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Some characterizations of the class Em(Ω) and applications
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Abstract.We give some characterizations of the class Em(Ω) and use them to establish
a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.

1. Introduction. The complex Monge–Ampère operator has a central
role in pluripotential theory and has been extensively studied for many years.
This operator was used to obtain many important results of pluripoten-
tial theory in Cn, n > 1. An example of such application is the proof of
quasi-continuity of plurisubharmonic functions, yielding the pluripolarity of
negligible sets. In [BT1] Bedford and Taylor have shown that this operator is
well defined on the class of locally bounded plurisubharmonic functions with
range in the class of nonnegative measures. Recently, to extend the domain of
definition of this operator to plurisubharmonic functions which may or not
be locally bounded, Cegrell [C1, C2] has introduced and investigated the
classes E0(Ω), F(Ω) and E(Ω) on which the complex Monge–Ampère oper-
ator is well defined. He has developed pluripotential theory on these classes.
To extend the class of plurisubharmonic functions and to study a class of
complex differential operators more general than the Monge–Ampère oper-
ator, in [B1] and [DK2], the authors introduced m-subharmonic functions
and studied the complex Hessian operator. They were also interested in the
complex Hessian equations in Cn and on compact Kähler manifolds. In order
to continue the study of the complex Hessian operator for m-subharmonic
functions which are not locally bounded, in a recent preprint [Lu], Chinh
Hoang Lu introduced the Cegrell classes E0m(Ω), Fm(Ω) and Em(Ω) asso-
ciated to m-subharmonic functions, and proved that the complex Hessian
operator is well defined on these classes. Thus it is of interest to obtain a
characterization of these classes analytically and geometrically.
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In Section 3 we show the local property and give an analytic charac-
terization of the class Em(Ω). At the beginning of Section 4, we prove the
following:

Theorem 4.1. Let Ω be a bounded hyperconvex domain in Cn and u ∈
Em(Ω) ∩ PSH−(Ω). Then for all c > 0, the upper level sets

E(u, c) = {z ∈ Ω : ν(u, z) ≥ c}
are analytic subsets in Ω of dimension ≤ n−m.

Next, by relying on a recent result of Demailly and Pham [DP] we give
a lower bound for the log canonical threshold of plurisubharmonic functions
in the class Em(Ω). This is the following theorem.

Theorem 4.5. Let u ∈ PSH(Ω) ∩ Em(Ω), 1 ≤ m ≤ n − 1 and 0 ∈ Ω.
Then

cu(0) ≥
m∑
j=1

ej−1(u)

ej(u)
,

where e0(u) = 1.

Note that in the above theorem cu(0) and ej(u) denote, respectively, the
log canonical threshold and the intersection number of the plurisubharmonic
function u, whose definitions are given in Section 4. In the case m = n, from
the above theorem we get the result of Demailly and Pham.

Finally, using a result in [FS] we will prove the same lower bound for the
log canonical threshold of plurisubharmonic functions which are bounded
outside a closed subset of small Hausdorff measure:

Theorem 4.6. Let Ω be an open subset in Cn, 0 ∈ Ω and E ⊂ Ω be a
closed subset in Ω with H2(n−m)+2(E) = 0, where 1 ≤ m ≤ n − 1. Assume
that u ∈ PSH(Ω) ∩ L∞(Ω \ E). Then

cu(0) ≥
m∑
j=1

ej−1(u)

ej(u)
,

where e0(u) = 1.

The paper is organized as follows. In Section 2 we recall the definitions
and results concerningm-subharmonic functions, which were introduced and
investigated intensively in recent years by many authors (see [B1], [DK2]).
We also recall the Cegrell classes ofm-subharmonic functions: E0m(Ω), Fm(Ω)
and Em(Ω) introduced and studied in [Lu]. At the same time, we deal with
the Lelong numbers associated to a closed positive current T and to a
plurisubharmonic function ϕ on an open set Ω ⊂ Cn. Results of Siu and
Demailly on the analyticity of upper level sets of the Lelong numbers asso-
ciated to a closed positive current T are recalled in that section. Section 3 is
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devoted to the proof of the local property and of an analytic characteriza-
tion of Em(Ω). Next, in Section 4 we give a geometrical characterization of
Em(Ω), and by relying on the result of Demailly and Pham [DP], we give a
lower estimate for the log canonical threshold of plurisubharmonic functions
in the class Em(Ω) and of plurisubharmonic functions which are bounded
outside a subset of small Hausdorff measure.

2. Preliminaries. Some elements of pluripotential theory that will be
used throughout the paper can be found in [BT1], [K1], [K2], [K3], while
elements of the theory of m-subharmonic functions and the complex Hessian
operator can be found in [B1], [DK2], [SA]. Now we recall the definition
of the class of m-subharmonic functions introduced by Błocki [B1] and the
classes E0m(Ω) and Fm(Ω) introduced and investigated by Chinh Hoang Lu
[Lu]. Let Ω be an open subset in Cn. We denote by PSH(Ω) the set of
plurisubharmonic functions on Ω, while PSH−(Ω) denotes the set of negative
plurisubharmonic functions on Ω. By β = ddc|z|2 we denote the canonical
Kähler form on Cn with the volume form dVn = 1

n!β
n where d = ∂ + ∂ and

dc = ∂−∂
4i , hence ddc = i

2∂∂.

2.1. First, we recall the class of m-subharmonic functions introduced
and investigated in [B1]. For 1 ≤ m ≤ n, we define

Γ̂m = {η ∈ C(1,1) : η ∧ βn−1 ≥ 0, . . . , ηm ∧ βn−m ≥ 0},

where C(1,1) denotes the space of (1, 1)-forms with constant coefficients.

