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Asymptotic behaviour of Besov norms
via wavelet type basic expansions

Anna Kamont (Gdańsk)

Abstract. J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.),
Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439–
455] proved the following asymptotic formula: if Ω ⊂ Rd is a smooth bounded domain,
1 ≤ p <∞ and f ∈W 1,p(Ω), then

lim
s↗1

(1− s)
�

Ω

�

Ω

|f(x)− f(y)|p

‖x− y‖d+sp dx dy = K
�

Ω

|∇f(x)|p dx,

where K is a constant depending only on p and d.
The double integral on the left-hand side of the above formula is an equivalent semi-

norm in the Besov space Bs,pp (Ω). The purpose of this paper is to obtain analogous
asymptotic formulae for some other equivalent seminorms, defined using coefficients of
the expansion of f with respect to a wavelet or wavelet type basis. We cover both the
case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces
with dominating mixed smoothness. We also treat Besov type spaces defined in terms of
a Ditzian–Totik modulus of smoothness, but for a restricted range of parameters only.

1. Introduction. The starting point for this paper is the following re-
sult by J. Bourgain, H. Brezis and P. Mironescu [5]: if Ω ⊂ Rd is a smooth
bounded domain, 1 ≤ p <∞ and f ∈W 1,p(Ω), then

(1.1) lim
s↗1

(1− s)
�

Ω

�

Ω

|f(x)− f(y)|p

‖x− y‖d+sp
dx dy = K

�

Ω

|∇f(x)|p dx,

where K is a constant depending only on p and d, and ‖ · ‖ denotes the
euclidean norm in Rd. This result has attracted a lot of interest. V. Maz’ya
and T. Shaposhnikova [25] obtained a version of the above result when
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s↘ 0:

(1.2) lim
s↘0

s
�

Rd

�

Rd

|f(x)− f(y)|p

‖x− y‖d+sp
dx dy = K

�

Rd
|f(x)|p dx,

where K is another constant depending on p and d.
In the terminology of [4] or [33], the double integral on the left-hand sides

of these equalities is an equivalent seminorm in the Besov space Bs,p
p (Ω) or

Bs,p
p (Rd). Therefore, the above results have been extended by several authors

to give the asymptotic behaviour of other natural seminorms in Bs,q
p (Rd)

(see G. E. Karadzhov, M. Milman and J. Xiao [21] or H. Triebel [34]). The
seminorms considered in those papers are defined in terms of moduli of
smoothness or progressive differences. An example of these results is the
following (see [21]): if

(1.3) ‖f‖p,q,s,k =

(∑
|α|=k

�

Rd

‖∆α
hf‖

q
p

‖h‖d+skq
dh

)1/q

,

then

(1.4) lim
s↗1

(1− s)‖f‖qp,q,s,k =
∑
|α|=k

cα‖Dαf‖qp, lim
s↘0

s‖f‖qp,q,s,k = C‖f‖qp,

where cα, C are some constants depending on α, k, d, q; another seminorm

considered in [21] is (
	∞
0 (ωk,p(f, t)/t

sk)q dt/t)1/q, while in [34] the asymptotic

behaviour of the norm ‖f‖p + (
	1
0(ωk,p(f, t)/t

sk)q dt/t)1/q is discussed.
The Besov spaces Bs,q

p with 0 < s < m can be identified with real inter-
polation spaces between Lp and the Sobolev space Wm,p, with parameters
s/m and q. Therefore, these results should also be seen in the context of
the paper of M. Milman [29], where a variant of the above results for real
interpolation spaces for normal interpolation pairs is obtained. That is, if
(X0, X1) is an interpolation pair, and K(f, t) is the K-functional for the
pair (X0, X1), and

(1.5) lim
t→0

K(f0, t)

t
= ‖f0‖X0 , lim

t→∞
K(f1, t) = ‖f1‖X1 ,

and for 0 < s < 1, 1 ≤ q ≤ ∞,

‖f‖(X0,X1),s,q = s1/q(1− s)1/qq1/q
(∞�

0

(
K(f, t)

ts

)q dt
t

)1/q

,

then

(1.6) lim
s↗1
‖f‖(X0,X1),s,q = ‖f‖X1 and lim

s↘0
‖f‖(X0,X1),s,q = ‖f‖X0 .

Let us note a recent paper by R. Arcangéli and J. J. Torrens [2], which
can be seen as an extension of the original formulation of (1.1) or (1.2)
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to higher order of smoothness. Some other related results, including the
investigation of the best constants in various embedding theorems, can be
found e.g. in J. Bourgain, H. Brezis and P. Mironescu [6], V. Maz’ya and
T. Shaposhnikova [26], V. I. Kolyada and A. Lerner [22], and M. Milman
and J. Xiao [30].

Another important tool used in the study of Besov and Sobolev spaces
is wavelet or wavelet type bases. In this paper, we present a version of
the above results using such bases. It is well known that the Sobolev spaces
Wm,p with 1 < p <∞ have equivalent norms, defined in terms of multipliers
on wavelet bases. In the case of Besov spaces, there are equivalent norms,
which are some weighted norms of the type `q(`p) applied to the sequence
of coefficients of the expansion of a function with respect to a wavelet or
wavelet type basis. However, for such norms, we cannot expect asymptotic
results of the type described above (an obvious counterexample is presented
in Section 3.2).

Nevertheless, we shall see that Besov spaces also have equivalent norms,
defined with the use of some multipliers on wavelet bases; more precisely,
when 1 < p < ∞, we shall see that the modulus of smoothnes ωm,p(f, t) is
equivalent to the norm of some multiplier on wavelet bases. The idea of such
an approach can be traced back to Z. Ciesielski [8]. An important property
which we use is unconditionality of wavelet bases in Lp and Wm,p, so the
cases p = 1 and p = ∞ are excluded from our analysis. For the norms
in Besov spaces defined in this way, we get counterparts of (1.1), (1.2) or
(1.4). We also get a variant of these results for spaces with dominating
mixed smoothness, and for Besov type spaces corresponding to moduli of
smoothness introduced by Z. Ditzian and V. Totik [13], with the step of
the difference depending on the point, but in the latter case for a restricted
range of parameters only.

Let us mention that such an analysis can also be applied in other settings,
for example in the case of Besov and Sobolev spaces on smooth manifolds,
with the use of wavelet type bases constructed by Z. Ciesielski and T. Figiel
[11]. On the other hand, one can consider function spaces on fractal sets
and piecewise linear bases in those spaces, constructed by A. Jonsson and
A. Kamont [19].

The main fact we use is unconditionality of wavelet bases in Lp, 1 < p
<∞. Therefore, we have decided to present the technical part of the results
in an abstract formulation, starting with a Banach space with an uncon-
ditional basis. This is done in Section 2. In that setting, we consider two
scales of spaces, which correspond to Sobolev and Besov spaces. First we get
some estimates between the norms from these two scales. The counterparts
of (1.1), (1.2) or (1.4) follow directly from these estimates. We consider two
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versions: a one-parameter version, which corresponds to Besov and Sobolev
spaces as above, and a multiparameter version, which corresponds to Besov
and Sobolev spaces with dominating mixed smoothness. This is done in
Sections 2.1 and 2.2, respectively.

Then, in Section 3 we use wavelet or wavelet type bases to translate
the results of Section 2 to Besov and Sobolev spaces. More specifically, in
Section 3.2 we treat the case of Besov and Sobolev spaces on Rd, and wavelet
bases. In Section 3.3, we treat spaces and wavelet type bases on the cube
[0, 1]d: Section 3.3.2 deals with the isotropic case, while Section 3.3.3 deals
with spaces with dominating mixed smoothness. Finally, Section 3.4 treats
the spaces corresponding to moduli of smoothness defined by Z. Ditzian and
V. Totik.

Some notation. The following notation is used. By N we denote the
set of positive integers, and N0 = N ∪ {0}. For fixed d ∈ N, we set D =
{1, . . . , d}. Vectors in Rd or Nd0 are denoted by t, h, α, j, n, etc.; in particular,

1 = (1, . . . , 1), 0 = (0, . . . , 0) ∈ Nd0. If k = (k1, . . . , kd) and A ⊂ D, then we
write kA = (k1,A, . . . , kd,A) with ki,A = ki if i ∈ A and ki,A = 0 if i 6∈ A. For
A ⊂ D we denote Ac = D\A. Occasionally, to simplify the notation, we use
only the “active” parameters of kA or tA, i.e. with i ∈ A; thus we identify
kA ∈ Zd, tA ∈ (0,∞)d, etc. with elements of Z|A|, (0,∞)|A|, etc.

For a vector l = (l1, . . . , ld) ∈ Nd0 denote |l| = l1 + · · · + ld and |l|∞ =
max(l1, . . . , ld). We use the following vector notation: for n = (n1, . . . , nd)

and j = (j1, . . . , jd), we denote n · j = n1j1 + · · ·+ ndjd, n
j = nj11 · . . . · n

jd
d ,

n < j means that ni < ji for all i = 1, . . . , d; analogously, n ≤ j means that
ni ≤ ji for all i = 1, . . . , d.

We consider various function spaces: Lp spaces, Sobolev spaces Wm,p,
Besov spaces Bα,q

p etc., both over Rd and [0, 1]d. If the domain is not explic-
itly indicated, we have in mind both versions simultaneously.

As usual, for an exponent 1 ≤ q ≤ ∞, we denote by q′ the conjugate
exponent, 1/q + 1/q′ = 1.

The notation a(x) ∼ b(x) means that there are constants 0 < c1, c2 <∞,
independent of the parameter x, such that c1a(x) ≤ b(x) ≤ c2a(x). We also
denote a ∧ b = min(a, b).

2. The abstract version. Let X be a Banach space with an uncon-
ditional basis X . We assume that the basis is 1-unconditional, that is, if
X = {xv : v ∈ V }, where V is a countable set of indices, then for each
sequence (av)v∈V of coefficients with finitely many non-zero terms and a
sequence (θv)v∈V of scalars with |θv| ≤ 1, v ∈ V , we have∥∥∥∑

v∈V
θvavxv

∥∥∥ ≤ ∥∥∥∑
v∈V

avxv

∥∥∥.
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We will consider two ways to enumerate X . The first one is suitable for
one-parameter results. In this version, we write V =

⋃∞
j=0 Vj with Vj finite

or countable and pairwise disjoint, and

X =
∞⋃
j=0

Xj with Xj = {xv : v ∈ Vj}.

In the multiparameter version, we set V =
⋃
j∈Nd0

Vj , with Vj finite or

countable and pairwise disjoint, and

X =
⋃
j∈Nd0

Xj with Xj = {xv : v ∈ Vj}.

2.1. One-parameter version. For each x ∈ X, there is a unique se-
quence a(x) = (av(x))v∈V of coefficients such that x =

∑∞
j=0

∑
v∈Vj av(x)xv.

To simplify the notation, we write av instead of av(x), and we set Qj(x) =∑
v∈Vj avxv.

Now, we define two scales of spaces, wα and bα,qm . The model for wα is the
scale of fractional order Sobolev spaces, obtained by complex interpolation
of Sobolev spaces of integer order. The model for bα,qm is the scale of Besov
spaces.

Definition 2.1. Let α ≥ 0. Define

wα =
{
x ∈ X :

∞∑
j=0

2jαQj(x) converges in X
}
,

with the norm

‖x‖wα =
∥∥∥ ∞∑
j=0

2jαQj(x)
∥∥∥.

Remark 2.1. It can be checked that if X is a Banach space over C and
0 < α < m, then wα is a complex interpolation space between w0 and wm,
more precisely wα = (w0, wm)[α/m], with equivalence of norms, and with
equivalence constants not depending on α.

Next, for x ∈ X = w0, let us estimate the K-functional for the pair
(w0, wm), i.e.

K

(
x,

1

2mn

)
= inf

{
‖x− y‖w0 +

1

2mn
‖y‖wm : y ∈ wm

}
.

Proposition 2.2. Let w0, wm be given by Definition 2.1. Then for each
x ∈ w0 and n ∈ Z,

(2.1)
1

2

∥∥∥ ∞∑
j=0

(2m(j−n)∧1)Qj(x)
∥∥∥≤K(x, 1

2mn

)
≤
∥∥∥ ∞∑
j=0

(2m(j−n)∧1)Qj(x)
∥∥∥.
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Proof. We give the proof of Proposition 2.2 for reference, since the ar-
gument used here is repeated in other cases as well.

The upper estimate follows by taking yn = 0 for n < 0 and yn =∑n
j=0Qj(x) for n ≥ 0. To check the lower estimate, take y ∈ wm and con-

sider z =
∑∞

j=0

∑
v∈Vj uvxv, where uv = max(|av(x)−av(y)|, 2m(j−n)|av(y)|)

for v ∈ Vj . Then by 1-unconditionality of the basis,

‖z‖ ≤ ‖x− y‖w0 +
1

2mn
‖y‖wm .

Considering separately the cases |av(y)| ≥ |av(x)|/2 and |av(y)| ≤ |av(x)|/2
we get uv ≥ (2m(j−n) ∧ 1)|av(x)|/2, hence, again by 1-unconditionality,

‖z‖ ≥ 1

2

∥∥∥ ∞∑
j=0

(2m(j−n) ∧ 1)Qj(x)
∥∥∥.

This concludes the proof of Proposition 2.4.

