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Abstract. Some examples of slant submanifolds of almost product Riemannian man-
ifolds are presented. The existence of a useful orthonormal basis in proper slant subman-
ifolds of a Riemannian product manifold is proved. The sectional curvature, the Ricci
curvature and the scalar curvature of submanifolds of locally product manifolds of almost
constant curvature are obtained. Chen–Ricci inequalities involving the Ricci tensor and
the squared mean curvature for submanifolds of locally product manifolds of almost con-
stant curvature are established. Chen–Ricci inequalities for different kinds of submanifolds
of Kaehlerian product manifolds are also given.

1. Introduction. Since the celebrated theory of J. F. Nash of isometric
immersion of a Riemannian manifold into a suitable Euclidean space gives
very important and effective motivation to view each Riemannian manifold
as a submanifold in a Euclidean space, the problem of discovering simple ba-
sic relationships between intrinsic and extrinsic invariants of a Riemannian
submanifold becomes one of the most fundamental problems in submanifold
theory. The main extrinsic invariant is the squared mean curvature, and the
main intrinsic invariants include the classical curvature invariants: the Ricci
curvature and the scalar curvature. There are also many important modern
intrinsic invariants of (sub)manifolds introduced by B.-Y. Chen (cf. [C:3],
[C:4], [C:7], [C:9]). The basic relationships discovered so far are (sharp) in-
equalities involving intrinsic and extrinsic invariants, and the study of this
topic has attracted a lot of attention during the last two decades.

In 1999, B.-Y. Chen (cf. [C:5, Theorem 4], [C:6, Theorem 1]) obtained a
basic inequality involving the Ricci curvature and the squared mean curva-
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ture of submanifolds in a real space form. This inequality drew attention of
several authors and they established similar inequalities for different kinds of
submanifolds in ambient manifolds possessing various structures. Motivated
by the result of B.-Y. Chen [C:5, Theorem 4], in [HT] and [HMT] the au-
thors presented a general theory for submanifolds of Riemannian manifolds
by proving a basic inequality (see Theorem 2.1), called the Chen–Ricci in-
equality [T:2], involving the Ricci curvature and the squared mean curvature
of the submanifold.

Apart from Hermitian geometry, the theory of product manifolds has
important physical and geometrical aspects. In physics, the spacetime of Ein-
stein’s general relativity could be considered as a product of 3-dimensional
space and 1-dimensional time, both having their metrics, thus its topology is
generated by the metrics of these spaces. There are also nice applications of
product manifolds in Kaluza–Klein theory, brane theory and gauge theory (cf.
[BEE], [CY], [H], [HS]). Also, product manifolds and their submanifolds have
been studied by many mathematicians. Locally product manifolds were first
introduced by S. Tachibana [Ta]. Invariant, anti-invariant and non-invariant
submanifolds of a locally product manifold were studied by T. Adati [Ad];
semi-invariant submanifolds of a locally product manifold were investigated
by A. Bejancu [B]; almost semi-invariant submanifolds of a locally product
manifold were studied by the second author and K. D. Singh [T:1], [TS]; and
skew semi-invariant submanifolds (a special class of almost semi-invariant
submanifolds) of a locally product manifold were studied by X. Liu and
F.-M. Shao [LS].

Since the inception of the theory of slant submanifolds in Kaehlerian
manifolds created by B.-Y. Chen [C:1], this theory has shown an increasing
development. Recently, many authors investigated slant submanifolds of
various spaces (complex manifolds, contact manifolds etc.)—see [ACCM],
[At], [CCFF], [CZ], [KUS], [S:1], [S:2], [SK], [SUK], [V]. It is known that proper
slant submanifolds of Kaehlerian manifolds are always even-dimensional,
while proper slant submanifolds of almost contact metric manifolds are
always odd-dimensional. However, B. Sahin [S:1] showed that proper slant
submanifolds in almost Riemannian product manifolds may have even or odd
dimension. Hence slant submanifolds of almost product manifold are quite
different from slant submanifolds of complex manifolds and contact manifolds.

Motivated by these facts, in the present paper, we initiate the study of the
Chen–Ricci inequality for slant submanifolds of almost product Riemannian
manifolds. The paper is organized as follows. Section 2 is concerned with
some necessary preliminaries. In Section 3, we recall some basic facts about
the locally product manifolds. In Section 4, some examples of slant subman-
ifolds of almost product Riemannian manifolds are given. The existence of
a useful orthonormal basis in proper slant submanifolds of a Riemannian
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product manifold is proved. Some basic results are also presented. In Sec-
tion 5, first we find the sectional curvature, the Ricci curvature and the
scalar curvature of submanifolds of locally product manifolds of almost con-
stant curvature. Then we obtain Chen–Ricci inequalities involving the Ricci
tensor and the squared mean curvature for submanifolds of locally product
manifolds of almost constant curvature. In Section 6, we obtain Chen–Ricci
inequalities for slant submanifolds of Kaehlerian product manifolds. In par-
ticular, we also investigate these relations for F -invariant submanifolds and
F -totally real submanifolds of Kaehlerian product manifolds.