Definition 2.1. Let u be a subharmonic function on an open subset
Ω ⊂ Cn. Then u is said to be an m-subharmonic function on Ω if for every
η1, . . . , ηm−1 in Γ̂m the inequality

ddcu ∧ η1 ∧ · · · ∧ ηm−1 ∧ βn−m ≥ 0

holds in the sense of currents.

By SHm(Ω) we denote the set of allm-subharmonic functions on Ω, while
SH−m(Ω) denotes the set of negative m-subharmonic functions on Ω. Now as-
sume that Ω is an open set in Cn and u ∈ C2(Ω). Then from [B1, Proposition
3.1] (see also [SA, Definition 1.2]) we note that u is m-subharmonic on Ω if
and only if (ddcu)k ∧ βn−k ≥ 0 for k = 1, . . . ,m.

Now as in [B1] and [DK2], we define the complex Hessian operator of
locally bounded m-subharmonic functions.

Definition 2.2. Assume that u1, . . . , up ∈ SHm(Ω)∩L∞loc(Ω). Then the
complex Hessian operator Hm(u1, . . . , up) is defined inductively by

ddcup ∧ · · · ∧ ddcu1 ∧ βn−m = ddc(updd
cup−1 ∧ · · · ∧ ddcu1 ∧ βn−m).
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In [B1] and [DK2] it is proved that Hm(u1, . . . , up) is a closed positive
current of bidegree (n −m + p, n −m + p) and this operator is continuous
under decreasing sequences of locally bounded m-subharmonic functions. In
particular, when u = u1 = · · · = um ∈ SHm(Ω)∩L∞loc(Ω), the Borel measure
Hm(u) = (ddcu)m ∧ βn−m is well defined and is called the complex Hessian
of u.

Example 2.3. By using an example due to Sadullaev and Abullaev [SA]
we show that there exists a function which ism-subharmonic but not (m+1)-
subharmonic. Let Ω ⊂ Cn be a domain and 0 /∈ Ω. Consider the Riesz kernel

Km(z) = − 1

|z|2(n/m−1)
, 1 ≤ m < n.

We note that Km ∈ C2(Ω). As in [SA] we have

(ddcKm)k ∧ βn−k = n(n/m− 1)k(1− k/m)|z|−2kn/mβn.
Thus (ddcKm)k ∧ βn−k ≥ 0 for all k = 1, . . . ,m, and hence Km ∈ SHm(Ω).
However, (ddcKm)m+1 ∧ βn−m−1 < 0 and so Km /∈ SHm+1(Ω).

2.2. Now we recall the definition of m-maximal subharmonic functions
introduced and investigated in [B1].

Definition 2.4. An m-subharmonic function u ∈ SHm(Ω) is called m-
maximal if for every K b Ω and every v ∈ SHm(Ω), if v ≤ u on Ω \K then
v ≤ u on Ω.

We denote by MSHm(Ω) the set of m-maximal functions on Ω. Theorem
3.6 in [B1] states that a locally bounded m-subharmonic function u on a
bounded domain Ω ⊂ Cn belongs to MSHm(Ω) if and only if it solves the
homogeneous Hessian equation Hm(u) = (ddcu)m ∧ βn−m = 0.

2.3. Next, we recall the classes E0m(Ω), Fm(Ω) and Em(Ω) introduced
and investigated in [Lu]. Let Ω be a bounded hyperconvex domain in Cn.
Set

E0m = E0m(Ω) =
{
u ∈ SH−m(Ω) ∩ L∞(Ω) : lim

z→∂Ω
u(z) = 0,

�

Ω

Hm(u) <∞
}
,

Fm = Fm(Ω) =
{
u ∈ SH−m(Ω) : ∃ E0m 3 uj ↘ u, sup

j

�

Ω

Hm(uj) <∞
}
,

Em = Em(Ω) =
{
u ∈ SH−m(Ω) : ∀z0 ∈ Ω, ∃ a neighborhood ω 3 z0, and

∃ E0m 3 uj ↘ u on ω, sup
j

�

Ω

Hm(uj) <∞
}
.

In the casem = n these classes coincide with, respectively, the classes E0(Ω),
F(Ω) and E(Ω) introduced and investigated earlier by Cegrell [C2].
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From [Lu, Theorem 3.14] it follows that if u ∈ Em(Ω), the complex Hes-
sian Hm(u) = (ddcu)m∧βn−m is well defined and is a Radon measure on Ω.
On the other hand, by [Lu, Remark 3.6] the following description of Em(Ω)
may be given:

Em = Em(Ω) = {u ∈ SH−m(Ω) : ∀U b Ω, ∃v ∈ Fm(Ω), v = u on U}.
2.4. We recall the definition of the pluricomplex Green function. Let Ω

be an open subset in Cn, and let a be a point in Ω. The pluricomplex Green
function with pole at a, denoted by ga, is defined by

ga(z) = sup{u(z) : u ∈ PSH−(Ω), u(z) ≤ log ‖z − a‖+ cu for z near a}.
It is well known that if Ω is bounded and B(a, r) ⊂ Ω ⊂ B(a,R) then [K1,
Proposition 6.1.1] implies that

log(‖z − a‖/R) ≤ ga(z) ≤ log(‖z − a‖/r)
for z ∈ Ω, and z 7→ ga(z) is a negative plurisubharmonic function with a
logarithmic pole at a. In the case when Ω is a bounded hyperconvex domain
we have limz→∂Ω ga(z) = 0. At the same time, by a result of Demailly [D1],
the Monge–Ampère measure (ddcga)

n is well defined and (ddcga)
n = δa,

where δa is the Dirac measure at a. On the other hand, it is not difficult to
see that ga ∈ F(Ω).

