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Rigidity of Einstein manifolds
and generalized quasi-Einstein manifolds

by Yi Hua Deng, Li Ping Luo and Li Jun Zhou (Hengyang)

Abstract. We discuss the rigidity of Einstein manifolds and generalized quasi-Ein-
stein manifolds. We improve a pinching condition used in a theorem on the rigidity of
compact Einstein manifolds. Under an additional condition, we confirm a conjecture on the
rigidity of compact Einstein manifolds. In addition, we prove that every closed generalized
quasi-Einstein manifold is an Einstein manifold provided µ = −1/(n− 2), λ ≤ 0 and
β ≤ 0.

1. Introduction. Recently, many authors have shown their interest in
rigid properties of manifolds with various curvature conditions. One of the
most important results is the 1

4 -pinching sphere theorem. Its formulation
in [BS] states that a compact Riemannian manifold is diffeomorphic to a
spherical space form provided it has positive sectional curvature and the
ratio of the minimum and the maximum of the sectional curvatures is always
strictly greater than a quarter. This result can also be found in [CD].

In [XG], Xu and Gu studied the rigidity of compact Einstein manifolds
with positive scalar curvature. Let K(π) be the sectional curvature of M
for the 2-plane π ⊂ TxM , and set Kmax(x) = maxπ⊂TxMK(π), Kmin(x) =
minπ⊂TxMK(π). Theorem 1.1 in [XG] states that if M is an n-dimensional
compact Einstein manifold with n ≥ 4 and R0 >

[
1 − 6

5(n−1)
]
Kmax, then

M is isometric to a spherical space form of constant curvature c, where R0

is the normalized scalar curvature of M and R0 = c. In addition, Xu and
Gu [XG] proposed the following conjecture.

Conjecture A. Let M be an n-dimensional compact Einstein manifold
with n ≥ 4. If R0 >

3
5Kmax, then M is isometric to a spherical space form.

In general, Conjecture A is very difficult to prove. If n = 4, from
[XG, Theorem 1.1] we conclude that Conjecture A is true. Denote by R
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the scalar curvature of M . From [CR] and [S], we know that S4 and CP2 are
the only compact simply-connected four-dimensional manifolds with posi-
tive bi-orthogonal curvature that can have (weakly) 1

4 -pinched bi-orthogonal

curvature, or non-negative isotropic curvature, or satisfy K⊥ ≥ R/24 > 0.
This shows that Conjecture A is true in dimension four under a pinching
condition weaker than R0 >

3
5Kmax. In fact, it follows from [MM] that if

w± ≤ 0, then M4 has non-negative isotropic curvature, where w± is the
largest eigenvalue of the Weyl tensor W±. Therefore, Conjecture A is true
under weaker pinching conditions in dimension four. However, at present a
solution for general dimension is not known.

Inspired by [XG] and the 1
4 -pinching sphere theorem in [BS], we will dis-

cuss the rigidity of compact Einstein manifolds with non-negative sectional
curvature. We prove that the condition R0 >

[
1− 6

5(n−1)
]
Kmax in [XG, The-

orem 1.1] can be relaxed to R0 >
[
1− 4

3(n−1)
]
Kmax. Furthermore, we show

that Conjecture A is true under an additional pinching condition.

In [C], Catino introduced the notion of generalized quasi-Einstein man-
ifold. Let (M, g) be an n-dimensional Riemannian manifold with n ≥ 3. If
there exist three smooth functions f , µ and λ on (M, g) such that

(1.1) Ric +∇2f − µdf ⊗ df = λg,

then (M, g) is called a generalized quasi-Einstein manifold .

In [BR] and [HW], Barros–Ribeiro and Huang–Wei studied the rigid-
ity of some closed generalized quasi-Einstein manifolds under the condition
that µ = 1/m > 0. In [JW], Jauregui and Wylie proved that a Riemannian
metric is conformal to an Einstein metric if and only if it admits a gener-
alized quasi-Einstein structure with µ = −1/(n− 2). Therefore, generalized
quasi-Einstein manifolds with µ = −1/(n− 2) are important in Rieman-
nian geometry. In this paper, we prove that some generalized quasi-Einstein
manifolds with µ = −1/(n− 2) are exactly Einstein manifolds.

2. Rigidity of compact Einstein manifolds

Theorem 2.1. Let M be an n-dimensional compact Einstein manifold
with non-negative sectional curvature and n ≥ 4. Denote by R0 := c the
normalized scalar curvature of M . If R0 >

[
1 − 4

3(n−1)
]
Kmax, then M is

isometric to a spherical space form of constant curvature c.

Proof. Since M is an n-dimensional compact Einstein manifold, by [XG]
we have Ric(ei, ei) = (n − 1)R0 for an orthonormal frame {e1, . . . , en} and
any i ∈ {1, . . . , n}. According to the definition of Ric(ei, ei), we have

Ric(ei, ei) ≤ Kmin + (n− 2)Kmax.
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Therefore,

(2.1) Kmin ≥ Ric(ei, ei)− (n− 2)Kmax.

Suppose that {w1, w2, w3, w4} is an orthonormal four-frame. Since M has
non-negative sectional curvature, by Berger’s inequality (see [B1], [S]
and [XG]) we have

(2.2) R1234 ≤ 2
3(Kmax −Kmin) ≤ 2

3Kmax.

