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Fixed points and solutions of
boundary value problems at resonance

by Alaa Almansour and Paul Eloe (Dayton, OH)

Abstract. We consider a simple boundary value problem at resonance for an or-
dinary differential equation. We employ a shift argument and construct a regular fixed
point operator. In contrast to current applications of coincidence degree, standard fixed
point theorems are applied to give sufficient conditions for the existence of solutions. We
provide three applications of fixed point theory. They are delicate and an application of
the contraction mapping principle is notably missing. We give a partial explanation as to
why the contraction mapping principle is not a viable tool for boundary value problems
at resonance.

1. Introduction. Assume L > 0 and assume g : [0, L]→ R×R is con-
tinuous. We shall consider boundary value problems for ordinary differential
equations of the form

y′′(t) = g(t, y(t)), 0 ≤ t ≤ L,(1.1)

y′(0) = 0, y′(L) = 0.(1.2)

The boundary value problem (1.1), (1.2) is said to be at resonance because
the homogeneous problem

y′′(t) = 0, 0 < t < L, y′(0) = 0, y′(L) = 0,

has nontrivial constant solutions.
Boundary value problems at resonance have been investigated for many

years, and Mawhin’s [Ma1, Ma2] coincidence degree theory has been a very
useful tool to obtain sufficient conditions for existence of solutions; we cite,
for example, [BGS, DLG1, DLG2, FW, GS, Gu2, KT, Ka1, Ko1, Ko2]. More
recently, there has been an interest in considering conditions that imply the
existence of a solution in a cone, and a broad collection of methods have been
developed and successfully employed. For example, a coincidence theorem of
Schauder type has been developed and employed [S], the Lyapunov–Schmidt
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procedure has been employed [MY], topological degree [D, Gu1, NP, RS] has
been employed, and a Leggett–Williams type theorem for coincidences has
been developed [OZ] and employed [Fr, IZ, OZ]. A fixed point index the-
orem developed by Cremins [Cr] has been useful and has been employed
by Bai and Fang [BF] and Kaufmann [Ka1, Ka2], for example. Webb and
Zima [WZ] successfully employ fixed point index theory. Han [H] modifies
the problem at resonance and considers an equivalent boundary value prob-
lem not at resonance in order to apply the Krasnosel’skĭı–Guo fixed point
theorem.

This work is initially motivated by Han [H] who produced an interesting
application of the Krasnosel’skĭı–Guo fixed point theorem. It is interest-
ing in light of the observation that if y is a solution of (1.1), (1.2), then	L
0 g(s, y(s)) ds = 0. Using a shift argument [IPT], Han constructs an equiv-

alent boundary value problem, for which y ∈ C[0, L] is a solution if, and
only if, y is a fixed point of an appropriate fixed point operator. In particu-

lar, if y is such a fixed point, then
	L
0 g(s, y(s)) ds = 0. Infante, Pietramala

and Tojo themselves [IPT] provided a thorough study of boundary value
problems related to the Neumann boundary conditions (1.2) using the shift
argument.

Motivated by [H] and [IPT], we too shall apply the shift argument. We
present three applications, one using the Krasnosel’skĭı–Guo fixed point
theorem, one using the Schauder fixed point theorem and one using the
Leray–Schauder nonlinear alternative. Our purpose is to obtain analogues
of standard results for regular boundary value problems. We then consider
a standard question in the study of boundary value problems for ordinary
differential equations, and consider the questions of existence and unique-
ness of solutions and existence of solutions for L > 0, in the case L is small.
We show that standard applications of the contraction mapping principle
fail and we provide partial explanation for the failure. Han’s construction is
specifically used to give a partial explanation.

We close the paper with a simple example to illustrate the results.

2. A fixed point operator. Let β be real and consider the equivalent
boundary value problem

(2.1) y′′(t) + β2y(t) = g(t, y(t)) + β2y(t) = h(t, y(t)), 0 ≤ t ≤ L,

together with the boundary conditions (1.2). Throughout this article, we
make the assumption that

(2.2) β ∈
(

0,
π

2L

)
.
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A direct computation gives a Green’s function G(β, L; t, s) for the boundary
value problem (2.1), (1.2):

(2.3) G(β, L; t, s) =
1

β sin(βL)

{
cos(βt) cos(β(s− L)), 0 ≤ t ≤ s ≤ L,

cos(βs) cos(β(t− L)), 0 ≤ s ≤ t ≤ L,

which has the following properties:

(i) it satisfies the boundary conditions

Gt(β, L; 0, s) = 0, Gt(β, L;L, s) = 0;

(ii) it is continuous across the line t = s,

G(β, L; s+, s)−G(β, L; s−, s) = 0;

(iii) its t-partial derivative has a jump discontinuity across the line t = s,

Gt(β, L; s+, s)−Gt(β, L; s−, s) = 1.