2.5. Now we recall the definition of Lelong numbers associated to a closed
positive current T and Lelong numbers of a plurisubharmonic function in-
troduced and investigated in [D2] and [D3]. Let Ω ⊂ Cn be an open set and
T be a closed positive current of bidimension (p, p) on Ω. Assume that ϕ is
a plurisubharmonic function bounded near the boundary ∂Ω of Ω. Then as
in [D3] the measure T ∧ (ddcϕ)p is well defined on Ω. The Lelong number
of T with respect to the weight ϕ is denoted by ν(T, ϕ) and defined by

ν(T, ϕ) =
�

{ϕ=−∞}

T ∧ (ddcϕ)p = lim
r→−∞

�

{ϕ<r}

T ∧ (ddcϕ)p.

If a ∈ Ω and we take ϕa(z) = log ‖z − a‖ then we get the definition of the
Lelong number of T at a which we denote by ν(T, a). Thus

ν(T, a) =
�

{a}

T ∧ (ddcϕa)
p = lim

r→0

�

{‖z−a‖<r}

T ∧ (ddcϕa)
p.

By 2.4 and by using the comparison theorems for Lelong numbers in [D3]
we note that ν(T, a) can also be defined by

ν(T, a) =
�

{a}

T ∧ (ddcga)
p = lim

r→0

�

{‖z−a‖<r}

T ∧ (ddcga)
p.

Now assume that a ∈ Ω and ϕ ∈ PSH−(Ω). If we take T = ddcϕ then
we have the definition of the Lelong number of ϕ at a. Namely, with the
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notation ϕa above, the Lelong number of ϕ at a, denoted by ν(ϕ, a), is
defined by

ν(ϕ, a) =
�

{a}

ddcϕ ∧ (ddcϕa)
n−1 = lim

r→0

�

{‖z−a‖<r}

ddcϕ ∧ (ddcϕa)
n−1.

As above, we can also define ν(ϕ, a) by

ν(ϕ, a) =
�

{a}

ddcϕ ∧ (ddcga)
n−1 = lim

r→0

�

{‖z−a‖<r}

ddcϕ ∧ (ddcga)
n−1.

A celebrated result of Siu [Si] for upper level sets of the Lelong numbers of
plurisubharmonic functions, later generalized by Demailly [D3] to the Lelong
numbers of closed positive currents, says that if T is a closed positive current
of bidimension (p, p) on an open set Ω ⊂ Cn then for all c > 0 the upper level
sets Ec(T ) = {x ∈ Ω : ν(T, x) ≥ c} are analytic subsets of Ω of dimension
≤ p.

2.6. Throughout the paper we write A . B if there exists a constant C
such that A ≤ CB.

3. The local property and an analytic characterization for the
class Em(Ω). In this section we show that to belong to the class Em(Ω) is
a local property. Relying on this result we give an analytic characterization
for this class.

First we need the following.

Lemma 3.1. Let u, v ∈ SH−m(Ω) ∩ L∞(Ω) with u ≤ v on Ω and T =
ddcϕ1∧· · ·∧ddcϕm−1∧βn−m with ϕj ∈ SH−m(Ω)∩L∞(Ω), j = 1, . . . ,m−1.
Then for every p ≥ 0 we have�

Ω′

(−u)pddcv ∧ T ≤ c
�

Ω′′

(−u)p(ddcu+ |u|β) ∧ T,

where Ω′ b Ω′′ b Ω and c is a constant depending on Ω′, Ω′′, Ω and p.

Proof. Repeat the argument for [LPH, Lemma 3.2].

We also need the following result on subextension for the class Fm(Ω).

Lemma 3.2. Assume that Ω b Ω̃ and u ∈ Fm(Ω). Then there exists a
ũ ∈ Fm(Ω̃) such that ũ ≤ u on Ω.

Proof. We split the proof into three steps.

Step 1. We prove that if v ∈ C(Ω̃), v ≤ 0, supp v b Ω̃ then ṽ :=

sup{w ∈ SH−m(Ω̃) : w ≤ v on Ω̃} ∈ E0m(Ω̃) ∩ C(Ω̃) and (ddcṽ)m ∧ βn−m = 0

on {ṽ < v}. Indeed, let ϕ ∈ E0m(Ω̃) ∩ C(Ω̃) with ϕ ≤ inf
Ω̃
v on supp v.

Since ϕ ≤ ṽ we get ṽ ∈ E0m(Ω̃). Moreover, by [B1, Proposition 3.2] we have
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ṽ ∈ C(Ω̃). Let w ∈ SH−m({ṽ < v}) be such that w ≤ ṽ outside a compact
subset K of {ṽ < v}. Define

w1 =

{
max(w, ṽ) on {ṽ < v},
ṽ on Ω̃ \ {ṽ < v}.

Since ṽ and v are continuous, ε = − supK(ṽ− v) > 0. Choose δ ∈ (0, 1) such
that −δ inf

Ω̃
ṽ < ε. Then (1−δ)ṽ ≤ ṽ+ε ≤ v onK. Hence, (1−δ)ṽ+δw1 ≤ v

on Ω̃, and we get (1 − δ)ṽ + δw1 ≤ ṽ. Thus, w ≤ ṽ on {ṽ < v}. Therefore,
ṽ is m-maximal in {ṽ < v}. By [B1] we get (ddcṽ)m ∧ βn−m = 0 on {ṽ < v}.

Step 2. Next, we prove that if u ∈ E0m(Ω) ∩ C(Ω) then there exists
ũ ∈ E0m(Ω̃) for which (ddcũ)m ∧ βn−m = 0 on (Ω̃\Ω) ∪ ({ũ < u} ∩ Ω) and
(ddcũ)m ∧ βn−m ≤ (ddcu)m ∧ βn−m on {ũ = u} ∩Ω. Indeed, set

v =

{
u on Ω,
0 on Ω̃ \Ω.