Because of Proposition 2.2, the space bα,qm defined below is in fact a
real interpolation space (w0, wm)α/m,q, with an equivalent norm, and with
equivalence constants independent of 0 < α < m:

Definition 2.2. Fix m > 0, and let 0 < α < m and 1 ≤ q ≤ ∞. Define

bα,qm =
{
x ∈ X :

∥∥∥(2αn
∥∥∥ ∞∑
j=0

(2m(j−n) ∧ 1)Qj(x)
∥∥∥)

n∈Z

∥∥∥
`q
<∞

}
,

with the norm

‖x‖bα,qm =
∥∥∥(2αn

∥∥∥ ∞∑
j=0

(2m(j−n) ∧ 1)Qj(x)
∥∥∥)

n∈Z

∥∥∥
`q
.

We are interested in the asymptotic behaviour of (m − α)1/q‖x‖bα,qm as

s↗ m and of α1/q‖x‖bα,qm as α↘ 0. Because of (2.1), we have

lim sup
n→∞

2mnK

(
x,

1

2mn

)
∼ ‖x‖wm , lim inf

n→∞
2mnK

(
x,

1

2mn

)
∼ ‖x‖wm ,

lim sup
n→∞

K(x, 2mn) ∼ ‖x‖w0 , lim inf
n→∞

K(x, 2mn) ∼ ‖x‖w0 .

Therefore, we are in a situation similar to that in M. Milman [29], but
with equivalence instead of equality in (1.5). However, in the setting of this
section, it is possible to get some inequalities between the norms ‖·‖bα,qm and
‖ · ‖wα±ε (Propositions 2.4 and 2.5). Then the asymptotic result (Theorem
2.6) is a consequence of these estimates.

For later convenience, let

s(ξ) =

∞∑
j=0

2−jξ =
2ξ

2ξ − 1
for ξ > 0.
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For reference, let us formulate

Lemma 2.3. We have

lim
ξ→0

ξ · s(ξ) =
1

ln 2− 1
.

The main result of this section will be a direct consequence of Proposi-
tions 2.4 and 2.5 below. Proposition 2.4 contains the upper estimate:

Proposition 2.4. Let 0 < α < m and ε > 0 with α + ε ≤ m, and let
1 ≤ q <∞. Then for x ∈ wα+ε we have

(2.2) ‖x‖q
bα,qm
≤ s(qε)‖x‖q

wα+ε
+ 2−qαs(qα)‖x‖q

w0 .

Moreover, for q =∞ and x ∈ wα we have

(2.3) ‖x‖bα,∞m ≤ ‖x‖wα .
Proof. Denote

Fn(x) =
∥∥∥ ∞∑
j=0

(2m(j−n) ∧ 1)Qj(x)
∥∥∥.

First, consider n ≥ 0. Then

2n(α+ε)Fn(x) =
∥∥∥ ∞∑
j=0

(2m(j−n) ∧ 1)2(n−j)(α+ε)2j(α+ε)Qj(x)
∥∥∥.

Now we have:

for j ≤ n, (2m(j−n) ∧ 1)2(n−j)(α+ε) = 2(n−j)(α+ε−m) ≤ 1,

for j ≥ n, (2m(j−n) ∧ 1)2(n−j)(α+ε) = 2(n−j)(α+ε) ≤ 1.

Therefore, by 1-unconditionality of the basis under consideration,

2n(α+ε)Fn(x) ≤
∥∥∥ ∞∑
j=0

2j(α+ε)Qj(x)
∥∥∥ = ‖x‖wα+ε .

In particular, this proves (2.3).
In case q <∞, the above inequality gives

∞∑
n=0

(2nαFn(x))q =
∞∑
n=0

(
2−nε2n(α+ε)Fn(x)

)q
≤ ‖x‖q

wα+ε

∞∑
n=0

1

2nεq
= s(qε)‖x‖q

wα+ε
.

For n < 0, note that

Fn(x) =
∥∥∥ ∞∑
j=0

(2m(j−n) ∧ 1)Qj(x)
∥∥∥ =

∥∥∥ ∞∑
j=0

Qj(x)
∥∥∥ = ‖x‖w0 .
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Therefore ∑
n<0

(2nαFn(x))q = ‖x‖q
w0

∑
n<0

2nqα =
s(qα)

2qα
‖x‖q

w0 .

Combining the above results we get (2.2).

The lower estimate will be a consequence of the following:

Proposition 2.5. Let 1 ≤ q < ∞, and let 0 < α < m and η > 0 be
such that 0 < α− η/q′ < m. Then for x ∈ bα,qm we have

(2.4)
s(m− α+ η/q′)q

s(η)q−1
‖x‖q

wα−η/q′
+ 2−qαs(qα)‖x‖q

w0 ≤ ‖x‖qbα,qm .

Proof. We keep the notation Fn(x) = ‖
∑∞

j=0(2
m(j−n) ∧ 1)Qj(x)‖. By

Jensen’s inequality,
∞∑
n=0

(2nαFn(x))q = s(η)

∞∑
n=0

2−nηs(η)−1(2n(α+η/q)Fn(x))q

≥ s(η)
( ∞∑
n=0

s(η)−12n(α−η/q
′)Fn(x)

)q
.

By the triangle inequality and 1-unconditionality of the basis,
∞∑
n=0

2n(α−η/q
′)Fn(x) ≥

∥∥∥ ∞∑
n=0

∞∑
j=0

2n(α−η/q
′)(2m(j−n) ∧ 1)Qj(x)

∥∥∥
=
∥∥∥ ∞∑
j=0

Qj(x)
∞∑
n=0

2n(α−η/q
′)(2m(j−n) ∧ 1)

∥∥∥
≥
∥∥∥ ∞∑
j=0

Qj(x)

∞∑
n=j

2n(α−η/q
′)2m(j−n)

∥∥∥
= s(m− α+ η/q′)

∥∥∥ ∞∑
j=0

2j(α−η/q
′)Qj(x)

∥∥∥
= s(m− α+ η/q′)‖x‖wα−η/q′ .

Putting together these inequalities we get
∞∑
n=0

(2nαFn(x))q ≥ s(m− α+ η/q′)qs(η)1−q‖x‖q
wα−η/q′

.

As in the proof of Proposition 2.4 we have∑
n<0

(2nαFn(x))q =
s(qα)

2qα
‖x‖q

w0 .

Combining the above results we get (2.4).
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The main result of this section is the following:

Theorem 2.6. Let 1 ≤ q <∞. Then for x ∈ wm we have

(2.5) lim
α↗m

(m− α)1/q‖x‖bα,qm =

(
1

q(ln 2− 1)

)1/q

‖x‖wm ,

and for x ∈
⋃

0<α<m b
α,q
m ,

(2.6) lim
α↘0

α1/q‖x‖bα,qm =

(
1

q(ln 2− 1)

)1/q

‖x‖w0 .

For q =∞ the above formulae take the form

(2.7) lim
α↗m

‖x‖bα,∞m = ‖x‖wm and lim
α↘0
‖x‖bα,∞m = ‖x‖w0

for x ∈ wm or x ∈
⋃

0<α<m b
α,∞
m , respectively.

Comment. Before we proceed with the proof of Theorem 2.6, let us
comment on its assumptions in case α ↘ 0. Proposition 2.4 implies that if
x ∈ wα for some 0 < α ≤ m, then for each 1 ≤ q ≤ ∞ there is 0 < β < α

such that x ∈ bβ
′,q
m for all 0 < β′ < β. Conversely, applying Proposition 2.5

(directly in case 1 ≤ q < ∞ or in combination with the straightforward

embedding bα,∞m ⊂ bβ,qm for 0 < β < α < m and 1 ≤ q <∞), we find that if
there are α, q such that x ∈ bα,qm , then there is 0 < β < α such that x ∈ wβ′

for all 0 < β′ < β. Therefore, without loss of generality we can formulate
the assumption in case α↘ 0 as x ∈

⋃
0<α≤mw

α.

Proof of Theorem 2.6. Clearly, for x ∈ wm we have limβ↗m ‖x‖wβ =
‖x‖wm , and if x ∈ wα for some α > 0 then limβ↘0 ‖x‖wβ = ‖x‖w0 .

Consider first the case of 1 ≤ q <∞.

Applying Proposition 2.4 with ε = m− α we find

(2.8) (m−α)‖x‖q
bα,qm
≤ (m−α)s(q(m−α))‖x‖qwm+(m−α)2−qαs(qα)‖x‖q

w0 .

By Lemma 2.3 we have

(2.9) lim
α↗m

(m− α)s(q(m− α)) =
1

q(ln 2− 1)
.

Moreover,

(2.10) lim
α↗m

(m− α)2−qαs(qα) = 0.

Thus, letting α↗ m in (2.8), we get

lim sup
α↗m

(m− α)‖x‖q
bα,qm
≤ 1

q(ln 2− 1)
‖x‖qwm .
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To obtain the lower estimate, we apply Proposition 2.5 with η = q(m − α)
to find

(2.11) (m− α)s(q(m− α))‖x‖q
wα−(m−α)q/q′ + (m− α)2−qαs(qα)‖x‖q

w0

≤ (m− α)‖x‖q
bα,qm

.

Since limα↗m ‖x‖wα−(m−α)q/q′ = ‖x‖wm , by (2.9) and (2.10) we get

1

q(ln 2− 1)
‖x‖qwm ≤ lim inf

α↗m
(m− α)‖x‖q

bα,qm
.

This completes the proof of (2.5).

To prove (2.6), first apply Proposition 2.4 with ε =
√
α to get

α‖x‖q
bα,qm
≤ αs(q

√
α)‖x‖q

wα+
√
α + α2−qαs(qα)‖x‖q

w0 .

Since

lim
α↘0

αs(q
√
α) = 0 and lim

α↘0
α2−qαs(qα) =

1

q(ln 2− 1)
,

it follows that

lim sup
α↘0

α‖x‖q
bα,qm
≤ 1

q(ln 2− 1)
‖x‖q

w0 .

On the other hand, by Proposition 2.5,

α2−qαs(qα)‖x‖q
w0 ≤ α‖x‖qbα,qm ,

which implies
1

q(ln 2− 1)
‖x‖q

w0 ≤ lim inf
α↘0

α‖x‖q
bα,qm

.

Altogether we get (2.6).

In case q =∞, by (2.3) we have

lim sup
α↗m

‖x‖bα,∞m ≤ ‖x‖wm and lim sup
α↘0

‖x‖bα,∞m ≤ ‖x‖w0 .

To get the lower estimate, recall that Fn(x) = ‖
∑∞

j=0(2
m(j−n) ∧ 1)Qj(x)‖.

Taking n = 0, we see that

sup
n≥0

2nαFn(x) ≥ F0(x) = ‖x‖w0 .

This implies

lim inf
α↘0

‖x‖bα,∞m ≥ ‖x‖w0 .

To consider the case α ↗ m, note that by 1-unconditionality of the basis
under consideration, for each fixed n ≥ 0 we have

‖x‖bα,∞m ≥ 2nαFn(x) ≥ 2n(α−m)
∥∥∥ n∑
j=0

2mjQj(x)
∥∥∥.
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Letting α↗ m we find

lim inf
α↗m

‖x‖bα,∞m ≥
∥∥∥ n∑
j=0

2mjQj(x)
∥∥∥.

Letting n→∞ yields

lim inf
α↗m

‖x‖bα,∞m ≥ ‖x‖wm .

Comment (continued). While considering the case α ↗ m, we as-
sume in Theorem 2.6 that x ∈ wm. Note that in case 1 < p <∞, the result
of [5] is stronger: it says that if the left-hand side of (1.1) is finite, then
f ∈W 1,p(Ω). Therefore it is natural to ask if the conditions

(2.12) sup
0<α<m

(m− α)1/q‖x‖bα,qm <∞ for 1 ≤ q <∞

or

(2.13) sup
0<α<m

‖x‖bα,∞m <∞

guarantee that x ∈ wm. In fact, Proposition 2.5 implies that for 1 ≤ q <∞
there is a constant C = C(m, q) such that

sup
0≤α<m

‖x‖wα ≤ C sup
0<α<m

(m− α)1/q‖x‖bα,qm .

For q =∞, the inequality 2nαFn(x) ≤ ‖x‖bα,∞m implies

sup
n≥0

∥∥∥ ∞∑
j=0

(2mj ∧ 2mn)Qj(x)
∥∥∥ ≤ sup

0<α<m
‖x‖bα,∞m .

Therefore, conditions (2.12) or (2.13) imply that x ∈ wm if the space X
has the following version of the Fatou property (cf. e.g. [24, p. 30]): for
each sequence {yn : n ∈ N} ⊂ X with yn =

∑
v∈V av(yn)xv such that

supn∈N ‖yn‖ < ∞ and for each v ∈ V we have |av(yn)| ≤ |av(yn+1)| and
the (finite) limit limn→∞ av(yn) = av exists, the series

∑
v∈V avxv converges

in X. Observe that the spaces considered in Sections 3.2, 3.3.2 and 3.4 have
this property. (But e.g. X = c0 does not.)

2.2. Multiparameter version. In this section, all parameters are
d-dimensional, i.e. α = (α1, . . . , αd), m = (m1, . . . ,md), j = (j1, . . . , jd),
etc.

Now, each x ∈ X has a unique representation x =
∑

j∈Nd0

∑
v∈Vj avxv.

To simplify the notation, set Qj(x) =
∑

v∈Vj avxv.