Theorem 2.1. Assume g : [0, L] × R → R is continuous. Then y is a
solution of (2.1), (1.2) if, and only if, y ∈ C[0, 1] and

y(t) =

L�

0

G(β, L; t, s)h(s, y(s)) ds, 0 ≤ t ≤ L.

Since it is clear that y is a solution of (1.1), (1.2) if, and only if, y is a
solution of (2.1), (1.2), Theorem 2.1 can be restated in the following way.

Theorem 2.2. Assume g : [0, L] × R → R is continuous. Then y is a
solution of (1.1), (1.2) if, and only if, y ∈ C[0, 1] and

y(t) =

L�

0

G(β, L; t, s)h(s, y(s)) ds, 0 ≤ t ≤ L.

Theorems 2.1 and 2.2 motivate the following definition of a fixed point
operator K : C[0, 1]→ C[0, 1]:

(2.4) Ky(t) =

L�

0

G(β, L; t, s)h(s, y(s)) ds, 0 ≤ t ≤ L.

Thus, obtaining a fixed point of K in C[0, L] is equivalent to obtaining a
solution of (1.1), (1.2). We point out that if h : [0, L]×R→ R is continuous,
then since G is uniformly continuous on [0, L]× [0, L], standard arguments
show that K : C[0, L]→ C[0, L], defined by (2.4), is a completely continuous
operator.

Lemma 2.3. The Green function given by (2.3) satisfies

(2.5)
cos2(βL)

β sin(βL)
≤ G(β, L; s, t) ≤ 1

β sin(βL)
, (t, s) ∈ [0, L]× [0, L].
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Proof. From (2.3) we deduce that

G(β, L; t, s) ≤ 1

β sin(βL)
, (t, s) ∈ [0, L]× [0, L].

Furthermore,

G(β, L; t, s) ≥ 1

β sin(βL)

{
cos(βL) cos(βL), 0 ≤ t ≤ s ≤ L,
cos(βL) cos(βL), 0 ≤ s ≤ t ≤ L.

Hence,

G(β, L; t, s) ≥ cos2(βL)

β sin(βL)
, (t, s) ∈ [0, L]× [0, L].

3. Applications of fixed point theorems. In this section we present
three applications: of the Krasnosel’skĭı–Guo [GL] fixed point theorem, of
the Schauder [J] fixed point theorem, and of the Leray–Schauder nonlinear
alternative [LS, DG]. We also give a partial explanation as to the notable
lack of application of the contraction mapping principle.

First we state for convenience:

Theorem 3.1 (Krasnosel’skĭı–Guo fixed point theorem). Let X be a
Banach space and let D ⊂ X be a cone in X. Assume Ω1 and Ω2 are open
balls of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let K : D ∩

(
Ω2 \Ω1

)
7→ D be a

completely continuous operator such that either

(1) ‖KU‖ ≤ ‖U‖, U ∈ D ⊂ ∂Ω1, and ‖KU‖ ≥ ‖U‖, U ∈ D ⊂ ∂Ω2, or
(2) ‖KU‖ ≥ ‖U‖, U ∈ D ⊂ ∂Ω1, and ‖KU‖ ≤ ‖U‖, U ∈ D ⊂ ∂Ω2.

Then K has a fixed point in D ∩ (Ω2 \Ω1).

Let X = C[0, L] with ‖y‖ = max0≤t≤L |y(t)|. Define the cone D ⊂ X by

D = {y ∈ C[0, L] : y(t) ≥ cos2(βL)‖y‖, t ∈ [0, L]}.

Theorem 3.2. Assume h : [0, L] × R → R is continuous and assume
h(t, y) ≥ 0 for (t, y) ∈ [0, L]× [0,∞). Let K be the operator defined by (2.4).
Then

K : D → D.