It is easy to see that v ∈ C(Ω) and supp v ⊂ Ω b Ω̃. Hence, by Step 1
we have ũ = ṽ ∈ E0m(Ω̃) ∩ C(Ω̃) and (ddcũ)m ∧ βn−m = 0 on {ṽ < v} =

(Ω̃ \Ω) ∪ ({ũ < u} ∩Ω). Let K be a compact set in {ũ = u} ∩Ω. Then for
ε > 0 we have K b {ũ+ ε > u} ∩Ω, and so�

K

(ddcũ)m ∧ βn−m =
�

K

1{ũ+ε>u}(dd
cũ)m ∧ βn−m

=
�

K

1{ũ+ε>u}(dd
c max(ũ+ ε, u))m ∧ βn−m

≤
�

K

(ddc max(ũ+ ε, u))m ∧ βn−m,

where the equality in the second line follows as in [BT2] (see also [Lu, proof
of Theorem 3.23]). However, max(ũ + ε, u) ↘ u on Ω as ε → 0, therefore
(ddc max(ũ + ε, u))m ∧ βn−m is weakly convergent to (ddcu)m ∧ βn−m as
ε → 0. On the other hand, 1K is upper semicontinuous on Ω so we can
approximate 1K with a decreasing sequence of continuous functions ϕj . So,

lim sup
ε→0

�

Ω

1K(ddc max(ũ+ ε, u))m ∧ βn−m

= lim sup
ε→0

[
lim
j

�

Ω

ϕj(dd
c max(ũ+ ε, u))m ∧ βn−m

]
≤ lim sup

ε→0

( �
Ω

ϕj(dd
c max(ũ+ ε, u))m ∧ βn−m

)
≤

�

Ω

ϕj(dd
cu)m ∧ βn−m ↘

�

K

(ddcu)m ∧ βn−m

as j →∞. This yields (ddcũ)m ∧ βn−m ≤ (ddcu)m ∧ βn−m on {ũ = u} ∩Ω.
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Step 3. Now, let E0m(Ω) ∩ C(Ω) 3 uj ↘ u be such that

sup
j

�

Ω

(ddcuj)
m ∧ βn−m <∞.

By Step 2, we have
�

Ω̃

(ddcũj)
m ∧ βn−m =

�

{ũj=uj}∩Ω

(ddcũj)
m ∧ βn−m

≤
�

{ũj=uj}∩Ω

(ddcuj)
m ∧ βn−m ≤

�

Ω

(ddcuj)
m ∧ βn−m.

Hence,

sup
j

�

Ω̃

(ddcũj)
m ∧ βn−m ≤ sup

j

�

Ω

(ddcuj)
m ∧ βn−m <∞.

Thus, ũ := limj→∞ ũj ∈ Fm(Ω̃) and ũ ≤ u on Ω.

The following result deals with the locality of membership in Em(Ω).

Theorem 3.3. Let Ω be a bounded hyperconvex domain in Cn and m be
an integer with 1 ≤ m ≤ n. Assume that u ∈ SH−m(Ω). Then the following
statements are equivalent:

(i) u ∈ Em(Ω).
(ii) For all K b Ω, there exists a sequence {uj} ⊂ E0m(Ω) ∩ C(Ω),

uj ↘ u on K, such that for all p = 0, 1, . . . ,m we have

sup
j

�

K

(−uj)p(ddcuj)m−p ∧ βn−m+p <∞.

(iii) For every W b Ω such that W is a hyperconvex domain, we have
u|W ∈ Em(W ).

(iv) For every z ∈ Ω there exists a hyperconvex domain Vz b Ω such
that z ∈ Vz and u|Vz ∈ Em(Vz).

Proof. The proof here is due to Błocki [B2].
(i)⇒(ii). Let K b Ω be given. Since u ∈ Em(Ω), there exists v ∈ Fm(Ω)

with v = u onK. By the definition of the class Fm(Ω) there exists a sequence
{uj} ⊂ E0m(Ω) ∩ C(Ω) with uj ↘ v on Ω such that

(3.1) sup
j

�

Ω

(ddcuj)
m ∧ βn−m <∞.

Then uj ↘ u on K. We have to prove

sup
j

�

K

(−uj)p(ddcuj)m−p ∧ βn−m+p <∞
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for p = 0, 1, . . . ,m. It is obvious that the conclusion holds for p = 0. Assume
that 1 ≤ p ≤ m. Choose R > 0 such that ‖z‖2 − R2 < 0 on Ω and assume
that ϕ ∈ E0m(Ω) is given. Next, we choose A > 0 such that ‖z‖2 −R2 ≥ Aϕ
on K. Set h = max(‖z‖2 − R2, Aϕ). Then h ∈ E0m(Ω) and ddch = β on K.
For each p = 1, . . . ,m we define

Ip =
�

Ω

(−uj)p(ddcuj)m−p ∧ (ddch)p ∧ βn−m.

Then by integration by parts we get the chain of inequalities
�

K

(−uj)p(ddcuj)m−p ∧ βn−m+p =
�

K

(−uj)p(ddcuj)m−p ∧ (ddch)p ∧ βn−m

≤ Ip =
�

Ω

h(ddcuj)
m−p ∧ (ddch)p−1 ∧ (ddc(−uj)p) ∧ βn−m

=
�

Ω

h(ddcuj)
m−p ∧ (ddch)p−1[p(p−1)duj ∧ dcuj−p(−uj)p−1ddcuj ]∧βn−m

≤ p
�

Ω

(−h)(−uj)p−1(ddcuj)m−p+1 ∧ (ddch)p−1 ∧ βn−m

≤ p‖h‖Ω
�

Ω

(−uj)p−1(ddcuj)m−p+1 ∧ (ddch)p−1 ∧ βn−m

= p‖h‖ΩIp−1 ≤ · · · ≤ p!‖h‖pΩI0 = p!‖h‖pΩ
�

Ω

(ddcuj)
m ∧ βn−m.