Now, we define two scales of spaces, wα and b
α,q
m . Their respective models

are the scales of Sobolev and Besov spaces with dominating mixed smooth-
ness.
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Definition 2.3. Let α = (α1, . . . , αd) with αi ≥ 0. Define

wα =
{
x ∈ X :

∑
j∈Nd0

2j·αQj(x) converges in X
}
,

with the norm

‖x‖wα =
∥∥∥∑
j∈Nd0

2j·αQj(x)
∥∥∥.

Definition 2.4. Fix m = (m1, . . . ,md) with mi > 0, α = (α1, . . . , αd)
with 0 < αi < mi and 1 ≤ q ≤ ∞. Define

bα,qm =
{
x ∈ X :

∥∥∥(2n·α
∥∥∥∑
j∈Nd0

d∏
i=1

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥)

n∈Zd

∥∥∥
`q
<∞

}
,

with the norm

‖x‖bα,qm =
∥∥∥(2n·α

∥∥∥∑
j∈Nd0

d∏
i=1

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥)

n∈Zd

∥∥∥
`q
.

The link between the two scales wα and b
α,q
m is the method of real in-

terpolation for 2d-tuples of spaces by D. L. Fernandez [14], which we recall
now. For A ⊂ D = {1, . . . , d}, let YA be a Banach space, and assume that
there is a space Y such that YA ⊂ Y for each A ⊂ D. Then for y ∈

∑
A⊂D YA

and t = (t1, . . . , td) with ti > 0, let

K(y, t, {YA}A⊂D) = inf
{∑
A⊂D

t1A‖yA‖YA :

y =
∑
A⊂D

yA with yA ∈ YA for A ⊂ D
}
.

The following proposition, which is a multiparameter counterpart of Propo-
sition 2.2, shows that the spaces b

α,q
m defined in Definition 2.4 are special

cases of interpolation spaces considered by D. L. Fernandez [14].

Proposition 2.7. Fix m = (m1, . . . ,md), and consider the family of
spaces {wmA}A⊂D. Then for each x ∈ X with x =

∑
j∈Nd0

Qj(x) and tn,m =

(1/2n1m1 , . . . , 1/2ndmd), where n = (n1, . . . , nd) ∈ Zd, we have

K(x, tn,m, {wmA}A⊂D) ∼
∥∥∥∑
j∈Nd0

d∏
i=1

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥.

The equivalence constants can be taken to be 1 and 2−d.

Proof. The proof is analogous to that of Proposition 2.2, but we give the
main argument for later reference. For the upper estimate, it is enough to
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take

yA =
∑

j: ji≤ni for i∈A, ji>ni for i 6∈A
Qj(x).

To get the lower estimate, take yA ∈ wmA such that x =
∑

A⊂D yA. Then
x =

∑
j∈Nd0

∑
v∈Vj avxv and yA =

∑
j∈Nd0

∑
v∈Vj bv,Axv, with the series con-

vergent in X = w0. Then take

uv = max
A⊂D

2mA·(jA−nA)|bv,A| for v ∈ Vj ,

and consider z =
∑

j∈Nd0

∑
v∈Vj uvxv. Then

‖z‖ ≤
∑
A⊂D

t1A‖yA‖wmA .

On the other hand, we have av =
∑

A⊂D bv,A. Therefore for each v there is

A ⊂ D such that |bv,A| ≥ 2−d|av|, and consequently for v ∈ Vj we have

|uv| ≥ 2−d|av|min
A⊂D

2mA·(jA−nA) = 2−d|av|
d∏
i=1

(2mi(ji−ni) ∧ 1),

which implies

‖z‖ ≥ 2−d
∥∥∥∑
j∈Nd0

d∏
i=1

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥.

This implies Proposition 2.7 with equivalence constants 1 and 2−d.

Now we formulate the multiparameter versions of Propositions 2.4 and
2.5:

Proposition 2.8. Let m = (m1, . . . ,md), α = (α1, . . . , αd) with 0 <
αi < mi and ε = (ε1, . . . , εd) with εi > 0 be such that αi + εi ≤ mi, and
1 ≤ q <∞. Then for x ∈ wα+ε,

(2.14) ‖x‖q
b
α,q
m
≤
∑
E⊂D

∏
i∈E

s(qεi)
∏
i∈Ec

2−qαis(qαi)‖x‖qwαE+εE
.

In case q =∞ and x ∈ wα,

‖x‖bα,∞m ≤ ‖x‖wα .

Proposition 2.9. Let 1 ≤ q < ∞, m = (m1, . . . ,md), and let α =
(α1, . . . , αd) with 0 < αi < mi and η = (ηi, . . . , ηd) with ηi > 0 be such that

0 < αi − ηi/q′ < mi. Then for x ∈ bα,qm ,

(2.15)
∑
E⊂D

∏
i∈E

s(mi−αi+ηi/q
′)q

s(ηi)q−1

∏
i∈Ec

2−qαis(qαi) · ‖x‖q
wαE−ηE/q

′ ≤‖x‖qbα,qm .
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Proof. The proofs of Propositions 2.8 and 2.9 are analogous to those of
Propositions 2.4 and 2.5, and use the following observation: if E ⊂ D and
n = (n1, . . . , nd) with ni ≥ 0 for i ∈ E and ni < 0 for i ∈ Ec, then

Fn(x) =
∥∥∥∑
j∈Nd0

d∏
i=1

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥ =

∥∥∥∑
j∈Nd0

∏
i∈E

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥.

Thus, if we denote

Zd(E) = {n = (n1, . . . , nd) ∈ Zd : ni ≥ 0 for i ∈ E and ni < 0 for i ∈ Ec},
then we have∑
n∈Zd(E)

(2n·αFn(x))q

=
∏
i∈Ec

2−qαis(qαi)
∞∑

i∈E:ni=0

(∏
i∈E

2niαi
∥∥∥ ∑
j∈Nd0

∏
i∈E

(2mi(ji−ni) ∧ 1)Qj(x)
∥∥∥)q.

Then we follow the argument in the proofs of Propositions 2.4 and 2.5.

The multiparameter analogue of Theorem 2.6 is now the following:

Theorem 2.10. Let 1 ≤ q <∞, m = (m1, . . . ,md) and F ⊂ D. Then

lim
α→mF

∏
i∈F

(mi − αi)1/q
∏
i∈F c

α
1/q
i · ‖x‖bα,qm =

(
1

q(ln 2− 1)

)d/q
‖x‖wmF .

For q =∞,

lim
α→mF

‖x‖bα,∞m = ‖x‖wmF .

More precisely, in the above limits αi ↗ mi for i ∈ F and αi ↘ 0 for
i ∈ F c, and we consider x ∈ X = w0 such that there is β = (β1, . . . , βd)

with 0 < βi < mi such that x ∈ wmF+βFc .

Proof. Proposition 2.8 and the assumption x ∈ wmF+βFc guarantee that
the norms ‖x‖bα,qm are well-defined when α→ mF .

The proof is similar to the proof of Theorem 2.6, with the use of Propo-
sitions 2.8 and 2.9, so we just give a sketch.

To get the upper estimate in case 1 ≤ q <∞, apply Proposition 2.8 with
ε = (ε1, . . . , εd) defined as follows: εi = mi − αi for i ∈ F and εi =

√
αi for

i ∈ F c. Then we are led to consider the following products: for each E ⊂ D,

γ(α,E) =
∏

i∈F∩E
(mi − αi)s(q(mi − αi))

∏
i∈F∩Ec

(m− αi)2−qαis(qαi)

×
∏

i∈F c∩E
αis(q

√
αi)

∏
i∈F c∩Ec

αi2
−qαis(qαi).
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Then

lim
α→mF

γ(α, F ) =

(
1

q(ln 2− 1)

)d
and lim

α→mF
γ(α,E) = 0 for E 6= F.

With this in hand, the upper estimate follows by Proposition 2.8.

To get the lower estimate in case 1 ≤ q <∞, apply Proposition 2.9 with
η = (η1, . . . , ηd) defined as follows: ηi = q(mi−αi) for i ∈ F and ηi = αi for
i ∈ F c; since we are interested in the estimate from below, it is enough to
consider only the term with E = F . Since∏
i∈F

(mi − αi)s(q(mi − αi))
∏
i∈F c

αi2
−qαis(qαi)→

( 1

q(ln 2− 1)

)d
as α→ mF ,

the lower estimate follows.

The case q = ∞ is treated separately. The upper estimate is an imme-
diate consequence of the corresponding part of Proposition 2.8. The lower
estimate is obtained as in the corresponding part of the proof of Theorem
2.6, by considering Fn(x) with n = (n1, . . . , nd) such that ni ≥ 0 for i ∈ F
and ni = 0 for i ∈ F c.

Comment. Let us discuss the assumption x ∈ wmF+βFc for some β =
(β1, . . . , βd) with 0 < βi < mi. Theorem 2.10 is applied in Section 3.3.3
in a setting where the spaces b

α,q
m have a direct interpretation as spaces of

functions with some smoothness for all 0 < α < m. The spaces wβ have
such an interpretation when β ∈ Nd0. Therefore we would like to have an
alternative form of the assumptions in Theorem 2.10 which would allow us
to avoid the use of the counterpart of wβ with non-integer β (cf. also the
Comment following Theorem 2.6).

For F = D, the assumption x ∈ wmF+βFc means just that x ∈ wm. For
F = ∅, we can take x ∈ bα,qm for some α = (α1, . . . , αd) with 0 < αi < mi.
Then by Proposition 2.9 (directly in case 1 ≤ q < ∞, or in combination

with the embedding b
α,∞
m ⊂ bβ,qm for some β = (β1, . . . , βd) with 0 < βi < αi

and 1 ≤ q <∞) we find that there is β = (β1, . . . , βd) such that x ∈ wβ
′

for

each β′ = (β′1, . . . , β
′
d) with 0 < β′i < βi.

Let us formulate a version of the assumptions for Theorem 2.10 in this
form for other F ⊂ D as well. For this, we need to discuss scales of b- and
w-spaces with k = |F c| parameters, but constructed with Y = wβF as the
initial space, and with X split as X =

⋃
j′∈Nk0

X̃j′ with X̃j′ =
⋃
j∈Nd0: jFc=j

′ Xj .
This leads to spaces w

αFc
β,F and b

αFc ,q
m,β,F defined by

‖x‖wαFcβ,F
=
∥∥∥∑
j∈Nd0

2jF ·βF · 2jFc ·αFcQj(x)
∥∥∥ <∞
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(in particular, the series converges in X = w0), and

‖x‖bαFc ,qm,β,F
=
∥∥∥(2nFc ·αFc

∥∥∥∑
j∈Nd0

2jF ·βF
∏
i∈F c

(2mi(ji−ni)∧1)Qj(x)
∥∥∥)

nFc∈Nk

∥∥∥
`q
<∞.

Clearly, w
αFc
β,F = wβF+αFc . Note also that x ∈ b

αFc ,q
m,β,F iff Tβ,F (x) ∈ b

αFc ,q
m,0,F ,

where Tβ,F (x) =
∑

j∈Nd0
2jF ·βFQj(x).

In this setting, a natural assumption for Theorem 2.10 is x ∈ bαFc ,qm,m,F for
some 0 < α < m. Note that Proposition 2.9, applied to the k-parameter

spaces w
αFc
m,F and b

αFc ,q
m,m,F , implies that x ∈ w

β
Fc

m,F = wmF+βFc for some 0 <

β < α. That is, we recover the assumption as formulated in Theorem 2.10.

3. Application to wavelet and wavelet type bases on Rd and
[0, 1]d. Let us see what the results of Section 2 mean for wavelet bases
on Rd or wavelet type bases on [0, 1]d. We need two properties of such bases:
they are unconditional in Lp and in the Sobolev spaces Wm,p for 1 < p <∞,
and the Sobolev spaces have equivalent norms given in terms of a multiplier
on the basis under consideration.

We shall discuss two types of bases. The first type of bases are localized
wavelet or wavelet type bases. We shall discuss them using the example of
wavelet bases on Rd, but there are also bases of this type on [0, 1]d (see
e.g. Z. Ciesielski and T. Figiel [11]), and the analysis in this case is fully
analogous. This is done in Section 3.2.

The second type of bases are tensor products of one-dimensional bases.
We shall discuss them using the example of tensor products of one-dimen-
sional wavelet type bases on [0, 1]d, but a similar analysis is also possible
on Rd. More precisely, the univariate bases we have in mind are spline bases
with dyadic knots as discussed in Z. Ciesielski [7, 9], and their tensor prod-
ucts as discussed by Z. Ciesielski and J. Domsta [10]. Here we use the fact
that the bases under consideration are not only bases in W p,m[0, 1], but also
the derivatives of the basic functions form a basis in Lp[0, 1]. Because of this
additional property, the results we obtain for the tensor product bases are
more precise than in the case of localized bases (cf. Theorems 3.4 and 3.6).
For the tensor product bases, we show how to apply the results of Section 2
in the case of Sobolev and Besov spaces (Section 3.3.2), but also in the case
of Sobolev and Besov spaces with dominating mixed smoothness (Section
3.3.3). Finally, we apply the results of Section 2 to analyse Besov type spaces
corresponding to moduli of smoothness defined by Z. Ditzian and V. Totik
[13] (Section 3.4); however, this is possible for a limited range of parameters
only.
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The results we get in the case of isotropic Besov spaces (Theorems 3.4
and 3.6) are parallel to the results of G. E. Karadzhov, M. Milman and
J. Xiao [21] and H. Triebel [34], mentioned in the Introduction.