2. Preliminaries. Let (M, g) be an n-dimensional Riemannian sub-

manifold of an m-dimensional Riemannian manifold (M̃, g̃). The Gauss and
Weingarten formulas are

∇̃XY = ∇XY + σ(X,Y ) and ∇̃XN = −ANX +∇⊥XN,
for all X,Y ∈ TM and N ∈ T⊥M , where ∇̃, ∇ and ∇⊥ are the Riemannian
connection, the induced Riemannian connection and the induced normal
connections in M̃ , M and the normal bundle T⊥M of M , respectively. We
denote the inner product of both the metrics g and g̃ by 〈 , 〉. The second
fundamental form σ is related to the shape operator AN by 〈σ(X,Y ), N〉 =
〈ANX,Y 〉. The Gauss equation is

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + 〈σ(X,W ), σ(Y, Z)〉(2.1)

− 〈σ(X,Z), σ(Y,W )〉
for all X,Y, Z,W ∈ TM , where R̃ and R are the Riemann curvature ten-

sors of M̃ and M , respectively. The mean curvature vector H is H =
(1/n) trace(σ). If σ = 0, then the submanifold is called totally geodesic in M̃ .
If H = 0, then the submanifold is called minimal. If σ(X,Y ) = 〈X,Y 〉H for
all X,Y ∈ TM , then the submanifold is called totally umbilical [C:2]. The
relative null space of M at p is defined by

Np = {X ∈ TpM | σ(X,Y ) = 0 for all Y ∈ TpM},
which is also known as the kernel of the second fundamental form D(p) at p
[C:5], [C:6].

Let {e1, . . . , en} be an orthonormal basis of the tangent space TpM , and
suppose er belongs to an orthonormal basis {en+1, . . . , em} of the normal
space T⊥p M . We set

σrij = 〈σ(ei, ej), er〉 and ‖σ‖2 =

n∑
i,j=1

〈σ(ei, ej), σ(ei, ej)〉.

Let Kij and K̃ij denote the sectional curvature of the plane section
spanned by ei and ej at p in the submanifold M and in the ambient mani-
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fold M̃ , respectively. Thus, we can say that Kij and K̃ij are the “intrinsic”
and “extrinsic” sectional curvatures of span{ei, ej} at p, respectively. In
view of (2.1), we get

(2.2) Kij = K̃ij +

m∑
r=n+1

(σriiσ
r
jj − (σrij)

2).

From (2.2) it follows that

(2.3) 2τ(p) = 2τ̃(TpM) + n2‖H‖2 − ‖σ‖2,

where τ̃(TpM) denotes the scalar curvature of the n-plane section TpM

in the ambient manifold M̃ . Thus, we can say that τ(p) and τ̃(TpM) are
the “intrinsic” and “extrinsic” scalar curvature of the submanifold at p,
respectively. We denote the set of unit vectors in TpM by T 1

pM ; thus

T 1
pM = {X ∈ TpM | 〈X,X〉 = 1}.

We recall the following result [HT].

Theorem 2.1. Let M be an n-dimensional submanifold of a Rieman-
nian manifold M̃ . Then:

(a) For X ∈ T 1
pM we have

(2.4) Ric(X) ≤ 1
4n

2‖H‖2 + R̃ic(TpM)(X),

where R̃ic(TpM)(X) is the n-Ricci curvature of TpM at X ∈ T 1
pM

with respect to the ambient manifold M̃ .
(b) For a fixed X ∈ T 1

pM , equality holds in (2.4) if and only if

(2.5) σ(X,X) = 1
2nH(p) and σ(X,Y ) = 0

for all Y ∈ TpM such that 〈X,Y 〉 = 0.
(c) Equality holds in (2.4) for all X ∈ T 1

pM if and only if either p is a
totally geodesic point, or n = 2 and p is a totally umbilical point.

Note that (2.4) is a special case of [C:8, Theorem 3.1, inequality (3.3)].

From Theorem 2.1, we immediately have the following:

Corollary 2.2. Let M be an n-dimensional submanifold of a Rieman-
nian manifold. For X ∈ T 1

pM any two of the following three statements
imply the remaining one:

(a) The mean curvature vector H(p) vanishes.
(b) The unit vector X belongs to the relative null space Np.
(c) The unit vector X satisfies the equality case of (2.4), namely

(2.6) Ric(X) = 1
4n

2‖H‖2 + R̃ic(TpM)(X).
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3. Locally product manifolds. Let M̃ be a smooth manifold equipped
with a tensor of type (1, 1) such that F 2 = I, where I denotes the identity

transformation. Then M̃ is called an almost product manifold and F is called
an almost product structure on M̃ . The eigenvalues of F are +1 and −1. If
we set

P = 1
2(I + F ), Q = 1

2(I − F ),

then

P +Q = I, P 2 = P, Q2 = Q, PQ = QP = 0, F = P −Q.
If an almost product manifold M̃ admits a Riemannian metric g̃ such that

(3.1) g̃(FX,FY ) = g̃(X,Y )

for all vector fields X and Y on M̃ , then M̃ is called an almost product
Riemannian manifold [YK:2].

Let M̃ be an m-dimensional manifold. Suppose that the indices a, b, c, d
run over the range 1, . . . ,m1, the indices α, β, γ, ν run over m1 + 1, . . . ,
m1 + m2 = m, and the indices i, j, k, h run over 1, . . . ,m. A system of
coordinate neighborhoods on M̃ is said to be a separating coordinate system
if in the intersection of any two coordinate neighborhoods (xi) and (xi

′
) we

have

xa
′

= xa
′
(xa), xα

′
= xα

′
(xα),

det

(
∂xa

′

∂xa

)
6= 0, det

(
∂xα

′

∂xα

)
6= 0.

Suppose that M̃ is covered by a separating coordinate system. We denote

by M̃1 the system of subspaces defined by

xα = constant, α ∈ {m1 + 1, . . . ,m1 +m2 = m},

and by M̃2 the system of subspaces defined by

xa = constant, a ∈ {1, . . . ,m1}.