Hence, by (3.1) we get

sup
j

�

K

(−uj)p(ddcuj)m−p ∧ βn−m+p ≤ p!‖h‖pΩ sup
j

�

Ω

(ddcuj)
m ∧ βn−m <∞.

(ii)⇒(iii). Let W b Ω be a hyperconvex domain. Take U bW b Ω and
a sequence E0m(Ω) 3 uj ↘ u on W such that

sup
j

�

W

(−uj)p(ddcuj)m−p ∧ βn−m+p <∞

for p = 0, 1, . . . ,m. Set ũj = sup{ϕ ∈ SH−m(W ) : ϕ ≤ uj on U} ∈ E0m(W ).
Next, choose U b Ω1 b · · · b Ωm b W . Since uj ≤ ũj on W and (ddcũj)

m

∧ βn−m = 0 on W\U , by applying Lemma 3.1 repeatedly we arrive at
�

W

(ddcũj)
m ∧ βn−m =

�

U

(ddcũj)
m ∧ βn−m

.
�

Ω1

(ddcuj + (−uj)β) ∧ (ddcũj)
m−1 ∧ βn−m
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=
�

Ω1

(ddcũj)
m−1 ∧ ddcuj ∧ βn−m +

�

Ω1

(−uj)(ddcũj)m−1 ∧ βn−m+1

.
�

Ω2

(ddcuj + (−uj)β) ∧ (ddcũj)
m−2 ∧ ddcuj ∧ βn−m

+
�

Ω2

(−uj)(ddcuj + (−uj)β) ∧ (ddcũj)
m−2 ∧ βn−m+1

.
�

Ω2

[(−uj)2β2 + (−uj)β ∧ ddcuj + (ddcuj)
2] ∧ (ddcũj)

m−2 ∧ βn−m

. · · ·

.
�

Ωm

[(−uj)mβm + (−uj)m−1ddcuj ∧ βm−1 + · · ·+ (ddcuj)
m] ∧ βn−m.

Hence,

sup
j

�

W

(ddcũj)
m ∧ βn−m

. sup
j

�

Ωm

[(−uj)mβm + (−uj)m−1ddcuj ∧ βm−1 + · · ·+ (ddcuj)
m] ∧ βn−m

. sup
j

�

W

[(−uj)mβm+(−uj)m−1ddcuj ∧βm−1 + · · ·+(ddcuj)
m]∧βn−m<∞.

Thus, uU,W := lim ũj ∈ Fm(W ). Since U b W is arbitrary and uU,W = u
on U , we conclude that u ∈ Em(W ).

(iii)⇒(iv). This is obvious.
(iv)⇒(i). Assume that Ω′ b Ω. Choose zj ∈ Ω, j = 1, . . . , s, such that

Ω′ b
⋃s
j=1 Vzj , where Vzj are hyperconvex domains. Let Wzj b Vzj be such

that Ω′ b
⋃s
j=1Wzj . Since u|Vzj ∈ Em(Vzj ), there exists vj ∈ Fm(Vzj ) such

that vj = u onWzj . By Lemma 3.2 there exists ṽj ∈ Fm(Ω) such that ṽj ≤ vj
on Vzj . The convexity of the class Fm(Ω) implies that ṽ := 1

s ṽ1 + · · ·+ 1
s ṽs ∈

Fm(Ω), and hence max(ṽ, u) ∈ Fm(Ω). However, max(ṽ, u) = u on Ω′ and
therefore u ∈ Em(Ω). The proof of Theorem 3.3 is complete.

Remark 3.4. In [B2], Błocki proved that membership in the class E(Ω)
is a local property.

From Theorem 3.3 we get the following property of Em(Ω).

Corollary 3.5. Assume that Ω is a bounded hyperconvex domain. Then
Em(Ω) ⊂ Em−1(Ω).

Proof. Assume that u ∈ Em(Ω). Let K b Ω. Take a domain Ω′ with
K b Ω′ b Ω. By Theorem 3.3 there exists a sequence {uj} ⊂ E0m(Ω) such
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that uj ↘ u on Ω′ and

sup
j

�

Ω′

(−uj)p(ddcuj)m−p ∧ βn−m+p <∞

for p = 0, 1, . . . ,m. Choose h ∈ E0m−1(Ω). For each j > 0 take mj > 0
such that uj ≥ mjh on Ω′. Set vj = max(uj ,mjh) ∈ E0m−1(Ω) and vj = uj
on Ω′. Note that vj ↘ u on Ω′ and (ddcvj)

p ∧ βq = (ddcuj)
p ∧ βq on Ω′ for

0 ≤ p ≤ m − 1 and 1 ≤ q ≤ n −m + 1. We may assume that u|Ω′ ≤ −1.
By Hartogs’ lemma (see [Ho, Theorem 3.2.13]) we conclude that vj |Ω′ ≤ −1
for j ≥ j0 with some j0. Without loss of generality, we may assume that
vj |Ω′ ≤ −1 for j ≥ 1. Hence, (−vj)k ≥ (−vj)k−1 on Ω′ for all j ≥ 1 and
k = 1, . . . ,m. Now we have�

Ω′

[(−uj)mβm + · · ·+ (−uj)(ddcuj)m−1 ∧ β + (ddcuj)
m] ∧ βn−m

≥
�

Ω′

[(−uj)mβm + · · ·+ (−uj)(ddcuj)m−1 ∧ β] ∧ βn−m

=
�

Ω′

[(−vj)mβm + · · ·+ (−vj)(ddcvj)m−1 ∧ β] ∧ βn−m

=
�

Ω′

[(−vj)mβm−1 + · · ·+ (−vj)(ddcvj)m−1] ∧ βn−m+1

≥
�

Ω′

[(−vj)m−1βm−1 + · · ·+ (ddcvj)
m−1] ∧ βn−m+1

≥
�

K

(−vj)p(ddcvj)m−p−1 ∧ βn−m+p+1

for p = 0, 1, . . . ,m− 1. Hence,

sup
j

�

K

(−vj)p(ddcvj)m−p−1 ∧ βn−m+p+1 <∞

for p = 0, 1, . . . ,m− 1. By Theorem 3.3, the desired conclusion follows.