3.1. Sobolev and Besov spaces on Rd and [0, 1]d. First, we recall
the definitions of Sobolev and Besov spaces.

For a vector l = (l1, . . . , ld) ∈ Nd0 denote Dl = ∂l1

∂t
l1
1

· · · ∂ld
∂t
ld
d

. For m ∈ N,

the norm in the Sobolev space Wm,p(Rd) or Wm,p[0, 1]d is defined as

‖f‖Wm,p = ‖f‖p +
∑
|l|=m

‖Dlf‖p.

We also need Sobolev spaces with dominating mixed smoothness. For a vec-
tor m = (m1, . . . ,md) ∈ Nd0, the norm in the space Wm,p(Rd) or Wm,p[0, 1]d

is defined as
‖f‖Wm,p =

∑
A⊂D
‖DmAf‖p.

Now, we recall the definition of Besov spaces. For h ∈ Rd and m ∈ N,
define ∆m

h f , the progressive difference of order m, by

∆hf(·) = f(·+ h)− f(·),

∆m
h f(·) = ∆h(∆m−1

h f)(·) =
m∑
j=0

(
m

j

)
(−1)m+jf(·+ jh).

Then ωm,p(f, t), the modulus of smoothness of f of order m in the Lp norm,
is defined as

ωm,p(f, t) = sup
‖h‖≤t

‖∆m
h f‖p,

where in the case of [0, 1]d the integral in the definition is over the set
{t ∈ [0, 1]d : t+ jh ∈ [0, 1]d, j = 0, . . . ,m}. Fix 0 < α < m and 1 ≤ q ≤ ∞.
Then the norm in the Besov space Bα,q

p (Rd) or Bα,q
p [0, 1]d is, for 1 ≤ q <∞,

‖f‖Bα,qp
= ‖f‖p +

(∞�
0

(
ωm,p(f, t)

tα

)q dt
t

)1/q

,

while for q =∞,

‖f‖Bα,∞p = ‖f‖p + sup
0<t<∞

t−αωm,p(f, t).

Recall that the norms for different m > α are equivalent (see e.g. [4] in
the case of Rd, or [12] for the argument with the use of the Marchaud
inequality in the case of [0, 1]d; cf. also [18] for the Marchaud inequality in
the multivariate case).

For further reference, we recall the well-known equivalence of moduli
of smoothness and a modified K-functional (see e.g. R. A. DeVore and
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G. G. Lorentz [12] in the univariate case, and H. Johnen and K. Scherer
[18] or C. Bennett and R. Sharpley [3] in the multivariate case):

Fact 3.1. Let 1 < p <∞ and d,m ∈ N. Then for each f ∈ Lp,

(3.1) ωm,p(f, t) ∼ inf
{
‖f − g‖p + tm

∑
|l|=m

‖Dlg‖p : g ∈Wm,p
}
,

with equivalence constants independent of f and t > 0.

Consequently, for 0 < t ≤ 1,

tm‖f‖p + ωm,p(f, t) ∼ inf{‖f − g‖p + tm‖g‖Wm,p : g ∈Wm,p},

with equivalence constants independent of f and t.

In particular, Fact 3.1 explains the well-known relation (Lp,Wm,p)α/m,p
= Bα,q

p , with equivalence of norms (and equivalence constants independent
of 0 < α < m); see e.g. [4, 3, 12, 33]. Let us mention that Fact 3.1 also holds
for p = 1 and f ∈ L1, and for p =∞ and continuous functions, but here we
work only with the case 1 < p <∞.

We also need Besov spaces with dominating mixed smoothness. To recall
their definition, denote ei = (ei,1, . . . , ei,d), where ei,j = 1 for j = i and
ei,j = 0 for j 6= i (i.e. ei is the ith coordinate vector in Rd). Given m =
(m1, . . . ,md) (possibly with some mi = 0) and h = (h1, . . . , hd), denote

∆
m
h = ∆m1

h1e1
◦ · · · ◦∆md

hded
.

For t = (t1, . . . , td) and A ⊂ D define

ωm,p,A(f, tA) = sup
h: |hi|≤ti for i∈A

‖∆mA
h f‖p.

(Note that the “active” variables of tA are only those ti for which i ∈ A;
in particular, for A = ∅, we have ωm,p,A(f, tA) = ‖f‖p.) Then for α =
(α1, . . . , αd) with 0 < αi < mi and 1 ≤ q <∞, the norm in B

α,q
p , the Besov

space with dominating mixed smoothness, is defined as

(3.2) ‖f‖Bα,qp
=
∑
A⊂D

( �

(0,∞)d

(
ωm,p,A(f, tA)

t
αA
A

)q∏
i 6∈A

u(ti)
dtA

t
1A
A

dtAc

)1/q

,

where u : R → (0,∞) is a fixed function with
	
R u(t) dt = 1 (the term∏

i 6∈A u(ti) is introduced to take care of the “inactive” variables ti, i 6∈ A).
In case q =∞ we define

(3.3) ‖f‖Bα,∞p = sup
t∈(0,1)d, A⊂D

t
−αA
A ωm,p,A(f, tA).

We will need the following formula (see e.g. A. Kamont [20]):
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Fact 3.2. Let 1 < p <∞, d ∈ N, m ∈ Nd and A ⊂ D. Then for f ∈ Lp,
(3.4) ωm,p,A(f, tA) ∼ inf

{∥∥∥f − ∑
∅6=B⊂A

gB

∥∥∥
p

+
∑
∅6=B⊂A

tmBωm,p,A\B(DmBgB, tA\B) : gB ∈WmB ,p
}
.

with equivalence constants independent of f and t ∈ (0,∞)d.

The proof in [20] is done for [0, 1]d and 0 < ti ≤ 1/mi, but it can be
generalized to ti ≥ 1/mi by arguments analogous to that in [12, Chapter 6,
proof of Theorem 2.4]; it carries over to the case of Rd as well. As above,
there are also versions for p = 1 and f ∈ L1, and for p =∞ and continuous
functions, but we will work only with 1 < p <∞.

3.2. Sobolev and Besov spaces on Rd and localized wavelet
bases. First, let us consider the case of wavelet bases on Rd.

Let φ be an orthonormal scaling function on Rd with the corresponding
set of orthonormal wavelets {ψl : l = 1, . . . , 2d−1}. For a function f defined
on Rd we use the usual notation

fj,k(·) = 2dj/2f(2j · −k), j ∈ Z, k ∈ Zd.
Then we can consider two types of wavelet systems:

{φ0,k : k ∈ Zd} ∪ {ψl,j,k : j ≥ 0, k ∈ Zd, l = 1, . . . , 2d − 1},
or

{ψl,j,k : j ∈ Z, k ∈ Zd, l = 1, . . . , 2d − 1}.
It is well known that—under suitable conditions on the smoothness and
decay of φ, ψl, e.g. in the terminology of Y. Meyer [28], under the assumption
of r-regularity of the wavelet system under consideration with m < r (see
[28, Chapter 6])—both these systems are unconditional bases in Lp(Rd) and
Wm,p(Rd) for 1 < p <∞ and m < r. More precisely, for f ∈ Lp(Rd) with

f =
∑
k∈Zd

(f, φ0,k)φ0,k +

∞∑
j=0

∑
k∈Zd

2d−1∑
l=1

(f, ψl,j,k)ψl,j,k(3.5)

=
∑
j∈Z

∑
k∈Zd

2d−1∑
l=1

(f, ψl,j,k)ψl,j,k,

we have

‖f‖p ∼
∥∥∥( ∑

k∈Zd
|(f, φ0,k)|2χ2

0,k +

∞∑
j=0

∑
k∈Zd

2d−1∑
l=1

|(f, ψl,j,k)|2χ2
j,k

)1/2∥∥∥
p

(3.6)

∼
∥∥∥(∑

j∈Z

∑
k∈Z

2d−1∑
l=1

|(f, ψl,j,k)|2χ2
j,k

)1/2∥∥∥
p
,
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where χ(·) = χ[0,1)d(·) is the characteristic function of [0, 1)d. Moreover, if
f ∈W p,m(R), 1 < p <∞, m < r, then

(3.7) ‖f‖W p,m

∼
∥∥∥( ∑

k∈Zd
|(f, φ0,k)|2χ2

0,k +

∞∑
j=0

∑
k∈Zd

2d−1∑
l=1

22mj |(f, ψl,j,k)|2χ2
j,k

)1/2∥∥∥
p

∼
∥∥∥(∑

j∈Z

∑
k∈Zd

2d−1∑
l=1

max(1, 22jm)|(f, ψl,j,k)|2χ2
j,k

)1/2∥∥∥
p
.

The equivalence constants depend only on p, m and the wavelet system
involved. On the other hand, for f ∈ Bα,q

p (Rd),

(3.8) ‖f‖Bα,qp
∼(( ∑

k∈Zd
|(f, φ0,k)|p

)q/p
+
∞∑
j=0

(
2pj(d/2−d/p+α)

∑
k∈Zd

2d−1∑
l=1

|(f, ψl,j,k)|p
)q/p)1/q

,

but the equivalence constants depend on α as well; cf. e.g. Y. Meyer [28], and
analogous results for Besov spaces on the interval [0, 1], on the cube [0, 1]d

or on a manifold can be found e.g. in earlier papers by S. Ropela [31], or
by Z. Ciesielski and T. Figiel [11]. Therefore, we cannot expect asymptotic
results as in Section 2 when using the above equivalent norm (3.8) in the
Besov space.

Indeed, consider the case d= 1.Given a sequence of coefficients (cj , j≥0),
consider two functions on R:

f1 =
∑
j≥0

2j−1∑
k=0

cjψj,k and f2 =
∑
j≥0

j2j+2j−1∑
k=j2j

cjψj,k.

Then for the equivalent coefficient norm in Bα,q
p (R) given by the right-hand

side of (3.8) we have

‖f1‖Bα,qp
∼
(∑
j≥0

2qj(1/2+α)|cj |q
)1/q

∼ ‖f2‖Bα,qp (R).

However, by (3.6) and (3.7) we have

‖f1‖p ∼
(∑
j≥0

2j |cj |2
)1/2

and ‖f1‖W p,m ∼
(∑
j≥0

2j(1+2m)|cj |2
)1/2

,

while

‖f2‖p ∼
(∑
j≥0

2pj/2|cj |p
)1/p

and ‖f2‖W p,m ∼
(∑
j≥0

2pj(m+1/2)|cj |p
)1/p

.



Asymptotic behaviour of Besov norms 121

On the other hand, we can use the coefficients of the wavelet expansion of
f ∈ Lp(Rd) to define an equivalent norm in Bα,q

p (Rd) by means of Definition
2.2. That is, our space is now w0 = Lp(Rd) with the norm defined by

(3.9) ‖f‖Lp,1 =
∥∥∥( ∑

k∈Zd
|(f, φ0,k)|2χ2

0,k +
∞∑
j=0

∑
k∈Z

2d−1∑
l=1

|(f, ψl,j,k)|2χ2
j,k

)1/2∥∥∥
p

or

(3.10) ‖f‖Lp,2 =
∥∥∥(∑

j∈Z

∑
k∈Zd

2d−1∑
l=1

|(f, ψl,j,k)|2χ2
j,k

)1/2∥∥∥
p
.

The decomposition of w0 is defined by

Q0f =
∑
k∈Zd

(f, φ0,k)φ0,k =
∑
j<0

∑
k∈Zd

2d−1∑
l=1

(f, ψl,j,k)ψl,j,k,

Qjf =
∑
k∈Z

2d−1∑
l=1

(f, ψl,j−1,k)ψl,j−1,k for j ≥ 1.

Thus, there are two equivalent norms in wm = Wm,p(Rd):

(3.11) ‖f‖Wm,p,i =
∥∥∥∑
j≥0

2jQjf
∥∥∥
Lp,i

, i = 1, 2.

Applying Fact 3.1 in combination with (3.6) and (3.7), we find

Proposition 3.3. For fixed 1 < p <∞, m ∈ N and an r-regular wavelet
basis with m < r, let f ∈ Lp(Rd) be given by (3.5). Then for n ∈ Z,

(1 ∧ 2−nm)‖f‖p + ωm,p(f, 2
−n) ∼

∥∥∥∑
j≥0

(2m(j−n) ∧ 1)Qjf
∥∥∥
Lp,i

, i = 1, 2,

with equivalence constants independent of f and n.

Proof. Once Fact 3.1 and equivalences (3.6), (3.7) are at hand, the proof
is analogous to that of Proposition 2.2, so we omit the details.

Thus, we can define equivalent norms in Besov spaces Bα,q
p (Rd) using

multipliers on wavelet basis:

(3.12) ‖f‖Bα,qp ,i =
∥∥∥(2nα

∥∥∥∑
j≥0

(2m(j−n) ∧ 1)Qjf
∥∥∥
Lp,i

)
n∈Z

∥∥∥
`q
, i = 1, 2.