Proof. First note that the Green function is uniformly continuous on
[0, L] × [0, L]. So the continuity of h implies Ky ∈ C[0, L] if y ∈ C[0, L].
Moreover, the condition h ≥ 0 if y ≥ 0 and (2.5) imply that if y ≥ 0, then
Ky ≥ 0. So, y ∈ D implies Ky ≥ 0.

Now, let y ∈ D. Then

|Ky(t)| ≤
L�

0

|G(β, L; t, s)| |h(y(s))| ds,
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which implies

(3.1) ‖Ky‖ ≤ 1

β sin(βL)

L�

0

|h(y(s))| ds.

Employ (3.1) to obtain,

Ky(t) =

L�

0

G(β, L; t, s)h(y(s)) ds

≥ cos2(βL)

β sin(βL)

L�

0

h(y(s)) ds ≥ cos2(βL)‖Ky‖

and

(3.2) Ky(t) ≥ cos2(βL)‖Ky‖.

Thus, KD ⊂ D.

To apply Theorem 3.1, suppose in addition to assumption (2.2) that

(3.3) g(t, y) ≥ −β2y, (t, y) ∈ [0, L]× [0,∞).

Theorem 3.3. Assume g : [0, L] × R → R is continuous and assume
(2.2) and (3.3) hold. Assume g satisfies the asymptotic properties

lim sup
y→0+

max
t∈[0,1]

g(t, y)

y
= −β2,(3.4)

lim inf
y→∞

min
t∈[0,1]

|g(t, y)|
y

=∞.(3.5)

Then there is at least one positive solution of (1.1), (1.2).

Proof. For 0 < r <∞, let

Ωr = {y ∈ C[0, L] : ‖y‖ < r}.

We shall determine values of 0 < r < R such that the hypotheses of Theo-
rem 3.1 are satisfied with Ωr = Ω1 and ΩR = Ω2.

First, note by (3.4) there exists r > 0 sufficiently small such that

(3.6) ‖Ky‖ ≤ ‖y‖ for all y ∈ D ∩ ∂Ωr.

To see this, let m > 0 and assume

mL

β sin(βL)
≤ 1.

By (3.4), there exists r > 0 such that if y ∈ D ∩ ∂Ωr, then

g(t, y(t)) + β2y(t) ≤ my(t) or h(t, y(t)) ≤ my(t).
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Then

Ky(t) =

L�

0

G(β, L; s, t)h(y(s)) ds ≤ m‖y‖
L�

0

G(β, L; s, t) ds

≤ ‖y‖ mL

β sin(βL)
≤ ‖y‖.

Thus, ‖Ky‖ ≤ ‖y‖ if y ∈ D ∩ ∂Ωr, and (3.6) is true.

Now we exhibit R > 0 sufficiently large such that

(3.7) ‖Ky‖ ≥ ‖y‖ for all y ∈ D ∩ ∂ΩR.
There exists R0 > 0 such that if y ≥ R0, then

g(t, y) ≥ ρy
where ρ > 0 is such that

cos4(βL)

β sin(βL)
(ρ+ β2)L ≥ 1.

Let R > max{R0/cos2(βL), 2r} > r. Then y ∈ D ∩ΩR implies

y(t) ≥ cos2(βL)‖y‖ > R0

and

h(t, y(t)) = g(t, y(t)) + β2y(t) ≥ ρy(t) + β2y(t) = (ρ+ β2)y(t).

By Lemma 2.3, we have

Ky(t) =

L�

0

G(β, L; s, t)h(s, y(s)) ds ≥ (ρ+ β2)

L�

0

G(β, L; s, t)y(s) ds

≥ (ρ+ β2)
cos2(βL)

β sin(βL)
cos2(βL)L‖y‖ ≥ ‖y‖.

Thus, ‖Ky‖ ≥ ‖y‖ if y ∈ D ∩ ∂ΩR, and (3.7) is true.

Remark. Many related results are readily obtained now that the basic
framework is established to apply the Krasnosel’skĭı–Guo fixed point theo-
rem, Theorem 3.1. One can modify the asymptotic conditions (3.4), (3.5)
with superlinear growth at the origin and sublinear growth at infinity, or
produce growth properties to imply the existence of multiple positive so-
lutions, or introduce nonlinear eigenvalue problems and obtain eigenvalue
intervals on which positive solutions exist; see [EHW, EW, HW] for the
seminal papers along these lines. As this is not the intent of this particular
article, we do not develop these related results here.

