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Periodic solutions to evolution equations: existence,
conditional stability and admissibility of function spaces

Nguyen Thieu Huy (Hanoi) and Ngo Quy Dang (Thai Binh)

Abstract. We prove the existence and conditional stability of periodic solutions to
semilinear evolution equations of the form u̇ = A(t)u+g(t, u(t)), where the operator-valued
function t 7→ A(t) is 1-periodic, and the operator g(t, x) is 1-periodic with respect to t for
each fixed x and satisfies the ϕ-Lipschitz condition ‖g(t, x1) − g(t, x2)‖ ≤ ϕ(t)‖x1 − x2‖
for ϕ(t) being a real and positive function which belongs to an admissible function space.
We then apply the results to study the existence, uniqueness and conditional stability of
periodic solutions to the above semilinear equation in the case that the family (A(t))t≥0

generates an evolution family having an exponential dichotomy. We also prove the exis-
tence of a local stable manifold near the periodic solution in that case.

1. Introduction and preliminaries. Consider the abstract semilinear
evolution equation

(1.1) u̇ = A(t)u+ g(t, u(t)), t ∈ R+,

where for each t ∈ R+, A(t) is a possibly unbounded operator on a Banach
space X such that (A(t))t≥0 generates an evolution family (U(t, s))t≥s≥0
on X, and the operator g is locally Lipschitz and acts on some function
space of vector-valued functions. One of the important research directions
related to the asymptotic behavior of the solutions to the above equation
is to find conditions for the existence of a periodic solution. The most
popular conditions are the periodicity of the linear part A(t) and that of
the nonlinear term g(t, x) with respect to t combined with its local Lipschitz
property. However, in some applications related to complicated reaction-
diffusion processes, the nonlinear term g describes the source of material (or
population) which, in many contexts, depends on time in diversified manners
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(see [8, Chapt. 11], [9], [20]). Therefore, sometimes one may not hope to have
the uniform Lipschitz continuity of g. Thus, one tries to extend the conditions
on nonlinear parts so that they describe more precisely such reaction-diffusion
processes. Hence, in the present paper, we will prove the existence of a
periodic solution to the semilinear equation with the nonlinear term g
satisfying the ϕ-Lipschitz condition, i.e., ‖g(t, x)− g(t, y)‖ ≤ ϕ(t)‖x− y‖ for
ϕ being a positive and periodic function belonging to an admissible function
space.

The method of using admissibility of function spaces to handle the ϕ-
Lipschitz nonlinear term was first introduced in [12] to prove the existence of
invariant manifolds for semilinear evolution equations. Then it was extended
in [13] to prove the existence of a new class of invariant manifolds, namely,
the invariant manifold of admissible class. We will use this method in the
present paper combined with the folklore methodology of Massera [5] for
periodic solutions to ordinary differential equations (which roughly says that
if an ODE has a bounded solution then it has a periodic one).

Let us briefly explain the reason for choosing such a method: In the
present literature, there are several methods to prove the existence of peri-
odic solutions to evolution equations such as Tikhonov’s fixed point method
[17] or the Lyapunov functionals [21]. The most popular approaches are
the use of ultimate boundedness of solutions and the compactness of the
Poincaré map realized through some compact embeddings (see [1, 4, 16, 17,
19, 21] and references therein). However, in some concrete applications, e.g.,
to partial differential equations in unbounded domains or to evolution equa-
tions having unbounded solutions, such compact embeddings are no longer
valid, and the existence of bounded solutions is not easy to obtain since
one has to carefully choose an appropriate initial vector (or condition) to
guarantee the boundedness of the solution emanating from that vector.