Then the manifold M̃ is locally the product M̃1×M̃2 of two manifolds and is
called a locally product manifold. A locally product manifold always admits
a natural tensor field F of type (1, 1) given by

F ij =

(
δab 0

0 −δαβ

)
,

which satisfies

F 2 = I.

If each contravariant vector tangent to M̃`, ` ∈ {1, 2}, parallel transported

along M̃`, is still tangent to M̃`, then M̃` is said to be totally geodesic in
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M̃ = M̃1× M̃2. A locally product manifold M̃ equipped with a Riemannian
metric

ds2 = g̃ij(x)dxidxj

satisfying (3.1) is called a locally product Riemannian manifold. If the metric

g̃ of a locally product Riemannian manifold M̃ has the form

ds2 = g̃ab(x
c)dxadxb + g̃αβ(xγ) dxα dxβ,

then M̃ is called a locally decomposable Riemannian manifold. A locally
product Riemannian manifold is locally decomposable if and only if ∇̃F = 0,
where ∇̃ is the Riemannian connection of (M̃, g̃).

Let M̃ = M̃1×M̃2 be a locally decomposable Riemannian manifold with
dim(M̃`) = m` > 2, ` = 1, 2. It is known [YK:2, Theorem 2.4, p. 421] that

both M̃1 and M̃2 are Einstein, that is,

S̃ab = µ1g̃ab, Sαβ = µ2g̃αβ

if and only if

S̃ij = k1g̃ij + k2bFij ,

where

k1 = 1
2(µ1 + µ2), k2 = 1

2(µ1 − µ2).

Next, M̃1 and M̃2 are of constant sectional curvatures λ1 and λ2, respec-
tively, that is,

R̃abcd = λ1(g̃adg̃bc − g̃acg̃bd), R̃αβγν = λ2(g̃αν g̃βγ − g̃αγ g̃βν)

if and only if

R̃hijk = a{(g̃hkg̃ij − g̃hj g̃ik) + (FhkFij − FhjFik)}
+ b{(Fhkg̃ij − Fhj g̃ik) + (g̃hkFij − g̃hjFik)},

where

a = 1
4(λ1 + λ2), b = 1

4(λ1 − λ2).

A locally decomposable Riemannian manifold is called a manifold of almost
constant curvature, denoted M̃(a, b), if its curvature tensor R̃ is given by

R̃(X,Y, Z,W ) = a{(〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉)(3.2)

+ (〈X,FW 〉〈Y, FZ〉 − 〈X,FZ〉〈Y, FW 〉)}
+ b{(〈X,FW 〉〈Y,Z〉 − 〈X,FZ〉〈Y,W 〉)

+ (〈X,W 〉〈Y, FZ〉 − 〈X,Z〉〈Y, FW 〉)}

for all vector fields X,Y, Z,W in M̃ . For more details, we refer to [Ta], [Y],
[YK:1] and [YK:2].



Chen–Ricci inequalities for submanifolds 43

4. Slant submanifolds of almost product Riemannian manifolds.
Let (M, g) be an n-dimensional Riemannian submanifold of a Riemannian

manifold M̃ equipped with an almost product Riemannian structure (F, g̃).
For any vector field X tangent to M , we can write

(4.1) FX = fX + ωX,

where fX is the tangential part of FX and ωX is the normal part of FX.
From (3.1) and (4.1), we see that

(4.2) g(fX, Y ) = g(X, fY )

for all vector fields in M . The submanifold M is said to be F -invariant (resp.
F -anti-invariant) if ω = 0 (resp. f = 0). The submanifold M is F -invariant
if and only if (f, g) is an almost product Riemannian structure on M . The
squared norm of f at p ∈M is given by

‖f‖2 =
n∑

i,j=1

g(fei, ej)
2,

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM .

For each non-zero vector X to M at p, let θ(p) be the angle between
FX and X. If θ(p) is independent of the choice of p ∈ M and X ∈ TpM ,
then M is called a slant submanifold. If θ = 0, then M is an F -invariant
submanifold , and if θ = π/2, then M is an F -anti-invariant submanifold.
A slant submanifold which is neither invariant nor anti-invariant (totally

real) is called a proper slant submanifold. If M is a slant submanifold of M̃ ,

then cos θ = 〈FX,fX〉
‖X‖‖fX‖ is constant for any vector field X in M . Thus, a

submanifold M of an almost product Riemannian manifold M̃ is a slant
submanifold if and only if there exists a constant λ ∈ [0, 1] such that f2 = λ.
If θ is the slant angle of M , then λ = cos2 θ. A slant submanifold is called a
product slant submanifold if the endomorphism f is parallel [S:1].

Example 4.1. Consider the Euclidean 6-space R6 with standard coor-
dinates (x1, . . . , x6). Let F be the almost product structure on R6 given
by

F (x1, x2, x3, x4, x5, x6) = (x1,−x2, x3,−x4, x5,−x6).
We consider the submanifold M given by

x(u1, u2, u3) = (u1 cos θ, u1 sin θ, u2 cos θ, u2 sin θ, u3 cos θ, u3 sin θ).

