., the component of reg(A) that contains [0 : λ] when we extend A pro-
jectively to CPN ). Hence VK is harmonic on this component.

Proof. At each point z ∈ reg(A), VA,K is harmonic (Theorem 2.7), and
so the function VK − VA,K is subharmonic in an open neighborhood of z in
reg(A). Together with the fact that VK − VA,K is continuous, one can use a
standard argument (involving subharmonicity and the maximum principle)
to show that the set {z ∈ reg(A) \K : VK(z) − VA,K(z) = 0} is both open
and closed in reg(A). Hence it must be a union of connected components;
in particular, it contains any component of reg(A) that meets Dλ, i.e., the
component containing the direction λ.

Remark 6.4. Note that for any irreducible algebraic curve W ⊂ CN and
compact set K ⊂ CN we have VW,K ≥ VK everywhere by definition (since
W ∩K ⊆ K). Hence for any direction λ of W , we have ρW,K(λ) ≥ ρK(λ).
If there exists some curve A for which ρA,K(λ) = ρK(λ), then the minimum
possible value is attained, so that ρA,K(λ) = infW ρW,K(λ). In addition, if
A has property (∗) of Section 3, then by Theorem 5.7 this implies that

(6.1) τA(K ∩A, λ) = sup
W

τW (K ∩W,λ).
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where the sup is taken over all irreducible algebraic curvesW that satisfy (∗).
This gives a necessary property of extremal curves formulated in terms of
Chebyshev constants.

Suppose W is an irreducible algebraic curve of degree d that satisfies
property (∗), and {λ1, . . . , λd} are its asymptotic directions. Set

τW (K ∩W ) =
( d∏
j=1

τW (K ∩W,λj)
)1/d

,

and call this quantity the principal Chebyshev constant.

The principal Chebyshev constant coincides with a notion of transfi-
nite diameter studied in [1]. In that paper, a basis of monomials for the
polynomials on W was constructed by Groebner basis techniques. Let us
denote this basis by {zα(j)}∞j=1, with the monomials enumerated according
to some graded ordering (here α(j) is a multi-index for each j, and we have
deg zα(j) ≤ deg zα(j+1)).

Write V (ζ1, . . . , ζν) = det
[
zα(j)(ζk)

]ν
j,k=1

for a finite set of points

{ζ1, . . . , ζν}, and Vν = Vν(K ∩W ) = max{|V (ζ1, . . . , ζν)| : ζj ∈ K ∩W, ∀j}.
The transfinite diameter of K ∩W on W is given by

dW (K ∩W ) = lim
s→∞

V 1/ls
ms

where ms is the number of monomials of degree ≤ s and where ls =∑ms
ν=1 ν(mν −mν−1) is the sum of the degrees.

The main theorem of [1] states that

τW (K ∩W ) = dW (K ∩W ),

which is a direct analog of the classical result of Fekete–Szegö. Together
with (6.1) and Proposition 6.3, this leads to the following.

Corollary 6.5. Let K ⊂ CN be a regular compact set. Suppose an ir-
reducible algebraic curve A satisfies (∗), and also every connected component
of A \K is an extremal curve for VK . Then

(6.2) dA(K ∩A) = sup
W

dW (K ∩W ),

where the supremum is taken over all irreducible algebraic curves W satis-
fying (∗).

We illustrate the above ideas on real convex bodies.

Example 6.6. The existence of extremal curves is known when K is a
compact convex body in RN ⊂ CN . The main result of [4] says that extremal
curves for VK lie on complex ellipses whose real points are inscribed in K.
It is also shown that such a complex ellipse, E, has a parametrization of the
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form

t 7→ a+ b/t+ bt, t 6= 0,

where a ∈ R2 and b ∈ C2. The points at infinity of the projective closure
E ⊂ CPN may be computed by letting t → 0 and t → ∞. The real points
of E, contained in K, form the real ellipse ER given by

eiθ 7→ a+ 2 Re(b) cos θ + 2 Im(b) sin θ, θ ∈ R.

This shows that a is the center of the ellipse ER (in R2), while the parameter
b gives its eccentricity and orientation.

In the setting of Proposition 6.3 and Corollary 6.5, we have reg(E) = E,
and the real ellipse ER = E∩K divides E into two connected components, as
can be seen immediately from the parametrization. One component contains
the direction [0 : b] and the other contains the direction [0 : b]. These
components form a pair of conjugate analytic disks on which VK is harmonic.
Hence equation (6.2) holds here with A = E.

We close the paper with a couple of open questions.

(1) Can the assumption of property (∗) in Corollary 6.5 be dropped? (3)
(2) Let d(K) denote the classical Fekete–Leja transfinite diameter of K

in CN . If A is as in Corollary 6.5, and every connected component of
A \K is an extremal curve, are the transfinite diameters dA(K ∩A)
and d(K) related?
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