Now we prove an analytic characterization of Em(Ω) which we need in
the next section. Note that part of the following arguments is due to Błocki
[B2].

Theorem 3.6. Let Ω be a bounded hyperconvex domain in Cn and u ∈
SH−m(Ω), 1 ≤ m ≤ n. Then the following are equivalent:

(i) u ∈ Em(Ω).
(ii) There exists a positive Radon measure µ on Ω such that if ω b Ω is

a hyperconvex domain and a sequence {uj} ⊂ SH−m(ω)∩L∞(ω) satis-
fies uj ↘ u on ω, then the sequence of Hessian measures Hm(uj) =
(ddcuj)

m ∧ βn−m is weakly convergent to µ on ω.
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(iii) For all hyperconvex domains ω b Ω and every sequence {uj} ⊂
SH−m(ω) ∩L∞(ω) with uj ↘ u on ω, the sequence of Hessian mea-
sures Hm(uj) = (ddcuj)

m ∧ βn−m is locally weakly bounded in ω.

Proof. (i)⇒(ii). Assume u ∈ Em(Ω). Set µ = Hm(u) = (ddcu)m ∧βn−m.
Then µ is a well defined positive Radon measure on Ω. Moreover, because
ω b Ω is a hyperconvex domain, we have u ∈ Em(ω) by Theorem 3.3.
Hence, if {uj} ⊂ SH−m(ω) ∩ L∞(ω) with uj ↘ u on ω then by [B1, p. 1736],
Hm(uj) = (ddcuj)

m ∧ βn−m is weakly convergent to Hm(u) = µ on ω, and
we are done.

(ii)⇒(iii). Let K b ω. Then, by the hypothesis, if {uj} ⊂ SH−m(ω) ∩
L∞(ω) and uj ↘ u on ω then Hm(uj) = (ddcuj)

m ∧ βn−m is weakly conver-
gent to µ on ω. This yields

sup
j

�

K

Hm(uj) ≤ µ(K) <∞,

and we get the desired conclusion.
(iii)⇒(i). Take a sequence {uj} ⊂ E0m(Ω) ∩ C(Ω) with uj ↘ u on Ω. If

for every K b Ω we have

sup
j

�

K

(−uj)p(ddcuj)m−p ∧ βn−m+p <∞

for p = 0, 1, . . . ,m then by (ii) of Theorem 3.3, u ∈ Em(Ω) and we are done.
Now we assume that the above claim is not true. Then there exists a ball

B b Ω such that

sup
j

�

B

(−uj)p0(ddcuj)
m−p0 ∧ βn−m+p0 =∞

for some p0, 0 ≤ p0 ≤ m. As in [B2], choose a sequence {λj} of positive
numbers increasing to 1 and set vj = λjuj . Then vj ∈ E0m(Ω)∩C(Ω), vj ↘ u
on Ω and

(3.2) sup
j

�

B

(−vj)p0(ddcvj)
m−p0 ∧ βn−m+p0 =∞.

For k ≥ j + 1 we have |vj − vk| ≥ (1− λj/λj+1)|vk|. Hence,

(3.3)
�

B

|vj − vk|p0(ddcvk)
m−p0 ∧ βn−m+p0

≥
(

1− λj
λj+1

) �

B

(−vk)p0(ddcvk)
m−p0 ∧ βn−m+p0 .

By (3.3) and (3.2) we can find an increasing sequence k = k(j) ≥ j + 1 such
that for every j we have�

B

(vj − vk)p0(ddcvk)
m−p0 ∧ βn−m+p0 ≥ j.
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Next, take balls B b B′′ b B′ b Ω. Set

ũj = sup{w ∈ SH−m(B′) : w ≤ vj on B′, w ≤ vk on B}.

Then ũj ∈ SH−m(B′) ∩ C(B′), ũj = vj on ∂B′, ũj ≤ vj on B′, and ũj = vk
on B, ũj ↘ u on B′. By the hypothesis we have

(3.4) sup
j

�

B′′

Hm(ũj) = sup
j

�

B′′

(ddcũj)
m ∧ βn−m <∞.

Next, choose φ ∈ E0m(B′) such that ddcφ = β on B′. Now using integration
by parts we get the following chain of inequalities:

(3.5) j ≤
�

B

(vj − vk)p0(ddcvk)
m−p0 ∧ βn−m+p0

=
�

B

(vj − ũj)p0(ddcũj)
m−p0 ∧ (ddcφ)p0 ∧ βn−m

≤
�

B′

(vj − ũj)p0(ddcũj)
m−p0 ∧ (ddcφ) ∧ (ddcφ)p0−1 ∧ βn−m

=
�

B′

φ(ddcũj)
m−p0 ∧ [ddc((vj − ũj)p0)] ∧ (ddcφ)p0−1 ∧ βn−m

≤ p0
�

B′

φ(vj − ũj)p0−1(ddcũj)m−p0 ∧ [ddcvj − ddcũj ] ∧ (ddcφ)p0−1 ∧ βn−m

≤ p0
�

B′

−φ(vj − ũj)p0−1(ddcũj)m−p0+1 ∧ (ddcφ)p0−1 ∧ βn−m

≤ p0‖φ‖B′

�

B′

(vj − ũj)p0−1(ddcũj)m−p0+1 ∧ (ddcφ)p0−1 ∧ βn−m

≤ · · · ≤ p0!‖φ‖p0B′

�

B′

(ddcũj)
m ∧ βn−m

=
[ �

B′′

(ddcũj)
m ∧ βn−m +

�

B′\B′′

(ddcũj)
m ∧ βn−m

]
.