We have

e1 = (cos θ, sin θ, 0, 0, 0, 0),

e2 = (0, 0, cos θ, sin θ, 0, 0),

e3 = (0, 0, 0, 0, cos θ, sin θ),
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Fe1 = (cos θ,− sin θ, 0, 0, 0, 0),

F e2 = (0, 0, cos θ,− sin θ, 0, 0),

F e3 = (0, 0, 0, 0, cos θ,− sin θ),

so that

〈Fe1, e1〉 = cos 2θ, 〈Fe2, e2〉 = cos 2θ, 〈Fe3, e3〉 = cos 2θ,

〈Fei, ej〉 = 0 for i 6= j ∈ {1, 2, 3}
and

fe1 = (cos 2θ)e1, fe2 = (cos 2θ)e2, fe3 = (cos 2θ)e3.

Thus M is a proper θ-slant submanifold with slant angle 2θ.

Example 4.2. Consider the Euclidean 8-space R8 with coordinates
(x1, . . . , x8). Let F be the almost product structure on R8 given by

F (x1, x2, x3, x4) = (x1, x2, x3, x4,−x5,−x6,−x7,−x8).
We consider the submanifold M given by

x(u1, u2, u3, u4) = (u1+u2, u1+u2, u3+u4, u3+u4,
√

2u1,
√

2u2,
√

2u3,
√

2u4).

Then

e1 = 1
2(1, 1, 0, 0,

√
2, 0, 0, 0),

e2 = 1
2(1, 1, 0, 0, 0,

√
2, 0, 0),

e3 = 1
2(0, 0, 1, 1, 0, 0,

√
2, 0),

e4 = 1
2(0, 0, 1, 1, 0, 0, 0,

√
2)

so that

Fe1 = 1
2(1, 1, 0, 0,−

√
2, 0, 0, 0),

F e2 = 1
2(1, 1, 0, 0, 0,−

√
2, 0, 0),

F e3 = 1
2(0, 0, 1, 1, 0, 0,−

√
2, 0),

F e4 = 1
2(0, 0, 1, 1, 0, 0, 0,−

√
2),

〈Fe1, e2〉 = 〈Fe2, e1〉 = 〈Fe3, e4〉 = 〈Fe4, e3〉 = 1/2

and

fe1 = 1
2e2, fe2 = 1

2e1, fe3 = 1
2e4, fe4 = 1

2e3.

Hence M is a slant submanifold with slant angle θ = π/3.

Lemma 4.3 ([S:1]). Let M be a slant submanifold of an almost product

Riemannian manifold M̃ . Then

〈fX, fY 〉 = cos2 θ 〈X,Y 〉 and 〈ωX,ωY 〉 = sin2 θ 〈X,Y 〉
for all vector fields X,Y on M .
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Theorem 4.4. Let M be an n-dimensional proper slant submanifold of
an almost product Riemannian manifold M̃ . Then any orthonormal basis
{e1, . . . , en} of TpM (p ∈M) satisfies the following condition:

For any vector ea belonging to the basis {e1, . . . , en}, there exists a vector
eb in this basis such that

〈fea, eb〉 = 〈ea, feb〉 = cos θ,

〈fea, ec〉 = 〈feb, ec〉 = 0 for c 6= a and c 6= b.

Proof. For n = 2, let {e1, e2} be any orthonormal basis of TpM . Then
we can write

(4.3) fe1 = a1e1 + a2e2,

where a1, a2 ∈ R. From Lemma 4.3, we have

(4.4) 〈fe1, fe1〉 = a21 + a22 = cos2 θ.

Thus, we get

(4.5) fe1 = cos θ (cosϕ1 e1 + sinϕ1 e2), ϕ1 ∈ [0, 2π].

Similarly, we also get

(4.6) fe2 = cos θ (cosϕ2 e1 + sinϕ2 e2), ϕ2 ∈ [0, 2π].

From (4.2), it follows that

(4.7) sinϕ1 = cosϕ2.

Using the fact that 〈fe1, fe2〉 = 0, we obtain

(4.8) cos2 θ (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) = 0.

Since M is a proper slant submanifold, we have

(4.9) cosϕ1 cosϕ2 + sinϕ1 sinϕ2 = 0.

Taking into account (4.7) and (4.9), we get either ϕ1 = 0 and ϕ2 = π/2 (or
ϕ2 = 3π/2, or ϕ1 = π/2 (or ϕ2 = 3π/2) and ϕ2 = 0.

If ϕ1 = 0 and ϕ2 = π/2 (or ϕ2 = 3π/2), then

(4.10) fe1 = cos θ e1, fe2 = cos θ e2 and 〈fe1, e2〉 = 〈fe2, e1〉 = 0.

If ϕ1 = π/2 (or ϕ2 = 3π/2) and ϕ2 = 0, then

(4.11) fe1 = cos θ e2, fe2 = cos θ e1 and 〈fe1, e2〉 = 〈fe2, e1〉 = 0.

Thus the assertion of the theorem is satisfied for n = 2.
For n = 3, let {e1, e2, e3} be an orthonormal basis of TpM . Then we can

write

(4.12) fe1 = a1e1 + a2e2 + a3e3,

where a1, a2, a3 ∈ R. From Lemma 4.3, we have

(4.13) 〈fe1, fe1〉 = a21 + a22 + a23 = cos2 θ.
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Thus, we get

(4.14) fe1 = cos θ (cosϕ1 sinα1 e1 + sinϕ1 sinα1 e2 + cosα1 e3)

for ϕ1 ∈ [0, 2π] and α1 ∈ [0, π]. Similarly, we can write

fe2 = cos θ (cosϕ2 sinα2 e1 + sinϕ2 sinα2 e2 + cosα2 e3),(4.15)

fe3 = cos θ (cosϕ3 sinα3 e1 + sinϕ3 sinα3 e2 + cosα3 e3),(4.16)

for ϕ2, ϕ3 ∈ [0, 2π] and α2, α3 ∈ [0, π]. From (4.2), it follows that

(4.17) cosα1 = cosϕ3 sinα3, cosα2 = sinϕ3 sinα3.