We now consider an application of the Schauder fixed point theorem [J],
stated here for convenience:
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Theorem 3.4 (Schauder fixed point theorem). If V is a closed convex
subset of a Banach space X, if K : V → V is continuous on V, and if KV
is a compact subset of X, then K has a fixed point in V .

Consider the Banach space X = C[0, L], equipped with the maximum
norm

‖y‖0 = max
0≤t≤L

|y(t)|.

From this point on in the paper, we do not consider positive solutions and
so condition (3.3) is not assumed throughout the remainder of the article.

Theorem 3.5. Assume that g : [0, L] × R → R is continuous. Assume
there exists β ∈

(
0, π2L

)
such that h(t, y) = g(t, y) + β2y is bounded. Then

there exists a solution of (1.1), (1.2).

Proof. Since h is bounded, let Q = sup{|h(t, y)| : (t, y) ∈ [0, L]×R}. Let
V ⊂ X be defined by

V =

{
y ∈ X : |y(t)| ≤ QL

β sin(βL)
, 0 ≤ t ≤ L

}
.

Then, clearly, that V is a closed bounded convex subset of X. For any y ∈ V,

|Ky(t)| ≤
L�

0

|G(β, L; t, s)| |h(s, y(s))| ds ≤ Q
L�

0

|G(β, L; t, s)| ds(3.8)

≤ QL

β sin(βL)
.

So K maps V into V .

Remark. It is a standard application of the Schauder fixed point theo-
rem to show that a bounded nonlinear term is a common sufficient condition
for existence of solutions. However, in this case, the application is more in-
teresting. Consider the boundary value problem (1.1), (1.2), and assume

g : [0, L] × R → (0,∞). Then
	L
0 g(t, y(t)) dt > 0 for any y ∈ X. In particu-

lar, there is no fixed point for the operator K if g is moreover assumed to
be continuous and bounded.

Remark. Also note that if h(t, 0) = 0, then the trivial solution is a
solution of (1.1), (1.2), and the Schauder fixed point theorem provides no
new information. So, for all practical purposes, assume in Theorem 3.5 ad-
ditionally that h(t, 0) 6= 0.

For our third application, we use the Leray–Schauder nonlinear alterna-
tive, again stated here for convenience:
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Theorem 3.6 (Leray–Schauder nonlinear alternative). Let V be a closed
and bounded subset of a Banach space X, let U be an open subset of V and
0 ∈ U . Suppose K : U → V is a continuous and compact operator. Then
either

(1) K has fixed point in U , or
(2) there exists a point u ∈ ∂U such that u = λKu for some λ ∈ (0, 1)

where ∂U denotes the boundary of U in V .

Theorem 3.7. Assume that g : [0, L] × R → R is continuous. Assume
there exists β ∈

(
0, π2L

)
, σ ∈ C[0, L] × R+ and a nondecreasing function

Ψ : R+ → R+ such that if h(t, y) = g(t, y) + β2y, then

|h(t, y)| ≤ σ(t)Ψ(|y|), (t, y) ∈ [0, L]× R.

Moreover, assume there exists M > 0 such that

(3.9)
Mβ sin(βL)

L‖σ‖Ψ(M)
> 1.

Then the boundary value problem (1.1), (1.2) has a solution.

Proof. Again consider the Banach space X = C[0, L] equipped with the
maximum norm ‖y‖0 = max0≤t≤L |y(t)|. Assume that h(t, y) = g(t, y) +β2y
is continuous on [0, L]× R and define the mapping K : X → X by

Ky(t) =

L�

0

G(β, L; t, s)h(s, y(s)) ds.

Now, suppose for y ∈ X and for some λ ∈ (0, 1) we have

(3.10) y(t) = λKy(t).

By the definition of K we can rewrite (3.10) to obtain

|y(t)| ≤
L�

0

|G(β, L; t, s)| |h(s, y(s))| ds ≤ ‖σ‖Ψ(‖y‖) L

β sin(βL)

and conclude that

‖y‖ ≤ ‖σ‖Ψ(‖y‖) L

β sin(βL)
.

Hence,
‖y‖β sin(βL)

L‖σ‖Ψ(‖y‖)
≤ 1.

Thus, if y satisfies (3.10), then ‖y‖ 6= M, where M is given by (3.9).