Because of (3.6) and Proposition 3.3 we have, for 1 ≤ q <∞,

(3.13) ‖f‖Bα,qp ,i ∼

max
(
s(q(m− α)), s(qα)

)1/q‖f‖p +

(1�

0

(
ωm,p(f, t)

tα

)q dt
t

)1/q

,
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while for q =∞,

(3.14) ‖f‖Bα,qp ,i ∼ max
(
‖f‖p, sup

0<t≤1
t−αωm,p(f, t)

)
,

with equivalence constants independent of 0 < α < m and 1 ≤ q ≤ ∞.
Formula (3.12) coincides with the norm obtained via Definition 2.2 for

‖ · ‖Lp,i and ‖ · ‖Wm,p,i, i = 1, 2. Therefore, we can apply Theorem 2.6. To
summarize, we get

Theorem 3.4. For fixed 1 < p < ∞, m ∈ N and an r-regular wavelet
basis with m < r, let f ∈ Lp(Rd) be given by (3.5). For i = 1, 2, let the
norms ‖ · ‖Lp,i, ‖ · ‖Wm,p,i and ‖ · ‖Bα,qp ,i be given by (3.9)–(3.12). Then

‖f‖Lp,i ∼ ‖f‖p, ‖f‖Wm,p,i ∼ ‖f‖Wm,p ,

while the equivalent form of ‖ · ‖Bα,qp ,i is given by (3.13) and (3.14), with
equivalence constants independent of 0 < α < m and 1 ≤ q ≤ ∞.

If f ∈ Bε,q
p (Rd) for some ε > 0 and 1 ≤ q <∞ then

lim
α↘0

α1/q‖f‖Bα,qp ,i =

(
1

q(ln 2− 1)

)1/q

‖f‖Lp,i,

and for f ∈Wm,p(Rd),

lim
α↗m

(m− α)1/q‖f‖Bα,qp ,i =

(
1

q(ln 2− 1)

)1/q

‖f‖Wm,p,i.

If f ∈ Bε,∞
p (Rd) for some ε > 0 then

lim
α↘0
‖f‖Bα,∞p ,i = ‖f‖Lp,i,

and for f ∈Wm,p(Rd),
lim
α↗m

‖f‖Bα,∞p ,i = ‖f‖Wm,p,i.

3.3. Tensor products of univariate wavelet type bases in func-
tion spaces on [0, 1]d. Now, we present a version of the results on the
cube [0, 1]d. Here in the d-dimensional case, we use bases consisting of ten-
sor products of univariate bases. We exploit the fact that the univariate
bases under consideration are not only (unconditional) bases in Lp[0, 1] and
Wm,p[0, 1], but they are simultaneous bases, that is, the system consisting
of the derivatives of the basic functions is again an (unconditional) basis in
Lp[0, 1].

3.3.1. Bases. We start by recalling the main properties of the spline
bases to be used. The properties listed below can be found in Z. Ciesiel-
ski [7, 9], Z. Ciesielski and J. Domsta [10], S. Ropela [31, 32], or they are
direct consequences of univariate results; in particular, unconditionality of
d-variate tensor product systems considered below in Lp[0, 1]d orWm,p[0, 1]d,
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1 < p < ∞, is a consequence of the unconditionality of the univariate sys-
tems in Lp[0, 1], 1 < p < ∞, and C. A. McCarthy’s result on boundedness
of commuting boolean algebras of projections (see C. A. McCarthy [27]).

1. Fix r ∈ N. The system under consideration, denoted by Ψr = {ψn :
n ≥ −r + 2}, is an orthonormal system in L2[0, 1] with dyadic structure,
regularity and decay as described below.

2. Dyadic structure: Ψr =
⋃
j≥0 Ψr,j , where Ψr,0 = {ψn : −r+ 2 ≤ j ≤ 1}

and Ψr,j = {ψn : 2j−1 + 1 ≤ n ≤ 2j}. The set of indices of Ψr,j is U0,r =
{−r + 2, . . . , 1} for j = 0, and Uj = {2j−1 + 1, . . . , 2j} for j ≥ 1.

3. Regularity: Ψr ⊂ Cr−2[0, 1], ψn is a polynomial of degree n+ r− 2 for
n ≤ 1, while for n ∈ Uj with j ≥ 1, ψn is a piecewise polynomial of degree
r− 1 and with dyadic knots {l/2j : l = 0, . . . , 2j}; for n ∈ Uj , the derivative

ψ
(r−1)
n exists and is constant on each dyadic interval (l/2j , (l + 1)/2j), l =

0, . . . , 2j − 1.

4. Exponential decay: there are 0 < θ < 1 and C > 0 such that

|ψn(t)| ≤ C2j/2θ2
j−1|t−k/2j−1|, n ∈ Uj , n = 2j−1 + k, 1 ≤ k ≤ 2j−1.

5. Together with Ψr = {ψn : n ≥ −r + 2}, we consider systems Ψ
(s)
r and

Ψ
(−s)
r defined as follows. For 0 ≤ s ≤ r − 1, let

Ψ
(s)
r,0 =

{
ψs;n =

ds

dts
ψn : n ∈ U0,r−s

}
,

Ψ
(s)
r,j =

{
ψs;n = 2−sj

ds

dts
ψr : n ∈ Uj

}
.

Moreover, denoting Hf(t) =
	1
t f(u) du, we define

Ψ
(−s)
r,j = {ψ−s,n = 2sjHsψr : n ∈ Uj},

the set of indices being U0,r−s in case j = 0. Then we set Ψ
(±s)
r =

⋃
j≥0 Ψ

(±s)
r,j .

These functions have the same decay as Ψr. The systems Ψ
(s)
r and Ψ

(−s)
r are

biorthogonal.

6. Each system Ψ
(±s)
r is an unconditional basis in Lp[0, 1], 1 < p < ∞.

In addition if |s| ≤ r − 1 and

(3.15) f =
∑

n∈U0,r−|s|

anψs;n +

∞∑
j=1

∑
n∈Uj

anψs;n with an = (fn, ψ−s,n),

then

(3.16) ‖f‖p ∼
∥∥∥( ∑

n∈U0,r−|s|

|an|2κ2n +
∞∑
j=1

∑
n∈Uj

|an|2κ2n
)1/2∥∥∥

p
,
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where κn = 1 for n ∈ U0,r−|s|, and κn = 2(j−1)/2χ[(k−1)/2j−1,k/2j−1) for

n ∈ Uj , n = 2j−1 + k, 1 ≤ k ≤ 2j−1.

7. Consequently, each system Ψ
(s)
r , 0 ≤ s ≤ r − 1, is an unconditional

basis in W l,p[0, 1], 0 ≤ l ≤ r − 1− s. Moreover, if f ∈ W l,p[0, 1], s ≥ 0 and
0 ≤ s+ l ≤ r − 1, then

(3.17) f (l) =
∑

n∈U0,r−(s+l)

anψs+l;n +

∞∑
j=1

∑
n∈Uj

2jlanψs+l;n

and

(3.18) ‖f (l)‖p ∼
∥∥∥( ∑

n∈U0,r−(s+l)

|an|2κ2n +
∞∑
j=1

∑
n∈Uj

22jl|an|2κ2n
)1/2∥∥∥

p
.

Note also that in this case

2ljan = 2lj(fn, ψ−s,n) = (f (l), ψ−s−l,n).

8. In the multivariate case, we consider tensor product systems. Fix

r = (r1, . . . , rd), s = (s1, . . . , sd) with |si| ≤ ri − 1 and systems Ψ
(si)
ri . Set

Ψ (s)
r = {ψs;n = ψs1;n1 ⊗ · · · ⊗ ψsd;nd : ψsi;ni ∈ Ψ (si)

ri }.

The set of indices is split into blocks: for j ∈ Nd0, write

Vj;r,s = Uj1 × · · · × Ujd ,
where U0 means U0,ri−|si|. This splitting will be used in the multiparameter
setting, while in the one-parameter setting we will use

Vj;r,s =
⋃
|j|∞=j

Vj;r,s, where |j|∞ = max(j1, . . . , jd), j ∈ Nd0.

Then each system Ψ
(s)
r is an unconditional basis in Lp[0, 1]d, 1 < p < ∞,

and for

(3.19) f =
∑
j∈Nd0

∑
n∈Vj;r,s

anψs;n with an = (f, ψ−s;n)

we have

(3.20) ‖f‖p ∼
∥∥∥(∑

j∈Nd0

∑
n∈Vj;r,s

|an|2κ2n
)1/2∥∥∥

p
,

where κn = κn1 ⊗ · · · ⊗ κnd for n = (n1, . . . , nd).

9. Moreover, if l = (l1, . . . , ld) and s = (s1, . . . , sd) with si ≥ 0 and
0 ≤ si + li ≤ ri − 1, then

(3.21) Dlf =
∑
j∈Nd0

∑
n∈Vj;r,s+l

2j·lanψs+l;n



Asymptotic behaviour of Besov norms 125

and

(3.22) ‖Dlf‖p ∼
∥∥∥(∑

j∈Nd0

∑
n∈Vj;r,s+l

22j·l|an|2κ2n
)1/2∥∥∥

p
.

Note that

(3.23) 2j·lan = 2j·l(f, ψ−s;n) = (Dlf, ψ−s−l;n).

Thus, in case si ≥ 0, if m + si ≤ ri − 1 for each 1 ≤ i ≤ d, then Ψ
(s)
r is

an unconditional basis in Wm,p[0, 1]d, 1 < p <∞. In the mixed smoothness
case, if m = (m1, . . . ,md) with mi + si ≤ ri − 1 for each 1 ≤ i ≤ d, then

Ψ
(s)
r is an unconditional basis in Wm,p[0, 1]d, 1 < p <∞. In particular,

(3.24) ‖f‖Wm,p ∼
∥∥∥( ∞∑

j=0

∑
n∈Vj;r,s

22mj |an|2κ2n
)1/2∥∥∥

p
,

while in the mixed smoothness case

(3.25) ‖f‖Wm,p ∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s

22m·j |an|2κ2n
)1/2∥∥∥

p
.

10. For later reference, consider the following procedure: for fixed m, r

and s with si ≥ 0, take the expansion of f with respect to Ψ
(s)
r and remove

from it all terms for which the basic function ψs;n is a polynomial of total

degree < m. For this, denote by V
(m)
0;r,s the set of indices n such that ψs;n is

not a polynomial of total degree < m, that is,

V
(m)
0;r,s =

{
n ∈ V0;r,s :

d∑
i=1

|ni + ri − 2− si| ≥ m
}
.

In this notation, set

(3.26) Pm;r,sf =
∑

n∈V0;r,s\V (m)
0;r,s

anψs;n.

Then

(3.27) ‖f − Pm;r,sf‖p ∼
∥∥∥( ∑

n∈V (m)
0;r,s

|an|2κ2n +
∑
j 6=0

∑
n∈Vj;r,s

|an|2κ2n
)1/2∥∥∥

p
.

Moreover, for fixed m ∈ N,

(3.28)
∑
|l|=m

‖Dlf‖p ∼
∥∥∥( ∑

n∈V (m)
0;r,s

|an|2κ2n +
∑
j 6=0

∑
n∈Vj;r,s

22m|j|∞ |an|2κ2n
)1/2∥∥∥

p
.

The multiparameter counterpart is as follows: for fixed l = (l1, . . . , ld), we
remove from the expansion of f all terms which are polynomials of degree
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< li in direction i for some i ∈ {1, . . . , d}. Note that such terms appear only
for j = (j1, . . . , jd) with some ji = 0, i.e. j ∈ Nd0 \ Nd. That is, let

(3.29) Pl;r,sf =
∑

j∈Nd0\Nd

∑
n∈Vj;r,s\Vj;r,s+l

anψs;n.

Then

(3.30) ‖f − Pl;r,sf‖p ∼
∥∥∥(∑

j∈Nd0

∑
n∈Vj;r,s+l

|an|2κ2n
)1/2∥∥∥

p

and

(3.31) ‖Dlf‖p ∼
∥∥∥(∑

j∈Nd0

∑
n∈Vj;r,s+l

22j·l|an|2κ2n
)1/2∥∥∥

p
.

3.3.2. The isotropic (one-parameter) case. In this section, we fix m ∈ N,
r = (r1, . . . , rd) and s = (s1, . . . , sd) such that si ≥ 0 and m+ si ≤ ri− 1 for
each i = 1, . . . , d. Recall the grouping of the tensor product basis described
in Section 3.3.1:

Vj;r,s =
⋃

j:|j|∞=j

Vj;r,s and set Qjf =
∑

n∈Vj;r,s

anψs;n,

where f ∈ Lp[0, 1]d is given by (3.19).
We begin with the following:

Proposition 3.5. Fix 1 < p < ∞ and m ∈ N. Then for f ∈ Lp[0, 1]d

with f =
∑

j∈Nd0

∑
n∈Vj anψs;n and µ ∈ Z we have

(3.32) ωm,p(f, 1/2
µ) ∼∥∥∥( ∑

n∈V (m)
0;r,s

(2−mµ ∧ 1)2|an|2κ2n +
∑
j>0

∑
n∈Vj;r,s

(2m(j−µ) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
,

and consequently

(3.33) (1 ∧ 2−mµ)‖f‖p + ωm,p(f, 1/2
µ)

∼
∥∥∥(∑

j≥0

∑
n∈Vj;r,s

(2m(j−µ) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

The equivalence constants do not depend on f or µ ∈ Z.

Proof. Note that for n ∈ V0;r,s \ V (m)
0;r,s we have ∆m

h ψs;n = 0 for each h,

and Dlψs;n = 0 for each l with |l| = m. Therefore, it is enough to consider

n ∈ V (m)
0;r,s∪

⋃
j>0 Vj;r,s. Then, because of (3.1) and (3.28) combined with Fact

3.1, we are in the situation of Proposition 2.2, and an analogous argument
applies. This gives (3.32). The equivalence (3.33) is a consequence of (3.32)
and (3.20).
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The multipliers appearing on the right-hand sides of (3.32) and (3.33) are
used to define two versions of bα,qm spaces. The version using the right-hand
side of (3.32) leads to an expression equivalent to

	∞
0 (ωm(f, t)/tα)q dt/t)1/q,

while the use of the right-hand side of (3.33) leads to an expression equivalent
to ‖ · ‖Bα,qp

.