Using (4.17) and Lemma 4.3, we have the following equalities:

sin2 ϕ1 sin2 α1 + sin2 ϕ2 sin2 α2 + sin2 ϕ3 sin2 α3 = 1,(4.18)

cos2 α1 + cos2 α2 + cos2 α3 = 1,(4.19)

cosϕ1 sinα1 = sinϕ2 sinα2,(4.20)

sinϕ1 sinα1 = cosϕ2 sinα2.(4.21)

Taking into account (4.17), (4.19), (4.20) and (4.21), we have

(4.22)
cosϕ1 = sinϕ2, sinϕ1 = cosϕ2,

sinα1 = sinα2, sinα1 6= 0.

Using 〈fe1, fe2〉 = 0, we obtain

2 sinϕ1 cosϕ1 sin2 α1 + cos2 α2 = 0,

which implies sinϕ1 cosϕ1 = 0 and cosα2 = 0. If we do the analysis as in
(4.10) and (4.11) for n = 2, we have the assertion of the theorem for n = 3.

For n = k, let {e1, . . . , ek} be an orthonormal basis of TpM . Then we
can write

(4.23) fe` =

k∑
r=1

a`rer,

where a`r ∈ R, r, ` ∈ {1, . . . , k}. From Lemma 4.3, we have

(4.24) 〈fe`, fe`〉 =

k∑
r=1

(a`r)
2 = cos2 θ.

Thus, we get

(4.25) fe` = cos θ
( k−1∏
r=1

sinϕ`re1 +
[k−2∏
r=1

sinϕ`r

]
cosϕ`r−1e2 + · · ·+

sinϕ`1 sinϕ`2 cosϕ`3ek−2 + sinϕ`1 cosϕ`2ek−1 + cosϕ`1ek

)
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for ϕ`r ∈ [0, 2π], r, ` ∈ {1, . . . , k}. From (4.2), it follows that[k−2∏
r=1

sinϕ1
r

]
cosϕ1

k−1 =
k−1∏
r=1

sinϕ2
r ,

[k−3∏
r=1

sinϕ1
r

]
cosϕ1

k−2 =

k−1∏
r=1

sinϕ3
r ,

...

sinϕ1
1 cosϕ1

2 =

k−1∏
r=1

sinϕk−1r ,

cosϕ1
1 =

k−1∏
r=1

sinϕkr ,

[k−3∏
r=1

sinϕ2
r

]
cosϕ2

k−2 =
[k−2∏
r=1

sinϕ3
r

]
cosϕ3

k−1,

...

sinϕ2
1 cosϕ2

2 =
[k−2∏
r=1

sinϕk−1r

]
cosϕk−1k−1,

cosϕ2
1 =

[k−2∏
r=1

sinϕkr

]
cosϕkk−1,

...

cosϕk−11 = sinϕk1 cosϕk1.

Using the above equalities and Lemma 4.3, we also obtain

k∑
`=1

k−1∏
r=1

sin2 ϕ`r = 1,

k−1∑
r=1

cos2 ϕ`r = 1.

By a straightforward computation, we get cosϕ`r = 1 and cosϕsr = 0 for
` 6= s ∈ {1, . . . , k} and r ∈ {1, . . . , k− 1}. If a similar analysis is carried out
as for n = 2 and n = 3, we deduce the assertion of the theorem for n = k.

Corollary 4.5. Let M be a proper slant surface of an almost Rie-
mannian product manifold M̃ . If {e1, e2} is an orthonormal basis of TpM ,
p ∈M , then one of the following two cases holds:

(a) 〈fe1, e1〉 = 〈fe2, e2〉 = cos θ and 〈fe1, e2〉 = 0,
(b) 〈fe1, e2〉 = cos θ and 〈fe1, e1〉 = 〈fe2, e2〉 = 0.

Corollary 4.6. Let M be an n-dimensional proper slant submanifold
of an almost Riemannian product manifold M̃ . If {e1, . . . , en} is an or-
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thonormal basis of M , then {fe1, . . . , fen} is an orthogonal basis, that is,
the members of {fe1, . . . , fen} are mutually orthogonal.

Proof. For i, j ∈ {1, . . . , n} we have

〈fei, fej〉 = cos2 θ 〈ei, ej〉,

which entails the conclusion.

Theorem 4.7. Let M be a proper θ-slant submanifold of an almost prod-
uct Riemannian manifold M̃ and {e1, . . . , en} be any orthonormal frame
for M . Then ∇Xf = 0 for all X ∈ TM if and only if for each i ∈ {1, . . . , n},
either 〈fei, ei〉 = cos θ or ei is parallel.

Proof. For fixed i, we have 〈fei, ej〉 = cos θ for some j. Thus

(4.26) 0 = X〈fei, ej〉 = 〈∇Xfei, ej〉+ 〈fei,∇Xej〉 = cos θ 〈∇Xej , ej〉.

Evidently, we have 〈∇Xej , ej〉 = 0. Moreover,

(∇Xf)ei = ∇Xfei − f∇Xei(4.27)

= cos θ∇Xej
−f{〈∇Xei, e1〉e1 + · · ·+ 〈∇Xei, ei〉ei

+ · · ·+ 〈∇Xei, ei−1〉ei−1 + 〈∇Xei, ei+1〉ei+1

+ · · ·+ 〈∇Xei, en〉en}.