Therefore, in the present paper, we use the ergodic approach (see [22]
for its origin) to overcome such difficulties. Namely, we start with the linear
equation

(1.2) u̇ = A(t)u+ f(t), t ≥ 0,

and use the Cesàro limit to prove the existence of a periodic solution through
the existence of a bounded solution whose sup-norm can be controlled by
the norm of the input function f in a relevant admissible function space.
We refer the reader to [14] for an extension of such an approach to the
case of periodic solutions to Stokes and Navier–Stokes equations around
rotating obstacles. We then use the admissibility of function spaces combined
with the fixed point argument to prove the existence and uniqueness of a
periodic solution of the abstract semilinear evolution equation (1.1) with
the ϕ-Lipschitz nonlinear term.



Periodic solutions, conditional stability, and admissibility 175

It is worth noting that our framework fits perfectly to the situation of
exponentially dichotomic linear parts, i.e., when the family (A(t))t≥0 gen-
erates an evolution family (U(t, s))t≥s≥0 having an exponential dichotomy
(see Definition 4.1 below), since in this case we can choose an initial vector
from which emanates a bounded solution. We can also prove the conditional
stability of periodic solutions in this case. Our main results are contained in
Theorems 2.3 and 3.1. The applications of our abstract results to semilinear
equations with exponentially dichotomic linear parts are given in Section 4.
Moreover, in that section, we also prove the existence of a local stable man-
ifold around the periodic solution.

We now recall some notions for function spaces and refer to Massera
and Schäffer [6], Räbiger and Schnaubelt [18], and Nguyen [11] for concrete
applications.

Denote by B the Borel algebra and by λ the Lebesgue measure on R+.
The space L1, loc(R+) of real-valued locally integrable functions on R+ (mod-
ulo λ-nullfunctions) becomes a Fréchet space for the seminorms pn(f) :=	
Jn
|f(t)| dt, where Jn = [n, n+ 1] for each n ∈ N (see [6, Chapt. 2, §20]).

We can now define Banach function spaces as follows.

Definition 1.1. A vector space E of real-valued Borel-measurable func-
tions on R+ (modulo λ-nullfunctions) is called a Banach function space (over
(R+,B, λ)) if

(1) E is a Banach lattice with respect to a norm ‖ · ‖E , i.e., (E, ‖ · ‖E) is
a Banach space, and if ϕ ∈ E and ψ is a real-valued Borel-measur-
able function such that |ψ(·)| ≤ |ϕ(·)|, λ-a.e., then ψ ∈ E and
‖ψ‖E ≤ ‖ϕ‖E ,

(2) the characteristic functions χA belong to E for all A ∈ B of finite
measure, and supt≥0 ‖χ[t,t+1]‖E <∞ and inft≥0 ‖χ[t,t+1]‖E > 0,

(3) E ↪→ L1, loc(R+), i.e., for each seminorm pn of L1, loc(R+) there exists
a number βpn > 0 such that pn(f) ≤ βpn‖f‖E for all f ∈ E.

Let now E be a Banach function space and X a Banach space. We set

E := E(R+, X) := {f : R+ → X : f is strongly measurable and ‖f(·)‖ ∈ E}
(modulo λ-nullfunctions) endowed with the norm

‖f‖E :=
∥∥‖f(·)‖

∥∥
E
.

Then E is a Banach space called the Banach space corresponding to the
Banach function space E.

Definition 1.2. A Banach function space E is called admissible if

(i) there is a constant C ≥ 1 such that for every compact interval
[a, b] ⊂ R+ we have
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(1.3)

b�

a

|ϕ(t)| dt ≤ C(b− a)

‖χ[a,b]‖E
‖ϕ‖E for all ϕ ∈ E,

(ii) for ϕ ∈ E the function Λ1ϕ defined by Λ1ϕ(t) :=
	t+1
t ϕ(τ) dτ be-

longs to E,
(iii) E is T+

τ -invariant and T−τ -invariant, where

(1.4)
T+
τ ϕ(t) :=

{
ϕ(t− τ) for t ≥ τ ≥ 0,

0 for 0 ≤ t ≤ τ ,

T−τ ϕ(t) := ϕ(t+ τ) for t ≥ 0.