Version 1. Define w0 as the set of sequences f ∼ (an, n ∈ V
(m)
0;r,s ∪⋃

j>0 Vj;r,s) such that

(3.34) ‖f‖w0;1 =
∥∥∥( ∑

n∈V (m)
0;r,s

|an|2κ2n +
∑
j>0

∑
n∈Vj;r,s

|an|2κ2n
)1/2∥∥∥

p
<∞.

Then wm is defined as the set of sequences f ∼ (an, n ∈ V (m)
0;r,s ∪

⋃
j>0 Vj;r,s)

for which

(3.35) ‖f‖wm;1 =
∥∥∥( ∑

n∈V (m)
0;r,s

|an|2κ2n +
∑
j>0

∑
n∈Vj;r,s

22jm|an|2κ2n
)1/2∥∥∥

p
<∞.

The norm ‖·‖bα,qm ;1 is defined according to Definition 2.2 using the multiplier∥∥∥( ∑
n∈V (m)

0;r,s

(2−mµ ∧ 1)2|an|2κ2n +
∑
j>0

∑
n∈Vj;r,s

(2m(j−µ) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

That is, we set

(3.36) ‖f‖bα,qm ;1 = ‖
(
2µαSµ(f)

)
µ∈Z‖`q ,

where

Sµ(f)=
∥∥∥( ∑

n∈V (m)
0;r,s

(2−mµ∧1)2|an|2κ2n+
∑
j>0

∑
n∈Vj;r,s

(2m(j−µ)∧1)2|an|2κ2n
)1/2∥∥∥

p
.

Note that by (3.32) and (3.27) for 1 ≤ q <∞ we have

(3.37) ‖f‖bα,qm ;1 ∼
(∞�

0

(
ωm,p(f, t)

tα

)q dt
t

)1/q

,

with equivalence constants independent of 0 < α < m and 1 ≤ q < ∞, or
more precisely

(3.38) ‖f‖bα,qm ;1 ∼ s(qα)1/q‖f − Pm;r,sf‖p +

(1�

0

(
ωm,p(f, t)

tα

)q dt
t

)1/q

.

In case q =∞ we have

(3.39) ‖f‖bα,qm ;1 ∼ max
(
‖f − Pm;r,sf‖p, sup

0<t≤1
t−αωm,p(f, t)

)
,

with equivalence constants independent of 0 < α < m.
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Version 2. Now, both w0 and wm are defined as the sets of f ∼ (an, n ∈⋃
j≥0 Vj,r,s) for which

(3.40) ‖f‖w0;2 =
∥∥∥(∑

j≥0

∑
n∈Vj;r,s

|an|2κ2n
)1/2∥∥∥

p
<∞,

respectively

(3.41) ‖f‖wm;2 =
∥∥∥(∑

j≥0

∑
n∈Vj;r,s

22mj |an|2κ2n
)1/2∥∥∥

p
<∞.

The norms of w0 and wm defined by (3.40) and (3.41) are just equivalent
norms in Lp[0, 1]d and Wm,p[0, 1]d (see (3.20) and (3.24)).

The definition of ‖ · ‖bα,qm ;2 (in Definition 2.2) uses the multiplier∥∥∥(∑
j≥0

∑
n∈Vj;r,s

(2m(j−µ) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

That is, we set

(3.42) ‖f‖bα,qm ;2 =
∥∥∥(2µα

∥∥∥(∑
j≥0

∑
n∈Vj;r,s

(2m(j−µ) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p

)
µ∈Z

∥∥∥
`q
.

It follows from (3.32) that

(3.43) ‖f‖bα,qm ,2 ∼

s(q(m− α))1/q‖f‖p + s(qα)1/q‖Pm;r,sf‖p +

(1�

0

(
ωm,p(f, t)

tα

)q dt
t

)1/q

,

while for q =∞,

(3.44) ‖f‖bα,qm ,2 ∼ max
(
‖f‖p, sup

0<t≤1
t−αωm,p(f, t)

)
,

with equivalence constants independent of 0 < α < m and 1 ≤ q ≤ ∞.
Note that in both cases (i = 1, 2), the assumptions of Theorem 2.5 are

satisfied, and we get asymptotic formulae for these norms. To summarize
these considerations, we formulate the following:

Theorem 3.6. Fix 1 < p < ∞ and m ∈ N. Let r = (r1, . . . , rd) and
s = (s1, . . . , sd) with si ≥ 0 be such that m+si ≤ ri−1 for all i = 1, . . . , d. Let

f ∈ Lp[0, 1]d be given by its expansion (3.19) with respect to the basis Ψ
(s)
r .

For i = 1, 2, let ‖ · ‖w0,i, ‖ · ‖wm,i and ‖ · ‖bα,qm ,i be given by (3.34)–(3.36)
and (3.40)–(3.42). Then

‖f − Pm;r,sf‖p ∼ ‖f‖w0,1, ‖f‖p ∼ ‖f‖w0,2,∑
|l|=m

‖Dlf‖p ∼ ‖f‖wm,1, ‖f‖Wm,p ∼ ‖f‖wm,2,
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and equivalent forms of ‖ · ‖bα,qm ,i given by (3.37)–(3.39) and (3.43), (3.44),
with equivalence constants independent of 0 < α < m and 1 ≤ q ≤ ∞.

If f ∈ Bε,q
p [0, 1]d for some ε > 0 and 1 ≤ q <∞ then

lim
α↘0

α1/q‖f‖bα,qm ,i =

(
1

q(ln 2− 1)

)1/q

‖f‖w0,i,

and for f ∈Wm,p[0, 1]d,

lim
α↗m

(m− α)1/q‖f‖bα,qm ,i =

(
1

q(ln 2− 1)

)1/q

‖f‖wm,i.

If f ∈ Bε,∞
p [0, 1]d for some ε > 0 then

lim
α↘0
‖f‖bα,∞m ,i = ‖f‖w0,i,

and for f ∈Wm,p[0, 1]d,

lim
α↗m

‖f‖bα,∞m ,i = ‖f‖wm,i.

Remark. It is observed in R. Arcangéli and J. J. Torrens [2] that the
asymptotic behaviour of double integrals as in (1.1), (1.2) when s ↘ 0 is
different in the two cases of Rd and Ω a bounded domain. That is, for a
bounded domain Ω, the double integral in (1.1) is bounded when s ↘ 0.
However, in that case, the double integral in question corresponds essentially

to (
	T0
0 (ωm,p(f, t)/t

α)q dt/t)1/q with some T0 < ∞. Note that our norms
‖·‖bα,qm ,i, i = 1, 2, contain some extra terms, which guarantee the asymptotic
behaviour as in Theorem 3.6 when s↘ 0.

3.3.3. The dominating mixed smoothness (multiparameter) case. We
start the analysis of the mixed smoothness case with the following observa-
tion:

Proposition 3.7. Fix 1 < p < ∞, m = (m1, . . . ,md), r = (r1, . . . , rd)

and s = (s1, . . . , sd) with si ≥ 0 and mi + si ≤ ri − 1. Let Ψ
(s)
r be one

of the tensor product bases described in Section 3.3.1, and let f ∈ Lp[0, 1]d

with f =
∑

j∈Nd0

∑
n∈Vj;r,s anψs;n. Then for µ = (µ1, . . . , µd) ∈ Zd, tµ =

(1/2µ1 , . . . , 1/2µd) and A ⊂ D, we have

(3.45) ωm,p,A(f, tµ,A)∼
∥∥∥(∑

j∈Nd0

∑
n∈Vj;r,s;m,A

∏
i∈A

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
,

where

Vj;r,s;m,A = {n ∈ Vj;r,s : ni + ri − 2− si ≥ mi for i ∈ A}.
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Moreover,

(3.46)
∑
A⊂D

∏
i∈D\A

(
1 ∧ 1

2miµi

)
· ωm,p,A(f, tµ,A)

∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s

d∏
i=1

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

The equivalence constants above do not depend on f or µ.

Proof. Once (3.45) is proved, formula (3.46) is a consequence of (3.45).
The proof of (3.45) is by induction on |A| and exploits (3.4). We can restrict
our consideration to indices n ∈ Vj;r,s;m,A, since for all n ∈ Vj;r,s \ Vj;r,s;m,A,

B ⊂ A and h we have ∆
mA\B
h DmBψs;n = 0.

First, let |A| = 1, A = {i}. Let f =
∑

j∈Nd0

∑
n∈Vj;r,s;m,A anψs;n. Then

by (3.4),

ωm,p,A(f, tµ,A) ∼ inf

{
‖f − g‖p +

1

2miµi
‖Dmieig‖p : g ∈Wmiei,p[0, 1]d

}
.

Let g ∈Wmiei,p[0, 1]d with g =
∑

j∈Nd0

∑
n∈Vj;r,s;m,A bnψs;n. Then by (3.22),

‖f − g‖p ∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

|an − bn|2κ2n
)1/2∥∥∥

p
,

‖Dmieig‖p ∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

22miji |bn|2κ2n
)1/2∥∥∥

p
.

Repeating essentially the argument from the proof of Proposition 2.2 we get

inf

{
‖f − g‖p +

1

2miµi
‖Dmieig‖p : g ∈Wmiei,p[0, 1]d

}
∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
,

which is (3.45) for A = {i}.
To illustrate the inductive argument and simplify the notation, we show

the argument for passing from |A| = 1 to |A| = 2. Let A = {i, k}. Set
A′ = {i} and A′′ = {k}. Then by (3.4),

ωm,p,A(f, tµ,A)

∼ inf

{
‖f − (gi + gk + gi,k)‖p +

1

2miµi
ωm,p,A′′(D

mieigi, tµ,A′′)

+
1

2mkµk
ωm,p,A′(D

mkekgk, tµ,A′) +
1

2miµi+mkµk
‖Dmiei+mkekgi,k‖p :

gi ∈Wmiei,p[0, 1]d, gk ∈Wmkek,p[0, 1]d, gi,k ∈Wmiei+mkek,p[0, 1]d
}
.
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Let gi =
∑

j∈Nd0

∑
n∈Vj;r,s;m,A bi,nψs;n, gk =

∑
j∈Nd0

∑
n∈Vj;r,s;m,A bk,nψs;n and

gi,k =
∑

j∈Nd0

∑
n∈Vj;r,s;m,A bi,k,nψs;n. Then by (3.22),

‖f− (gi+gk+gi,k)‖p∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

|an− (bi,n+ bk,n+ bi,k,n)|2κ2n
)1/2∥∥∥

p
,

‖Dmiei+mkekgi,k‖p ∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

22(miji+mkjk)|bi,k,n|2κ2n
)1/2∥∥∥

p
.

Next, by (3.21),

Dmieigi =
∑
j∈Nd0

∑
n∈Vj;r,s;m,A

2mijibi,nψs+miei;n,

Dmkekgk =
∑
j∈Nd0

∑
n∈Vj;r,s;m,A

2mkjkbk,nψs+mkek;n.

Note that

Vj;r,s;m,A = Vj;r,s+miei;m,A′′ = Vj;r,s+mkek;m,A′ .

Therefore, since |A′| = |A′′| = 1, by the already proved part, applied to the

basis Ψ
(s+mkek)
r and m′ = (m′1, . . . ,m

′
d) with m′l = ml for l 6= k and m′k = 0,

we get

ωm,p,A′(D
mkekgk, tµ,A′)

= ωm′,p,A′(D
mkekgk, tµ,A′)

∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

(2mi(ji−µi) ∧ 1)222mkjk |bk,n|2κ2n
)1/2∥∥∥

p
.

Applying a similar argument to Ψ
(s+miei)
r and m′′ = (m′′1, . . . ,m

′′
d) with

m′′l = ml for l 6= i and m′′i = 0, we get

ωm,p,A′′(D
mieigi, tµ,A′′) = ωm′′,p,A′′(D

mieigi, tµ,A′′)

∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

(2mk(jk−µk) ∧ 1)222miji |bi,n|2κ2n
)1/2∥∥∥

p
.

With these equivalences in hand, we proceed as in the proof of Proposition
2.7 to get (3.45) for A = {i, k}.

The general case follows by induction on |A|.

Now, we present two versions of asymptotic formulae for mixed smooth-
ness spaces B

α,q
p [0, 1]d: the first version describes the asymptotics of ‖·‖Bα,qp

,
while the second describes the asymptotics of a piece of the norms defined
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by (3.2) and (3.3) with fixed A ⊂ D (see Theorems 3.8 and 3.9 below). This
will be done by applying Theorem 2.10.

First, let us discuss the regularity assumptions on f needed to apply
Theorem 2.10 in this setting. Clearly, the minimal assumption should be
f ∈ WmF ,p[0, 1]d, but we also need some condition on regularity of f in
directions in F c or in A \ F . For example, the direct interpretation of the
assumptions of Theorem 2.10 in the setting of Theorem 3.8 (see below)
would be the following: f ∈ Lp[0, 1]d is given via its expansion (3.19) and
there is ε = (ε1, . . . , εd) with εi > 0 such that

(3.47)
∑
j∈Nd0

∑
n∈Vj;r,s

2j·(mF+εFc )anψs;n ∈ Lp[0, 1]d.