From (4.27), it follows that ∇Xf = 0 if and only if either 〈fei, ei〉 = cos θ,
i.e. i = j, or ei is parallel.

Recall the following theorem of B. Sahin [S:1].

Theorem 4.8. Let M be a submanifold of an almost product Rieman-
nian manifold M̃ . Then ∇f = 0 if and only if M is locally a product
M1×· · ·×Mk, where Mi is either an F -invariant submanifold with ∇ifi=0,
an F -anti-invariant submanifold, or a product slant submanifold of M̃ ,
where fi = f |TMi and ∇i is the Riemannian connection of Mi.

Corollary 4.9. Suppose that M is a proper product θ-slant submani-

fold of an almost product Riemannian manifold M̃ . If {e1, . . . , en} is an or-
thonormal basis of TpM and no vector field ei is parallel for i ∈ {1, . . . , n},
then 〈fei, ei〉 = cos θ for all i.

5. Submanifolds of locally decomposable manifolds. The follow-
ing two results are well known from [YK:1].

Theorem 5.1. An F -invariant submanifold of a Riemannian product
manifold M̃ = M̃1 × M̃2 is again a Riemannian product manifold M =
M1 ×M2, where M` is a totally geodesic submanifold of M̃`, ` ∈ {1, 2}.
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Theorem 5.2. If M is any F -anti-invariant submanifold of a Rieman-
nian product manifold M̃ = M̃1 × M̃2, then AFXY = 0. Moreover, if

dim(M̃) = 2 dim(M), then M is totally geodesic.

Lemma 5.3. Let M be an n-dimensional submanifold of a manifold
M̃(a, b) of almost constant curvature. Let {e1, . . . , en} be an orthonormal
basis of the tangent space TpM . Then

K̃ij = a{1 + 〈ei, fei〉〈ej , fej〉 − 〈ei, fej〉2}(5.1)

+ b{〈ei, fei〉+ 〈ej , fej〉},

R̃ic(TpM)(ei) = a{(n− 1) + 〈ei, fei〉 trace(f)− ‖fei‖2}(5.2)

+ b{(n− 2)〈ei, fei〉+ trace(f)},
τ̃(TpM) = 1

2a{(n− 1)n+ (trace(f))2 − ‖f‖2}(5.3)

+ b(n− 1) trace(f).

Proof. We get (5.1) from (3.2). Using

R̃ic(TpM)(ei) =
n∑

j=1, j 6=i
K̃ij

in (5.1), we get (5.2). Next, using

2τ̃(TpM) =

n∑
i=1

R̃ic(TpM)(ei),

from (5.2) we obtain (5.3).

Theorem 5.4. If M is an n-dimensional submanifold of a manifold
M̃(a, b) of almost constant curvature, then:

(a) For all X ∈ T 1
pM ,

(5.4) Ric(X) ≤ 1
4n

2‖H‖2

+ a{(n− 1) + 〈X, fX〉 trace(f)− ‖fX‖2}
+ b{(n− 2)〈X, fX〉+ trace(f)}.

(b) For a fixed X ∈ T 1
pM , equality holds in (5.4) if and only if (2.5) is

true. If H(p) = 0, then X ∈ T 1
pM satisfies equality in (5.4) if and

only if X ∈ Np.
(c) Equality holds in (5.4) for all X ∈ T 1

pM if and only if either p is a
totally geodesic point, or n = 2 and p is a totally umbilical point.

Proof. Using (5.2) in (2.4), we find (5.4). The rest is straightforward.

Theorem 5.5. If M is an n-dimensional F -anti-invariant submanifold
of a manifold M̃(a, b) of almost constant curvature, then:
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(a) For all X ∈ T 1
pM ,

(5.5) Ric(X) ≤ 1
4n

2‖H‖2 + (n− 1)a.

(b) For a fixed X ∈ T 1
pM , equality holds in (5.5) if and only if (2.5) is

true. If H(p) = 0, then X ∈ T 1
pM satisfies the equality case of (5.5)

if and only if X ∈ Np.
(c) Equality holds in (5.5) for all X ∈ T 1

pM if and only if either p is a
totally geodesic point, or n = 2 and p is a totally umbilical point.

Proof. Using f = 0 in (5.4), we find (5.5). The rest is straightforward.

By polarization, from Theorem 5.5 we derive the following

Theorem 5.6. Let M be an n-dimensional F -anti-invariant subman-
ifold of a manifold M̃(a, b) of almost constant curvature. Then the Ricci
tensor S satisfies

(5.6) S ≤
(
1
4n

2‖H‖2 + (n− 1)a
)
g,

where g is the induced Riemannian metric on M . Equality holds in (5.6) if
and only if either M is a totally geodesic submanifold, or n = 2 and M is a
totally umbilical submanifold.

Using Theorem 5.2 in Theorem 5.6, we have the following

Example 5.7. Every n-dimensional F -anti-invariant submanifold of a
manifold M̃(a, b) of almost constant curvature and of dimension 2n satisfies
the equality case of (5.6):

(5.7) S =
(
1
4n

2‖H‖2 + (n− 1)a
)
g.