However, (ddcũj)
m ∧ βn−m ≤ (ddcvj)

m ∧ βn−m on B′ \ B′′ because on
{ũj < vj}∩B′\B′′ we have (ddcũj)

m∧βn−m = 0, and, on {ũj = vj}∩B′\B′′,
by repeating the proof of Lemma 3.2, we get (ddcũj)

m ∧ βn−m ≤ (ddcvj)
m

∧ βn−m. Hence,
�

B′′

(ddcũj)
m ∧ βn−m +

�

B′\B′′

(ddcũj)
m ∧ βn−m

≤
�

B′′

(ddcũj)
m ∧ βn−m +

�

B′\B′′

(ddcvj)
m ∧ βn−m.
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Note that vj ↘ u on Ω and so by the hypothesis we have

(3.6) sup
j

�

B′

(ddcvj)
m ∧ βn−m <∞.

Combining (3.4)–(3.6) we get a contradiction. The proof of Theorem 3.6 is
complete.

4. A geometrical characterization of Em(Ω) and lower bounds
for the log canonical threshold. In this section we give a geometrical
description of the class Em(Ω) and then by using Theorem 3.3 we establish
lower bounds for the log canonical threshold in PSH(Ω) ∩ Em(Ω) and in
PSH(Ω) ∩ L∞(Ω \ E) when the Hausdorff measure H2(n−m)+2(E) is 0.

The first result in this section is the following.

Theorem 4.1. Let Ω be a bounded hyperconvex domain in Cn and u ∈
Em(Ω) ∩ PSH−(Ω). Then for all c > 0, the upper level sets

E(u, c) = {z ∈ Ω : ν(u, z) ≥ c}

are analytic subsets in Ω of dimension ≤ n−m.

Proof. Let c > 0 be given. By [Si] we know that E(u, c) is an analytic
subset in Ω. Let T = (ddcu)m. Proposition 4.3 below states that T is a closed
positive current of bidimension (n−m,n−m). Then, as in 2.4, the Lelong
number ν(T, z) of T at z ∈ Ω is given by

ν(T, z) =
�

{z}

T ∧ (ddcgz)
n−m =

�

{z}

(ddcu)m ∧ (ddcgz)
n−m,

where gz denotes the pluricomplex Green function. On the other hand, Corol-
lary 6.5 in [D3] implies that for all c > 0, the upper level sets

E(T, c) = {z ∈ Ω : ν(T, z) ≥ c}

are analytic subsets of dimension ≤ n−m. Hence, the theorem is proved if
we show that E(u, c) ⊂ E(T, cm) for c > 0. To do so, it suffices to prove

ν(u, z) ≤ ν(T, z)1/m

for all z ∈ Ω.
The arguments here are due to Cegrell. First we use [C2, Lemma 5.3] to

obtain an inequality for functions in E0m(Ω). Next, using [C2, Proposition
5.1] we get the same inequality for functions in Fm(Ω). Finally, combining
all arguments we get the desired conclusion.

Now we give a detailed proof. Without loss of generality we may assume
that u ∈ Fm(Ω). For ε > 0, let h = max(εgz,−1) ∈ E0(Ω). First, assume
ϕ ∈ E0m(Ω). By using a similar argument to that in [C2, proof of Lemma 5.3]
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we get

(4.1)
�

Ω

−h(ddcϕ) ∧ (ddcgz)
m−1 ∧ (ddcgz)

n−m

≤
( �
Ω

−h(ddcϕ)m ∧ (ddcgz)
n−m

)1/m( �
Ω

−h(ddcgz)
n
)m−1/m

.

Now assume that u ∈ Fm(Ω). Take a sequence E0m(Ω) 3 ϕj ↘ u on Ω. As
above, by similar arguments to those in [C2, proof of Proposition 5.1] we
have

(4.2) lim
j→∞

�

Ω

−h(ddcϕj)
m ∧ (ddcgz)

n−m =
�

Ω

−h(ddcu)m ∧ (ddcgz)
n−m

for all m ≥ 1. Hence, by replacing ϕ by ϕj in (4.1) and letting m → ∞ we
get

(4.3)
�

Ω

−h(ddcu) ∧ (ddcgz)
m−1 ∧ (ddcgz)

n−m

≤
( �
Ω

−h(ddcu)m ∧ (ddcgz)
n−m

)1/m( �
Ω

−h(ddcgz)
n
)(m−1)/m

.

We rewrite (4.3) as follows:�

Ω\{z}

−h(ddcu) ∧ (ddcgz)
m−1 ∧ (ddcgz)

n−m

+
�

{z}

−h(ddcu) ∧ (ddcgz)
m−1 ∧ (ddcgz)

n−m

≤
( �

Ω\{z}

−h(ddcu)m ∧ (ddcgz)
n−m +

�

{z}

−h(ddcu)m ∧ (ddcgz)
n−m

)1/m
×
( �
Ω

−h(ddcgz)
n
)(m−1)/m

.

Letting ε→ 0, we get
�

{z}

(ddcu) ∧ (ddcgz)
n−1 ≤

( �

{z}

(ddcu)m ∧ (ddcgz)
n−m

)1/m
,

or ν(u, z) ≤ ν(T, z)1/m, as we wanted. The proof of Theorem 4.1 is com-
plete.

Now from Theorem 3.3 and Corollary 3.5, and by relying on a recent re-
sult due to Demailly and Pham [DP] about a lower bound for the log canon-
ical threshold of plurisubharmonic functions in Ẽ(Ω), we give a lower bound
for the log canonical threshold of plurisubharmonic functions in Em(Ω) ∩
PSH(Ω). We need the following lemma.
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Lemma 4.2. Assume that u ∈ Em(Ω). Then for every 1 ≤ p ≤ m − 1
and for every K b Ω we have�

K

u(ddcu)p ∧ βn−p > −∞.