If the vector mF + εF c has some non-integer entries, we do not have an
interpretation of this condition in terms of derivatives of f and/or asymp-
totics of moduli of smoothness of f . However, we use the Comment following
Theorem 2.10 to present assumptions for Theorems 3.8 and 3.9 directly in
terms of f and its derivatives. The spaces which we describe below com-
bine Sobolev type regularity in directions in F and Besov type regularity in
directions in E, where E,F ⊂ D with E ∩ F = ∅.

For this, fix ∅ 6= E ⊂ D. For 0 < α < m and 1 ≤ q ≤ ∞, let B
α,q
p,E [0, 1]d

be the space with the norm defined by formulae analogous to (3.2) and (3.3),
but using only A ⊂ E, that is,

‖f‖Bα,qp,E
=
∑
A⊂E

( �

(0,∞)d

(
ωm,p,A(f, tA)

t
αA
A

)q∏
i 6∈A

u(ti)
dtA

t
1A
A

dtAc

)1/q

,

‖f‖Bα,∞p,E = sup
t∈(0,∞)d, A⊂E

t
−αA
A ωm,p,A(f, tA).

For E = ∅ we mean B
α,q
p,E = Lp[0, 1]d. Next, for F ⊂ D such that F ∩E = ∅

and k ∈ Nd0 set

W
k
FB

α,q
p,E [0, 1]d = {f ∈ Lp[0, 1]d : Dlf ∈ Bα,q

p,E [0, 1]d for each 0 ≤ l ≤ kF },

with the norm

‖f‖
W
k
FB

α,q
p,E

=
∑
G⊂F
‖DkGf‖Bα,qp,E

.

Let f be given by the series (3.19). Observe that by (3.45) and (3.21), for each
A ⊂ E and k such that kF + sF ≤ rF − 1F (and clearly mA + sA ≤ rA− 1A)
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we have∑
G⊂F

ωm,p,A(DkGf, tµ
A

)

∼
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

∏
i∈A

(2mi(ji−µi) ∧ 1)222kF ·jF |an|2κ2n
)1/2∥∥∥

p
,

and consequently

‖f‖
W
k
FB

α,q
p,E
∼
∑
A⊂E
‖(2αA·µASkF ,µA(f))µ

A
∈Z|A|‖`q ,

where

SkF ,µA
(f) =

∥∥∥( ∑
j∈Nd0

∑
n∈Vj;r,s;m,A

∏
i∈A

(2mi(ji−µi) ∧ 1)222kF ·jF |an|2κ2n
)1/2∥∥∥

p
.

Observe that for E = ∅ we have W
k
FB

α,q
p,E [0, 1]d = W kF ,p[0, 1]d, and for F = ∅

and E = D we have W
k
FB

α,q
p,E [0, 1]d = B

α,q
p [0, 1]d.

We are ready to present the asymptotic behaviour of mixed smoothness
Besov norms.

Version 1. First we consider spaces with the norm equivalent to the
norm in B

α,q
p [0, 1]d. For f ∼ (an, n ∈

⋃
j∈Nd0

Vj;r,s) we set

(3.48) ‖f‖wα =
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s

22j·α|an|2κ2n
)1/2∥∥∥

p
.

The norm in b
α,q
m uses the multiplier∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s

d∏
i=1

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

That is, we set

(3.49) ‖f‖bα,qm = ‖(2µ·αSµ(f))µ∈Zd‖`q ,

where

Sµ(f) =
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s

d∏
i=1

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

It follows from Proposition 3.7 that for 1 ≤ q <∞,

(3.50) ‖f‖bα,qm ∼∑
A⊂D

∏
i∈D\A

max
(
s(q(mi−αi)), s(qαi)

)1/q( �

(0,∞)|A|

(
ωm,p,A(f, tA)

t
αA
A

)q dtA
t
1A
A

)1/q

,
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while for q =∞,

(3.51) ‖f‖bα,qm ∼ sup
t∈(0,∞)d

max
A⊂D

t
−αA
A ωm,p,A(f, tA).

The equivalence constants above do not depend on 0 < α < m or 1 ≤ q ≤ ∞.
In this setting, we get the following result:

Theorem 3.8. Let 1 < p <∞, d ∈ N, r = (r1, . . . , rd), s = (s1, . . . , sd)
with si ≥ 0 and m = (m1, . . . ,md) with mi + si ≤ ri − 1. Let f ∈ Lp[0, 1]d

be given via its expansion (3.19) with respect to the basis Ψ
(s)
r . Let F ⊂ D.

Let ‖ · ‖wmF and ‖ · ‖bα,qm be given by (3.48) and (3.49). Then

‖f‖wmF ∼ ‖f‖WmF ,p ,

and the equivalent form of ‖f‖bα,qm is given by (3.50), (3.51) with equivalence

constants independent of 0 < α < m and 1 ≤ q ≤ ∞.
Assume that f ∈Wm

F B
ε,q
p,F c [0, 1]d for some ε > 0. Then for 1 ≤ q <∞,

lim
αF→mF

∏
i∈F

(mi − αi)1/q
∏

i∈D\F

α
1/q
i ‖f‖bα,qm =

(
1

q(ln 2− 1)

)d/q
‖f‖wmF ,

while for q =∞,

lim
αF→mF

‖f‖bα,∞m = ‖f‖wmF ,

and the convergence α → mF is understood as αi ↗ mi for i ∈ F and
αi ↘ 0 for i ∈ D \ F .

Proof. The spaces wm and b
α,q
m satisfy the assumptions of Theorem 2.10.

In the setting of Theorem 3.8, the condition f ∈Wm
F B

ε,q
p,F c [0, 1]d means that

the corresponding sequence of coefficients belongs to the space b
εFc ,q
m,m,F , as

described in the Comment following Theorem 2.10. As explained there, The-
orem 2.10 applies under this assumption and the corresponding asymptotic
formulae follow.

Version 2. Now, we describe spaces w
α
A and b

α,q
m,A which correspond to

one of the terms in the norm in B
α,q
p [0, 1]d as defined by (3.2), (3.3), namely

to
( 	

(0,∞)|A|

(ωm,p,A(f,tA)
t
αA
A

)q dtA
t
1A
A

)1/q
with fixed A ⊂ D.

Fix m and A. The space under consideration consists of f ∼ (an, n ∈⋃
j∈Nd0

Vj;r,s;m,A). Then we set

(3.52) ‖f‖wαA =
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

22jA·αA |an|2κ2n
)1/2∥∥∥

p
.

Note that in fact we now deal with spaces with |A| parameters (instead of
d parameters). The grouping of the indices for the multiparameter model
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from Section 2.2 is in fact into

Ṽξ =
⋃

j∈Nd0:jA=ξ

Vj;r,s;m,A for ξ ∈ N|A|0 .

It follows from (3.29) and (3.22) that for F ⊂ A we have

(3.53) ‖f‖wmFA ∼ ‖DmF (f − PmA;r,sf)‖p.

Next, the norm in b
α,q
m,A uses the multiplier∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

∏
i∈A

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p
.

That is, we set

(3.54) ‖f‖bα,qm,A = ‖(2µA·αASµ
A

(f))µ
A
∈Z|A|‖`q ,

where

Sµ
A

(f) =
∥∥∥( ∑

j∈Nd0

∑
n∈Vj;r,s;m,A

∏
i∈A

(2mi(ji−µi) ∧ 1)2|an|2κ2n
)1/2∥∥∥

p

)
.

It follows from Proposition 3.7 that for 1 ≤ q <∞,

(3.55) ‖f‖bα,qm,A ∼
( �

(0,∞)|A|

(
ωm,p,A(f, tA)

t
αA
A

)q dtA
t
1A
A

)1/q

,

while for q =∞,

(3.56) ‖f‖bα,qm,A ∼ sup
tA∈(0,∞)|A|

t
−αA·tA
A ωm,p,A(f, tA),

with equivalence constants independent of 0 < α < m and 1 ≤ q ≤ ∞. Note
that the norms in (3.54)–(3.56) depend on α only via αA.

In this setting, we get the following result:

Theorem 3.9. Let 1 < p <∞, d ∈ N, r = (r1, . . . , rd), s = (s1, . . . , sd)
with si ≥ 0 and m = (m1, . . . ,md) with mi+si ≤ ri−1. Let f ∈ Lp[0, 1]d be

given via its expansion (3.19) with respect to the basis Ψ
(s)
r . Fix ∅ 6= A ⊂ D,

and let ‖ · ‖wmFA for F ⊂ A and ‖ · ‖bα,qm,A be given by (3.52), (3.54). Then for

F ⊂ A,

‖f‖wmFA ∼ ‖DmF (f − PmA;r,sf)‖p,

and an equivalent form of ‖ · ‖bα,qm,A given by (3.55), (3.56), with equivalence

constants independent of 0 < α < m and 1 ≤ q ≤ ∞.
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Assume that f − PmA;r,sf ∈ W
m
F B

ε,q
p,A\F [0, 1]d for some ε > 0. Then for

1 ≤ q <∞,

lim
αA→mF

∏
i∈F

(mi − αi)1/q
∏

i∈A\F

α
1/q
i ‖f‖bα,qm,A =

(
1

q(ln 2− 1)

)|A|/q
‖f‖wmFA ,

while for q =∞,

lim
αA→mF

‖f‖bα,∞m,A = ‖f‖wmFA ,

and the convergence αA → mF is understood as αi ↗ mi for i ∈ F and
αi ↘ 0 for i ∈ A \ F .

Proof. The spaces w
α
A and b

α,q
m,A satisfy the assumptions of Theorem 2.10.

In the setting of Theorem 3.9, the condition f−PmA;r,sf ∈W
m
F B

ε,q
p,A\F [0, 1]d

means that the corresponding sequence of coefficients belongs to b
εA\F ,q

m,A,m,F , as

described in the Comment following Theorem 2.10. As explained there, The-
orem 2.10 applies under this assumption and the corresponding asymptotic
formulae follow.

3.4. Besov type spaces corresponding to Ditzian–Totik moduli
of smoothness. Here we present yet another application of the results of
Section 2, namely to Besov type spaces defined in terms of Ditzian–Totik
moduli of smoothness. Z. Ditzian and V. Totik [13] introduced moduli of
smoothness with variable step in order to characterize the order of approx-
imation of functions on the interval [0, 1] by algebraic polynomials in the
norm of Lp[0, 1]. The definition is as follows: given f : [0, 1] → R and a

step-weight function ϕ(x) =
√
x(1− x), and h > 0, define ∆

m
hϕ(x)f(x), the

symmetric difference of f at x with step hϕ(x), by the formula

∆
m
hϕ(x)f(x) =

m∑
j=0

(−1)j
(
m

j

)
f(x+ (m/2− j)hϕ(x)).

Then the corresponding modulus of smoothness is defined as

ωm,p,ϕ(f, t) = sup
0<h≤t

‖∆m
hϕ(·)f(·)‖p.

This modulus of smoothness is equivalent to the following K-functional (see
[13] or [12]):

Fact 3.10. Let 1 ≤ p ≤ ∞ and m ∈ N. Then for f ∈ Lp[0, 1] with
1 ≤ p <∞, or f ∈ C[0, 1], p =∞ and 0 < t ≤ 1/(2m),

ωm,p,ϕ(f, t) ∼ Km,p,ϕ(f, t),

where

Km,p,ϕ(f, t) = inf{‖f − g‖p + tm‖g(m) · ϕm‖p : g(m−1) ∈ ACloc},
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and ACloc denotes the set of functions absolutely continuous on (0, 1). The
equivalence constants above do not depend on f or t.

We would like to apply an analysis similar to that in the preceding
sections to Besov type spaces defined in terms of Ditzian–Totik moduli of
smoothness, that is, to spaces of functions for which(1/(2m)�

0

(
ωm,p,ϕ(f, t)

tα

)q dt
t

)1/q

<∞,

or in case q =∞,

sup
0<t≤1/(2m)

t−αωm,p,ϕ(f, t) <∞.

For this, as before, we would like to apply Fact 3.10 to express ωm,p,ϕ(f, 1/2n)
as a norm of some multiplier on the expansion of f with respect to the

basis Ψ
(s)
r , i.e. on the expansion of f given by (3.15). This requires that the

bases under consideration (i.e. the bases Ψ
(s)
r discussed in Section 3.3.1) are

unconditional bases in the weighted Lp space on [0, 1] with weight ϕmp, i.e.
in the space

Lpϕmp [0, 1] =
{
g : ‖g‖p

Lp
ϕmp

=

1�

0

|g(x)|pϕ(x)mp dx <∞
}
.

This can be achieved if we know that the weight under consideration, ϕ(x)mp

= xmp/2(1 − x)mp/2, belongs to the Muckenhoupt class Ap on [0, 1]. This
restricts the range of parameters: we need−1 < mp/2 < p−1. This condition
can be satisfied only in case m = 1 and p > 2, and from now on, we work
under this restriction.

For comparison, let us recall that wavelet systems on R or on Rd are
unconditional bases in Lpw(Rd) with 1 < p < ∞ when w belongs to the
Muckenhoupt class Ap(Rd) (see e.g. [23, 15, 1]). Below, we work out in
detail the case of the bases discussed in Section 3.3.1 and the particular
weight ϕ(x)p = xp/2(1− x)p/2 on [0, 1], which we need for our application.

We will use various facts concerning the boundedness of Calderón–
Zygmund operators or Hardy–Littlewood maximal function on weighted Lp

spaces with Ap weight on [0, 1]. References for these facts are e.g. [16] or [17].