6. Submanifolds of Kaehlerian product manifolds. Let M1 and
M2 be Kaehlerian manifolds with complex dimension m1 and m2, respec-
tively. We denote by J1 and J2 almost complex structures of M1 and M2,
respectively. We consider the Kaehlerian product M̃ = M1 ×M2 and set

JX = J1PX + J2QX

for any vector field X on M̃ , where P and Q denote the projection operators.
Then we see that

J1P = PJ, J2Q = QJ, FJ = JF,

where F is the natural almost product structure on M̃ . If M1 and M2

are complex space forms with constant holomorphic sectional curvature c1
and c2, respectively, then the Riemannian curvature tensor R̃ of a Kaehlerian

product manifold M̃ is given by
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(6.1) R̃(X,Y, Z,W ) = 1
16(c1 + c2){〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉

+ 〈JY, Z〉〈JX,W 〉 − 〈JX,Z〉〈JY,W 〉
+ 2〈X, JY 〉〈JZ,W 〉+ 2〈FY,Z〉〈FX,W 〉
− 〈FX,Z〉〈FY,W 〉+ 〈FJY,Z〉〈FJX,W 〉
− 〈FJX,Z〉〈FJY,W 〉+ 2〈FX, JY 〉〈FJZ,W 〉}

+ 1
16(c1 − c2){〈FY,Z〉〈X,W 〉 − 〈FX,Z〉〈Y,W 〉

+ 〈Y, Z〉〈FX,W 〉 − 〈X,Z〉〈FY,W 〉
+ 〈FJY,Z〉〈JX,W 〉 − 〈FJX,Z〉〈JY,W 〉
+ 〈JY, Z〉〈FJX,W 〉 − 〈JX,Z〉〈FJX,W 〉
+ 2〈FX, JY 〉〈JZ,W 〉+ 2〈X,JY 〉〈JFZ,W 〉}

for all vector fields X,Y, Z,W on M̃ . Furthermore, the sectional curvature
of M̃ is given by

(6.2) K̃(X ∧ Y ) = 1
16(c1 + c2){1 + 3〈X, JY 〉2 + 2〈FY, Y 〉〈FX,X〉

− 〈FX, Y 〉2 + 3〈X,JFY 〉2}
+ 1

16(c1−c2){〈FY, Y 〉+ 〈FX,X〉+6〈FJX, Y 〉〈JX, Y 〉}

for all X,Y on M̃ [YK:2].

Theorem 6.1. Let M be a proper θ-slant submanifold of a Kaehlerian
product manifold M̃ . Then:

(a) For all X ∈ T 1
pM ,

(6.3) Ric(X) ≤ 1
4n

2‖H‖2 + 1
16(c1 + c2){(n− 1) + 3(1 + cos2 θ)‖PX‖2

+ 2〈fX,X〉 trace(f)− 〈fX,X〉2 − cos2 θ}
+ 1

16(c1 − c2){trace(f) + 6〈fPX,PX〉+ (n− 2)〈fX,X〉}.

(b) For a fixed X ∈ T 1
pM , equality holds in (6.3) if and only if

σ(X,X) = 1
2nH(p) and σ(X,Y ) = 0

for all Y ∈ TpM orthogonal to X.
(c) Equality holds in (6.3) for all X ∈ T 1

pM if and only if either p is a
totally geodesic point, or n = 2 and p is a totally umbilical point.

Proof. Let {e1, . . . , en, en+1, . . . , em} be an orthonormal basis of TpM̃
and {e1, . . . , en} be an orthonormal basis of TpM . From (6.2), we have

K̃1j = 1
16(c1 + c2){1 + 3〈Pe1, ej〉2(6.4)

+ 2〈fe1, e1〉〈fej , ej〉 − 〈fe1, ej〉2 + 3〈fPe1, ej〉2}
+ 1

16(c1 − c2){〈fe1, e1〉+ 〈fej , ej〉+ 6〈fPe1, ej〉〈Pe1, ej〉}
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for j ∈ {2, . . . , n}. By using (6.4), we get

(6.5) R̃icTpM (e1) = 1
16(c1 + c2)

{
(n− 1)

+ 3

n∑
j=1

〈Pe1, ej〉2 − 3〈Pe1, e1〉2 + 2

n∑
j=1

〈fe1, e1〉〈fej , ej〉 − 2〈fe1, e1〉2

−
n∑
j=1

〈fe1, ej〉2 + 〈fe1, e1〉2 + 3

n∑
j=1

〈fPe1, ej〉2 − 3〈fPe1, e1〉2
}

+ 1
16(c1 − c2)

{
(n− 1)〈fe1, e1〉+

n∑
j=1

〈fej , ej〉 − 〈fe1, e1〉

+ 6
n∑
j=1

〈fPe1, ej〉〈Pe1, ej〉 − 6〈fPe1, e1〉〈Pe1, e1〉
}
.

Since
n∑
j=1

〈fPe1, ej〉2 = cos2 θ ‖Pe1‖2,

setting e1 = X and using Theorem 4.4 we get

R̃icTpM (X) = 1
16(c1 + c2){(n− 1) + 3(1 + cos2 θ)‖PX‖2(6.6)

+ 2〈fX,X〉 trace(f)− 〈fX,X〉2 − cos2 θ}

+ 1
16(c1 − c2)

{
trace(f) + 6

n∑
j=2

〈fPX, ej〉〈PX, ej〉

+(n− 2)〈fX,X〉
}
.

From (5.4), we find (6.3). The rest is straightforward.