To apply the Leray–Schauder nonlinear alternative and complete the
proof, define

U = {y ∈ β : ‖y‖ < M}.
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Then the operator K : U → β is continuous and compact and there is no
point y ∈ ∂U and λ ∈ (0, 1) such that y = λKy. Thus, K has a fixed point
in U .

Corollary 3.8. Assume that g : [0, L]×R→ R is continuous. Assume
there exists β ∈

(
0, π2L

)
, σ ∈ C[0, L] × R+ and a nondecreasing function

Ψ : R+ → R+ such that if h(t, y) = g(t, y) + β2y, then

|h(t, y)| ≤ σ(t)Ψ(|y|), (t, y) ∈ [0, L]× R.

If

lim sup
y→∞

y

Ψ(y)
=∞,

then there exists a solution of (1.1), (1.2).

Remark. Before proceeding to a discussion on the failure of an appli-
cation of the contraction mapping principle, we point out that in [IPT], the
authors consider the shift (1.1), and they consider the analogous shift

(3.11) y′′(t)− β2y(t) = g(t, y(t))− β2y(t) = ĥ(t, y(t)), 0 ≤ t ≤ L.

The Green function for the boundary value problem (3.11), (1.2) is readily
constructed and has the form

G(β, L; t, s) =
1

β sinh(βL)

{
cosh(βt) cosh(β(s− L)), 0 ≤ t ≤ s ≤ L,

cosh(βs) cosh(β(t− L)), 0 ≤ s ≤ t ≤ L.
Thus, analogues of Theorems 3.3, 3.5 and 3.7 can be stated and proved.

We close the section with a partial discussion as to why the contrac-
tion mapping principle fails to be a useful tool in the study of problems at
resonance. Standard questions to consider when studying boundary value
problems for ordinary differential equations involve uniqueness of solutions
implying uniqueness or existence of solutions [J]; for example, if initial value
problems are uniquely solvable and solutions extend to [0, L], then under
suitable hypotheses, one expects a boundary value problem to have a unique
solution if the interval length, L, is small enough. This is clearly not the
case for problems at resonance such as (1.1), (1.2). If (1.1), (1.2) has a so-

lution y(t), then
	L
0 g(s, y(s)) ds = 0. So, for example, if g = 1, then (1.1),

(1.2) has no solution for any L > 0.

To apply the contraction mapping principle for L sufficiently small, one
generally begins by assuming that g is Lipschitz, i.e. there exists α > 0 such
that

|g(t, y1)− g(t, y2)| ≤ α|y1 − y2|, 0 < t < L, y1, y2 ∈ R.

Assume (2.2), let G(L, β; t, s) be given by (2.3) and let the operator K be
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given by (3.10). Then, if y1, y2 ∈ C[0, L], we have

|Ky1(t)−Ky2(t)| ≤
L�

0

|G(β, L; t, s)| |h(s, y1(s))− h(s, y2(s))| ds

≤
L�

0

|G(β, L; t, s)| ds (α+ β2)‖y1 − y2‖

≤ L

β sin(βL)
(α+ β2)‖y1 − y2‖.

A possible contraction coefficient has the form

L

β sin(βL)
(α+ β2)

and we consider the smaller coefficient with α = 0. Then
L

β sin(βL)
β2 =

βL

sin(βL)
> 1

if L > 0 and β ∈
(
0, π2L

)
. So, the standard approach does not give rise to a

contraction coefficient for any α > 0.
Note that if one considers the analogous shift (3.11), with boundary

conditions (1.2), then the corresponding possible contraction coefficient is

L cosh2(βL)

β sinh(βL)
β2 ≥ βL cosh(βL)

sinh(βL)
> 1

if L > 0. Thus, the partial discussion for the failure of the contraction
mapping principle applies if one considers (3.11).

4. An example. We provide one simple example to illustrate an appli-
cation of Theorem 3.5. Consider the boundary value problem

(4.1) y′′(t) = g(t)− y3(t)

1 + y2(t)
, 0 ≤ t ≤ 1,

with the boundary conditions (1.2), where g ∈ C[0, 1]. So, L = 1. Let
β = 1 < π/2. Then

h(t, y(t)) = g(t)− y3(t)

1 + y2(t)
+ y(t) = g(t) +

y(t)

1 + y2(t)
.

The function h is bounded and continuous on [0, 1] × R and so, by Theo-
rem 3.5, there exists a solution of the boundary value problem (4.1), (1.2).
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