Proof. By Corollary 3.5 we have Ep+1(Ω) ⊂ Ep(Ω) for 1 ≤ p ≤ m − 1.
Hence, it suffices to prove the lemma for p = m−1. Moreover, we can assume
that K = B(0, r0) b Ω. Let r0 < r1 < r2 be such that B(0, r2) b Ω. By
Theorem 3.3 we have u ∈ Em(B(0, r2)). Choose v ∈ Fm(B(0, r2)) such that
u = v in B(0, r1). Then�

B(0,r0)

u(ddcu)m−1 ∧ βn−m+1 ≥
�

B(0,r2)

v(ddcv)m−1 ∧ βn−m+1

=
�

B(0,r2)

(|z|2 − r22)(ddcv)m ∧ βn−m

≥ −r22
�

B(0,r2)

(ddcv)m ∧ βn−m > −∞.

Proposition 4.3. Assume that u ∈ Em(Ω) ∩ PSH−(Ω). Then (ddcu)p

is a closed nonnegative current in Ω for p = 1, . . . ,m.

Proof. For p = 1 the statement is clear. Assume that for 2 ≤ p ≤ m,
(ddcu)p−1 is well defined as a closed nonnegative current. Since u(ddcu)p−1

has locally bounded mass and the coefficients of (ddcu)p−1 are complex mea-
sures, u is locally integrable for these measures. Hence, as in [BT1] we can
define (ddcu)p := ddc(u(ddcu)p−1). Thus (ddcu)p is a closed current. More-
over, since u ∈ PSH(Ω), (ddcu)p is nonnegative, and the desired conclusion
follows.

Now we recall the following definitions introduced and investigated in
[DK1] and [DP].

Definition 4.4. Let u ∈ PSH(Ω) and 0 ∈ Ω. As in [DK1], the log
canonical threshold at 0 ∈ Ω of u is defined by

cu(0) = sup{c > 0 : e−2cu is L1 on a neighbourhood of 0}.

Moreover, for u ∈ PSH(Ω) ∩ Em(Ω) we define the intersection numbers

ej(u) =
�

{0}

(ddcu)j ∧ (ddclog|z|)n−j , j = 1, . . . ,m.

Note that by Proposition 4.3, Lemma 4.2 and [D2, Proposition 2.1 and
Corollary 2.3] we have ej(u) <∞.

The main result of this section is the following estimate.
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Theorem 4.5. Let u ∈ PSH(Ω) ∩ Em(Ω), 1 ≤ m ≤ n − 1 and 0 ∈ Ω.
Then

cu(0) ≥
m∑
j=1

ej−1(u)

ej(u)
,

where e0(u) = 1.

Proof. For k ≥ 1, set

uk = max{u, k log ‖z‖}.
Corollary 2.3 in [D2] implies that (ddcuk)

n is well defined, and hence uk ∈
E(Ω) ⊂ Ẽ(Ω). Theorem 1.2 in [DP] gives

cuk(0) ≥
n−1∑
j=1

ej−1(uk)

ej(uk)
≥

m∑
j=1

ej−1(uk)

ej(uk)
,

where e0(uk) = 1. On the other hand, since uk ≥ u on Ω, by the comparison
principle (see e.g. [D2]) we have ej(u) ≥ ej(uk) for j = 1, . . . ,m. Let

D = {(t1, . . . , tm) ∈ [0,∞)m : t21 ≤ t2, t2j ≤ tj−1tj+1, ∀j = 1, . . . ,m− 1}.
Then D is a convex set in Rm. Consider the function f : intD → [0,∞)
given by

f(t1, . . . , tm) =
1

t1
+
t1
t2

+ · · ·+ tm−1
tm

.

Then
∂f

∂tj
(t) = − tj−1

t2j
+

1

tj+1
≤ 0, ∀t ∈ D.

For a, b ∈ intD with aj ≥ bj , j = 1, . . . ,m, the function [0, 1] 3 t 7→
f(b+ t(a− b)) is decreasing. Hence, for ej(u) ≥ ej(uk), j = 1, . . . ,m, we get
m∑
j=1

ej−1(uk)

ej(uk)
= f(e1(uk), . . . , em(uk)) ≥ f(e1(u), . . . , em(u)) =

m∑
j=1

ej−1(u)

ej(u)
.

Therefore,

cuk(0) ≥
m∑
j=1

ej−1(u)

ej(u)

for all k ≥ 1. However, by [Ph, Lemma 2.1] we have limk→∞ cuk(0) = cu(0),
and the desired conclusion follows.

Finally, letHα denote the Hausdorff measure of dimension α in Cn∼=R2n.
By using a result of [FS] we will prove the same lower bound as in Theo-
rem 4.5 for the log canonical threshold of plurisubharmonic functions which
are bounded outside a closed subset of small Hausdorff measure.
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Theorem 4.6. Let Ω be an open subset in Cn, 0 ∈ Ω and E ⊂ Ω be a
closed subset in Ω with H2(n−m)+2(E) = 0, where 1 ≤ m ≤ n − 1. Assume
that u ∈ PSH(Ω) ∩ L∞(Ω \ E). Then

cu(0) ≥
m∑
j=1

ej−1(u)

ej(u)
,

where e0(u) = 1.

Proof. Without loss of generality, we may assume that u ∈ PSH−(Ω).
From the hypothesis H2(n−m)+2(E) = 0 and by [FS, Theorem 2.4], (ddcu)j

are closed positive currents with locally finite mass for j = 1, . . . ,m. Hence,
as above, the intersection numbers ej(u) of u are well defined for j =
1, . . . ,m. Repeating the arguments from the proof of Theorem 4.5 we get
the desired conclusion.
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