Moreover, there are constants N1 and N2 such that ‖T+
τ ‖ ≤ N1

and ‖T−τ ‖ ≤ N2 for all τ ∈ R+.

Example 1.3. Besides the spaces Lp(R+), 1 ≤ p ≤ ∞, and the space

(1.5) M = M(R+) :=
{
f ∈ L1, loc(R+) : sup

t≥0

t+1�

t

|f(τ)| dτ <∞
}

endowed with the norm ‖f‖M := supt≥0
	t+1
t |f(τ)| dτ , many other function

spaces occurring in interpolation theory, e.g. the Lorentz spaces Lp, q, 1 <
p, q <∞, are admissible.

Remark 1.4. It can be easily seen that if E is an admissible Banach
function space, then E ↪→M(R+).

We now collect some properties of admissible Banach function spaces in
the following proposition (see [11, Proposition 2.6]).

Proposition 1.5. Let E be an admissible Banach function space. Then:

(a) Let ϕ ∈ L1, loc(R+) be such that ϕ ≥ 0 and Λ1ϕ ∈ E, where Λ1 is as
in Definition 1.2(ii). For σ > 0 define

Λ′σϕ(t) =

t�

0

e−σ(t−s)ϕ(s) ds, Λ′′σϕ(t) =

∞�

t

e−σ(s−t)ϕ(s) ds.

Then Λ′σϕ and Λ′′σϕ belong to E. In particular, if supt≥0
	t+1
t |ϕ(τ)| dτ

<∞ (this will be satisfied if ϕ ∈ E, see Remark 1.4) then Λ′σϕ and
Λ′′σϕ are bounded. Moreover, denoting by ‖ · ‖∞ the ess sup-norm, we
have

(1.6) ‖Λ′σϕ‖∞ ≤
N1

1− e−σ
‖Λ1T

+
1 ϕ‖∞, ‖Λ′′σϕ‖∞ ≤

N2

1− e−σ
‖Λ1ϕ‖∞.

(b) E contains the exponentially decaying functions ψ(t) = e−αt for t≥0
and any fixed constant α > 0.

(c) E does not contain any exponentially growing function f(t) = ebt for
t ≥ 0 and a constant b > 0.
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Next, in the admissible space M = M(R+) defined in (1.5) we consider
the subset

(1.7) P := {f ∈M : f is 1-periodic}.
Let now ϕ be a positive function belonging to P. Then, for 0 ≤ t ≤ 1,

(Λ1T
+
1 ϕ)(t) =

t+1�

t

(T+
1 ϕ)(τ) dτ =

t+1�

1

(T+
1 ϕ)(τ) dτ =

t+1�

1

ϕ(τ − 1) dτ

=

t+1�

1

ϕ(τ) dτ ≤
t+1�

t

ϕ(τ) dτ = (Λ1ϕ)(t),

while for t > 1,

(Λ1T
+
1 ϕ)(t) =

t+1�

t

(T+
1 ϕ)(τ) dτ =

t+1�

t

ϕ(τ − 1) dτ =

t+1�

t

ϕ(τ) dτ = (Λ1ϕ)(t).

Hence, (Λ1T
+
1 ϕ)(t) ≤ (Λ1ϕ)(t) for all t ∈ R+. Therefore, from (1.6) we get

(1.8) ‖Λ′σϕ‖∞ ≤
N1

1− e−σ
‖ϕ‖M and ‖Λ′′σϕ‖∞ ≤

N2

1− e−σ
‖ϕ‖M

for all positive ϕ ∈ P.

We now recall the cone inequality theorem which will be used to prove
the conditional stability of solutions. Firstly, we introduce the following
notion. A closed subset K of a Banach space W is called a cone if it has the
following properties:

(i) x0 ∈ K implies λx0 ∈ K for all λ ≥ 0,
(ii) x1, x2 ∈ K implies x1 + x2 ∈ K,

(iii) ±x0 ∈ K implies x0 = 0.