According to (2.1), (2.2) and the definition of Ric(ei, ei), we obtain

(2.3) R1313 +R2323 +R1414 +R2424 − 2R1234

= (R1313 +R1414) + (R2323 +R2424)− 2R1234

≥ (Ric(e1, e1)− (n− 3)Kmax) + (Ric(e2, e2)− (n− 3)Kmax)− 4
3Kmax

= 2(n− 1)R0 − 2(n− 3)Kmax − 4
3Kmax

= 2(n− 1)

[
R0 −

(
1− 4

3(n− 1)

)
Kmax

]
.

Since R0 >
[
1 − 4

3(n−1)
]
Kmax, by (2.3) we conclude that the isotropic cur-

vature of M is positive. Therefore, M is isometric to a spherical space form
of constant curvature c.

Theorem 2.2. Let M be an n-dimensional compact Einstein manifold
with n ≥ 4. If R0 >

3
5Kmax and

(2.4) Kmin ≥ 3
4

[(
2n− 79

15

)
Kmax − (2n− 3)R0

]
,

then M is isometric to a spherical space form.

Proof. Suppose {w1, w2, w3, w4} is an orthonormal four-frame. From
Berger’s inequality we have

R1234 ≤ 2
3(Kmax −Kmin).

Similar to the proof of Theorem 1.1, we deduce

(2.5) R1313 +R2323 +R1414 +R2424 − 2R1234

≥ 2 Ric(ei, ei)− 2(n− 3)Kmax − 4
3(Kmax −Kmin)

= 2(n− 1)R0 − 2(n− 3)Kmax − 4
3Kmax + 4

3Kmin.

By (2.4) and (2.5), we obtain

(2.6) R1313 +R2323 +R1414 +R2424 − 2R1234

≥ 2(n− 1)R0 − 2(n− 3)Kmax

− 4
3Kmax +

(
2n− 79

15

)
Kmax − (2n− 3)R0

= R0 − 3
5Kmax.
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Since R0 > 3
5Kmax, we may use (2.6) to conclude that M has positive

isotropic curvature. Therefore, we invoke Brendle’s theorem [B2] to conclude
that M is isometric to a spherical space form.

3. Rigidity of generalized quasi-Einstein manifolds

Theorem 3.1. Suppose that (M, g) is a closed generalized quasi-Ein-
stein manifold with µ = −1/(n− 2). Then there exists a constant β such
that

(3.1) ∆f − |∇f |2 + (n− 2)λ+ βe
2

2−n
f = 0.

Furthermore, if λ, β ≤ 0, then (M, g) is an Einstein manifold.

Proof. Since (M, g) is a generalized quasi-Einstein manifolds with µ =
−1/(n− 2), by (1.1) we have

(3.2) Ric +∇2f − 1

2− n
df ⊗ df = λg.

We denote by R the scalar curvature of (M, g). So, the twice contracted
Bianchi identity is given by ∇R = 2 div Ric. Since div(df ⊗ df) =
∆f∇f + 1

2∇|∇f |
2 and div∇2f = Ric(∇f) +∇∆f , similar to [BR] we may

use (3.2) to infer that

(3.3) ∇R+ 2 Ric(∇f) + 2∇∆f − 2

2− n
∆f∇f − 1

2− n
∇|∇f |2 = 2∇λ.

Taking the trace on both sides of (3.2), we obtain

(3.4) R+∆f − 1

2− n
|∇f |2 = nλ.

According to (3.2), we get

Ric(∇f) = λg(∇f)−∇2f(∇f) +
1

2− n
df ⊗ df(∇f)(3.5)

= λ∇f − 1

2
∇|∇f |2 +

1

2− n
|∇f |2∇f.

Substituting (3.4) and (3.5) into (3.3), we arrive at

∇R =
4(1− n)

2− n
λ∇f − 1− n

2− n
∇|∇f |2

+
2(1− n)

(2− n)2
|∇f |2∇f +

2

2− n
R∇f + 2(n− 1)∇λ.

Therefore, we have

∇R− 2

2− n
R∇f = 2(n− 1)

(
∇λ− 2

2− n
λ∇f

)
(3.6)

− 1− n
2− n

(
∇|∇f |2 − 2

2− n
|∇f |2∇f

)
.
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From (3.6), we deduce

∇(Re
2

n−2
f ) = 2(n− 1)∇(λe

2
n−2

f )− 1− n
2− n

∇(|∇f |2e
2

n−2
f ).

Thus, we conclude that there exists a constant β such that

(3.7) Re
2

n−2
f − 2(n− 1)(λe

2
n−2

f ) +
1− n
2− n

(|∇f |2e
2

n−2
f ) = β.

According to (3.7), we have

(3.8) R− 2(n− 1)λ+
1− n
2− n

|∇f |2 − βe
2

2−n
f = 0.

Inserting (3.4) into (3.8), we get (3.1).

Since (M, g) is a closed manifold, we have
	
M ∆f = 0. Therefore, from

(3.1) and our assumptions on λ and β we deduce that
	
M |∇f |

2 ≤ 0. This
forces f to be constant. We then use (3.1) once more to infer that λ is also
constant. From this it follows that (M, g) is an Einstein manifold.
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