To apply Fact 3.10 (for m = 1 and 2 < p <∞, as explained above), we
need to express ‖g′ · ϕ‖p for g ∈ Lp[0, 1] in terms of the coefficients of the

expansion of g with respect to the basis Ψ
(s)
r with s ≥ 0 and s + 2 ≤ r − 1

(one of the univariate bases discussed in Section 3.3.1, cf. (3.15)). We are
interested in the behaviour of g′, and the function ψs,−r+s+2 is constant
on [0, 1], so without loss of generality we assume that (g, ψ−s,−r+s+2) = 0.
Thus, let g =

∑∞
j=0

∑
n∈Uj (g, ψ−s,n)ψs,n, where U0 means U0,r−(s+1). First,
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observe that
∞∑
j=0

∑
n∈Uj

|ψ−s−1,n(x)| |ψs+1,n(y)| ≤ C

|x− y|
,

∞∑
j=0

∑
n∈Uj

|ψ−s−1,n(x)| |ψ′s+1,n(y)| ≤ C

|x− y|2
,

∞∑
j=0

∑
n∈Uj

|ψ′−s−1,n(x)| |ψs+1,n(y)| ≤ C

|x− y|2
.

The proof of the above inequalities is routine, using the exponential decay of
the functions under consideration and of their derivatives (see Section 3.3.1),
and the inequality

∑
k∈Z θ

|u−k|+|v−k| ≤ Cθ|u−v|/2 for all 0 < θ < 1, where

C > 0 is a constant depending on θ, but not on u, v ∈ R. As Ψ
(s+1)
r , Ψ

(−s−1)
r

are Riesz bases in L2[0, 1], each operator Ts+1,M,ε with kernel

KM,ε(x, y) =
M∑
j=0

∑
n∈Uj

εnψ−s−1,n(x)ψs+1,n(y),

ε = {εn} with εn = ±1, is a Calderón–Zygmund operator on [0, 1], and
the parameters of those Calderón–Zygmund operators are bounded inde-
pendently of M, ε. Since ϕp ∈ Ap, we infer that each Ts+1,M,ε is bounded on
Lpϕp [0, 1], uniformly in M, ε: there is C > 0, independent of M and ε, such
that for each f ∈ Lpϕp [0, 1],( 1�

0

|Ts+1,M,εf(x)|pϕ(x)p dx
)1/p

≤ C
( 1�

0

|f(x)|pϕ(x)p dx
)1/p

.

Moreover, for ε = {1}, i.e. with εn = 1, and f ∈ C[0, 1], we have f =

limM→∞ Ts+1,M,{1}f , with uniform convergence (see [7]). As
	1
0 ϕ(x)p dx

< ∞, this implies Ts+1,M,{1}f → f as M → ∞ in Lpϕp [0, 1] as well. Since

continuous functions are dense in Lpϕp [0, 1], it follows that Ψ
(s+1)
r is an un-

conditional basis in Lpϕp [0, 1]. The biorthogonal functional to ψs+1,n is now

ψ−s−1,n/ϕ
p ∈ Lp

′

ϕp [0, 1], so the corresponding coefficient in the expansion of
f ∈ Lpϕp [0, 1] is

1�

0

f(x)
ψ−s−1,n(x)

ϕp(x)
ϕ(x)p dx =

1�

0

f(x)ψ−s−1,n(x) dx = (f, ψ−s−1,n).

Thus we have f =
∑∞

j=0

∑
n∈Uj (f, ψ−s−1,n)ψs+1,n, with the series uncondi-

tionally convergent in Lpϕp [0, 1]. Therefore, applying the standard argument



Asymptotic behaviour of Besov norms 139

with Khintchine’s inequality we find that( 1�

0

|f(x)|pϕ(x)p dx
)1/p

∼
( 1�

0

( ∞∑
j=0

∑
n∈Uj

|(f, ψ−s−1,n)|2|ψs+1,n(x)|2
)p/2

ϕ(x)p dx
)1/p

.

Next, if f = g′ with g ∈ Lp[0, 1] then (g′, ψ−s−1,n) = 2j(g, ψ−s,n), where
n ∈ Uj . Therefore( 1�

0

|g′(x)ϕ(x)p|p dx
)1/p

∼
( 1�

0

( ∞∑
j=0

∑
n∈Uj

22j |(g, ψ−s,n)|2|ψs+1,n(x)|2
)p/2

ϕ(x)p dx
)1/p

.

This means that

(3.57) ‖g′ · ϕ‖p ∼
∥∥∥( ∞∑

j=0

∑
n∈Uj

22j |(g, ψ−s,n)|2|ψs+1,n(x)|2
)1/2

ϕ
∥∥∥
p
.

Recall the notation κn = 2(j−1)/2χ[(k−1)/2j−1,k/2j−1] for n = 2j−1 + k (and
κn = χ[0,1] for n ∈ U0). Further, recall that (cf. [9])

|ψs+1,n(x)| ≤ CMκn(x), κn(x) ≤Mψs+1,n(x),

where Mf denotes the Hardy–Littlewood maximal function of f (with re-
spect to the Lebesgue measure on [0, 1]). Since ϕp ∈ Ap, applying the vector
valued weighted Fefferman–Stein inequality (see e.g. [17]) we find

(3.58) ‖g′ · ϕ‖p ∼
∥∥∥( ∞∑

j=0

∑
n∈Uj

22j |(g, ψ−s,n)|2|κn|2ϕ2
)1/2∥∥∥

p
.

Setting

zn =

{(
k

2j−1

)1/2
for n = 2j−1 + k with 1 ≤ k ≤ 2j−2,(

2j−1−k+1
2j−1

)1/2
for n = 2j−1 + k with 2j−2 + 1 ≤ k ≤ 2j−1,

we find that

ϕ(x) ∼ zn for x ∈
[
k − 1

2j−1
,
k

2j−1

]
, n = 2j−1 + k, 2 ≤ k ≤ 2j−1 − 1.

In case n = 2j−1 + 1 we have

ϕ(x) ∼ zn for x ∈
[

1

2j
,

1

2j−1

]
, ϕ(x) ≤ Czn for x ∈

[
0,

1

2j−1

]
,
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and denoting κ̃n = 2(j−1)/2χ[1/2j ,1/2j−1],

κn ≤ CMκ̃n, κ̃n ≤ κn.

Similarly, in case n = 2j we have

ϕ(x) ∼ zn for x ∈
[
1− 1

2j−1
, 1− 1

2j

]
, ϕ(x) ≤ Czn for x ∈

[
1− 1

2j−1
, 1

]
,

and denoting κ̃n = 2(j−1)/2χ[1−1/2j−1,1−1/2j ],

κn ≤ CMκ̃n, κ̃n ≤ κn.

Similarly, for n ∈ U0 we define zn = 1 and κ̃n = χ[1/4,3/4]. Combining
these estimates with (3.58), and applying again the Fefferman–Stein vector
valued maximal inequality (this time with respect to the Lebesgue measure
on [0, 1]) we get

(3.59) ‖g′ · ϕ‖p ∼
∥∥∥( ∞∑

j=0

∑
n∈Uj

22j |(g, ψ−s,n)|2z2n|κn|2
)1/2∥∥∥

p
.

For later convenience take µn ∈ N ∪ {0} such that 1/2µn+1 < zn ≤ 1/2µn .
Note that for n ∈ Uj we have 1/2(j−1)/2 ≤ zn ≤ 1/21/2, hence 0 ≤ µn ≤ j/2,
and consequently j − µn ≥ 0. Then (3.59) takes the following form:

Proposition 3.11. Let 2 < p < ∞ and 0 ≤ s ≤ r − 3. Let g ∈ Lp[0, 1]
with g =

∑
n∈U0,r−s

(g, ψ−s,n)ψs,n +
∑∞

j=1

∑
n∈Uj (g, ψ−s,n)ψs,n be such that

g′ · ϕ ∈ Lp[0, 1]. Then

(3.60) ‖g′ · ϕ‖p ∼∥∥∥( ∑
n∈U0,r−(s+1)

|(g, ψ−s,n)|2|κn|2 +
∞∑
j=1

∑
n∈Uj

22(j−µn)|(g, ψ−s,n)|2|κn|2
)1/2∥∥∥

p
,

where µn ∈ N0 are defined by the following rules: µn = 0 if n ∈ U0;r−(s+1)

or n ∈ U1, and for n ∈ Uj with j ≥ 2,

1

2µn+1
<

(
k

2j−1

)1/2

≤ 1

2µn
for n = 2j−1 + k, 1 ≤ k ≤ 2j−2,

1

2µn+1
<

(
2j−1 − k + 1

2j−1

)1/2

≤ 1

2µn
for n = 2j−1 + k, 2j−2 + 1 ≤ k ≤ 2j−1.

The equivalence constants in (3.60) do not depend on g.

Next, we get the following:
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Proposition 3.12. Let 2 < p <∞ and 0 ≤ s ≤ r − 3. For f ∈ Lp[0, 1]
with f =

∑
n∈U0;r−s

cnψs,n +
∑∞

j=1

∑
n∈Uj cnψs,n we have, for l ∈ N,

(3.61) ω1,p,ϕ(f, 1/2l) ∼∥∥∥( ∑
n∈U0;r−(s+1)

2−2l|cn|2|κn|2 +
∞∑
j=1

∑
n∈Uj

(2j−l−µn ∧ 1)2|cn|2|κn|2
)1/2∥∥∥

p
,

where the exponents µn are as in Proposition 3.11. The equivalence constants
do not depend on f or l.

Proof. With Proposition 3.11, Fact 3.10 and equivalence (3.16) in hand,
we proceed as in the proof of Proposition 3.5 or 2.2, but with another group-
ing of indices, i.e. according to the exponent j−µn. That is, for k ∈ N∪{0}
we set

V ∗k =
⋃
j≥0
{n ∈ Uj : j − µn = k}.

Since for each n ∈ Uj , the exponent j − µn is a non-negative integer, it
follows that ⋃

k≥0
V ∗k =

⋃
j≥0

Uj .

We skip the technical details.

Now we are ready to introduce spaces w̃α and b̃α,q1 : for f ∼ (cn, n ≥
−r + s+ 3) and 0 ≤ α ≤ 1,

(3.62) ‖f‖w̃α =∥∥∥( ∑
n∈U0;r−(s+1)

|cn|2|κn|2 +
∞∑
j=1

∑
n∈Uj

22α(j−µn)|cn|2|κn|2
)1/2∥∥∥

p
,

and for 0 < α < 1 and 1 ≤ q ≤ ∞,

(3.63) ‖f‖b̃α,q1
= ‖(2lαSl(f))l∈Z‖`q ,

where

Sl(f) =
∥∥∥( ∑

n∈U0;r−(s+1)

(2−l∧1)2|cn|2|κn|2+
∞∑
j=1

∑
n∈Uj

(2j−l−µn∧1)2|cn|2|κn|2
)1/2∥∥∥

p
.

The main result of this section is the following:

Theorem 3.13. Let 2 < p < ∞ and 0 ≤ s ≤ r − 3. Let w̃α and b̃α,q1 be
given by (3.62) and (3.63), respectively. Then for f ∈ Lp[0, 1] with expansion

(3.15) with respect to the basis Ψ
(s)
r we have

(3.64) ‖f‖w̃0 ∼ ‖f − P1;r,sf‖p, ‖f‖w̃1 ∼ ‖f ′ · ϕ‖p,
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and for 1 ≤ q <∞,

(3.65) ‖f‖b̃α,q1
∼ s(αq)1/q‖f − P1;r,sf‖p +

(1/2�

0

(
ω1,p,ϕ(f, t)

tα

)q dt
t

)1/q

,

while for q =∞,

(3.66) ‖f‖b̃α,∞1
∼ max

(
‖f − P1;r,sf‖p, sup

0<t≤1/2
t−αω1,p,ϕ(f, t)

)
,

with equivalence constants independent of 0 < α < 1 and 1 ≤ q ≤ ∞.

In this setting, let 1 ≤ q < ∞, and let f be such that there is α > 0 for
which the right-hand side of (3.65) is finite. Then

(3.67) lim
α↘0

α1/q‖f‖b̃α,q1
=

(
1

q(ln 2− 1)

)1/q

‖f‖w̃0 .

For f such that ‖f ′ · ϕ‖p <∞ we have

(3.68) lim
α↗1

(1− α)1/q‖f‖b̃α,q1
=

(
1

q(ln 2− 1)

)1/q

‖f‖w̃1 .

In case q =∞, if f is such that there is α > 0 for which the right-hand side
of (3.66) is finite, then

(3.69) lim
α↘0
‖f‖b̃α,∞1

= ‖f‖w̃0 ,

and for f such that ‖f ′ · ϕ‖p <∞ we have

(3.70) lim
α↗1
‖f‖b̃α,∞1

= ‖f‖w̃1 .

Proof. Inequalities (3.64) are in fact a reformulation of (3.16) and Propo-
sition 3.11. Equivalences (3.65) and (3.66) are direct consequences of Propo-
sition 3.12.

To get the asymptotic formulae (3.67)–(3.70), we use the same grouping
of indices as in the proof of Proposition 3.12, i.e. for k ∈ N ∪ {0} we take

V ∗k =
⋃
j≥0
{n ∈ Uj : j − µn = k}.

Now, the asymptotic formulae (3.67) and (3.68) follow by applying Theorem
2.6 with the splitting

⋃
k≥0 V

∗
k .
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Wita Stwosza 57
80-952 Gdańsk, Poland
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