Theorem 6.2. Let M be an almost proper θ-slant submanifold of a
Kaehlerian product manifold M̃ , {ei} be an orthonormal basis of TpM and
suppose {ei} are not parallel. Then:

(a) For all X ∈ T 1
pM ,

(6.7) Ric(X) ≤ 1
4n

2‖H‖2 + 1
16(c1 + c2){(n− 1)

+ 3(1 + cos2 θ)‖PX‖2 + 2(n− 1) cos2 θ}
+ 1

16(c1 − c2){2(n− 1) cos θ + 6 cos θ ‖PX‖2}.
(b) For a fixed X ∈ T 1

pM , equality holds in (6.7) if and only if

σ(X,X) = 1
2nH(p) and σ(X,Y ) = 0

for all Y ∈ TpM such that 〈X,Y 〉 = 0.
(c) Equality holds in (6.7) for all X ∈ T 1

pM if and only if either p is a
totally geodesic point, or n = 2 and p is a totally umbilical point.
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Proof. If we write 〈fX,X〉 = cos θ in (6.5) and set X = e1, then we
obtain

(6.8) R̃icTpM (X) = 1
16(c1 + c2){(n− 1) + 3(1 + cos2 θ)‖PX‖2

+ 2(n− 1) cos2 θ + 2(n− 1) cos2 θ}
+ 1

16(c1 − c2){2(n− 1) cos θ + 6 cos θ‖PX‖2}.
In view of (6.8) in (5.4), we obtain (6.7).

Theorem 6.3. Let M be an n-dimensional F -invariant submanifold of
a Kaehlerian product manifold M̃ . Then:

(a) For all X ∈ T 1
pM ,

(6.9) Ric(X) ≤ 1
4n

2‖H‖2

+ 1
16(c1 + c2){(n− 2) + 6‖PX‖2 + 2n〈fX,X〉 − 〈fX,X〉2}

+ 1
16(c1 − c2){n+ (n− 2)〈fX,X〉+ 6〈fPX,PX〉}.

(b) For a fixed X ∈ T 1
pM , equality holds in (6.9) if and only if

(6.10)

{
σ(X,Y ) = 0 for all Y ∈ TpM orthogonal to X,

σ(X,X) = 1
2nH(p).

(c) Equality holds in (6.9) for all X ∈ T 1
pM if and only if either p is a

totally geodesic point, or n = 2 and p is a totally umbilical point.

Proof. Since M is an F -invariant submanifold of M̃ , we have FX = fX
for each X ∈ TpM , trace(f) = n and 〈fPe1, ej〉2 = ‖fPe1‖2 = ‖Pe1‖2. If
we set X = e1 and use (6.5), we obtain

(6.11) R̃icTpM (X) = 1
16(c1 + c2){(n− 2) + 3‖PX‖2

+ 2n〈fX,X〉 − 〈fX,X〉2 + 3‖PX‖2}

+ 1
16(c1 − c2)

{
n+ (n− 2)〈fX,X〉+ 6

n∑
j=1

〈fPX, ej〉〈PX, ej〉
}
.

In view of (6.11) in (5.4), we obtain (6.9).

Theorem 6.4. Let M be an n-dimensional F -totally real submanifold
of a Kaehlerian product manifold M̃ . Then:

(a) For all X ∈ T 1
pM ,

(6.12) Ric(X) ≤ 1
4n

2‖H‖2 + 1
16(c1 + c2){(n− 1) + 3‖PX‖2}.

(b) For a fixed X ∈ T 1
pM , equality holds in (6.12) if and only if

(6.13)

{
σ(X,Y ) = 0 for all Y ∈ TpM orthogonal to X,

σ(X,X) = 1
2nH(p).
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(c) Equality holds in (6.12) for all X ∈ T 1
pM if and only if either p is a

totally geodesic point, or n = 2 and p is a totally umbilical point.

Proof. Since M is an anti-invariant submanifold on M̃ , we have f = 0.
From (6.5) and (2.4), we obtain (6.12).

Corollary 6.5. Let M be an n-dimensional submanifold of a Kaehle-
rian product manifold M̃ and {e1, . . . , en} be an orthonormal basis of TpM .
For X ∈ T 1

pM any two of the following three statements imply the remaining
one:

(a) The mean curvature vector H(p) vanishes.
(b) The unit vector X belongs to the relative null space Np.
(c) The unit vector X satisfies the equality case of the inequalities given

in the following table:

M Inequality

(1) proper θ-slant Ric(X) ≤ 1
4
n2‖H‖2 + 1

16
(c1 + c2){(n− 1) + 3(1 + cos2 θ)‖PX‖2

+ 2〈fX,X〉 trace(f)− 〈fX,X〉2 − cos2 θ}
+ 1

16
(c1 − c2){trace(f) + 6〈fPX,PX〉+ (n− 2)〈fX,X〉}

(2) proper product

θ-slant with all

ei non-parallel

Ric(X) ≤ 1
4
n2‖H‖2 + 1

16
(c1 + c2){(n− 1) + 3(1 + cos2 θ)‖PX‖2

+ 2(n− 1) cos2 θ}
+ 1

16
(c1 − c2){2(n− 1) cos θ + 6 cos θ‖PX‖2}

(3) F -invariant Ric(X) ≤ 1
4
n2‖H‖2 + 1

16
(c1 + c2){(n− 2) + 6‖PX‖2

+ 2n〈fX,X〉 − 〈fX,X〉2}
+ 1

16
(c1 − c2){n+ (n− 2)〈fX,X〉+ 6〈fPX,PX〉}

(4) F -totally real Ric(X) ≤ 1
4
n2‖H‖2 + 1

16
(c1 + c2){(n− 1) + 3‖PX‖2}
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