Suppose K is a cone in a Banach space W . For x, y ∈W we will write x ≤ y
if y − x ∈ K. If K is invariant under a linear operator A, then it is easy to
see that A preserves the inequality, i.e., x ≤ y implies Ax ≤ Ay.

The following cone inequality theorem is taken from [2, Theorem I.9.3].

Theorem 1.6 (Cone inequality). Let K be a cone in a Banach space W
such that K is invariant under a bounded linear operator A ∈ L(W ) having
spectral radius r < 1. If a vector x ∈W satisfies the inequality

x ≤ Ax+ z for some given z ∈W,
then also x ≤ y, where y ∈W is the solution of the equation y = Ay + z.

We then introduce the notion of local ϕ-Lipschitz functions.

Definition 1.7 (Local ϕ-Lipschitz functions). Let E be an admissible
Banach function space, ϕ be a positive function belonging to E, and Bρ be
the ball with radius ρ in X, i.e., Bρ := {x ∈ X : ‖x‖ ≤ ρ}. A function
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g : [0,∞)×Bρ → X is said to belong to the class (L,ϕ, ρ) for some positive
constants L, ρ if:

(i) ‖g(t, x)‖ ≤ Lϕ(t) for a.e. t ∈ R+ and x ∈ Bρ,
(ii) ‖g(t, x1) − g(t, x2)‖ ≤ ϕ(t)‖x1 − x2‖ for a.e. t ∈ R+ and all x1, x2
∈ Bρ.

Remark 1.8. If g(t, 0) = 0 then condition (ii) above already implies
that g belongs to the class (ρ, ϕ, ρ).

We also need the following space of bounded and continuous functions:

(1.9) Cb(R+, X) :=
{
v : R+ → X : v is continuous and sup

t∈R+

‖v(t)‖ <∞
}

endowed with the norm ‖v‖Cb := supt∈R+
‖v(t)‖.

2. Bounded and periodic solutions to linear evolution equations.
Given a function f taking values in a Banach space X having a separable
predual Y (i.e., X = Y ′ for a separable Banach space Y ) we consider the
following nonhomogeneous linear problem for the unknown function u(t):

(2.1)


du

dt
= A(t)u(t) + f(t) for t > 0,

u(0) = u0 ∈ X,
where the family (A(t))t≥0 of partial differential operators is given such that
the homogeneous Cauchy problem

(2.2)


du

dt
= A(t)u(t) for t > s ≥ 0,

u(s) = us ∈ X
is well-posed. By this we understand that there exists an evolution family
(U(t, s))t≥s≥0 such that the solution of the Cauchy problem (2.2) is given
by u(t) = U(t, s)u(s). For more details on the notion of evolution families,
conditions for the existence of such families and applications to partial dif-
ferential equations we refer the readers to Pazy [15] (see also Nagel and
Nickel [10] for a detailed discussion of well-posedness for nonautonomous
abstract Cauchy problems on the whole line R). We next give the precise
concept of an evolution family.

Definition 2.1. A family (U(t, s))t≥s≥0 of bounded linear operators on
a Banach space X is a (strongly continuous, exponentially bounded) evolution
family if:

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0,
(ii) the map (t, s) 7→ U(t, s)x is continuous for every x ∈ X, where

(t, s) ∈ {(t, s) ∈ R2 : t ≥ s ≥ 0},
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(iii) there are constants K,α ≥ 0 such that ‖U(t, s)x‖ ≤ Keα(t−s)‖x‖
for all t ≥ s ≥ 0 and x ∈ X.

The existence of an evolution family (U(t, s))t≥s≥0 allows us to define a
notion of mild solutions as follows. By a mild solution to (2.1) we mean a
function u satisfying the integral equation

(2.3) u(t) = U(t, 0)u0 +

t�

0

U(t, τ)f(τ) dτ for all t ≥ 0.

We refer the reader to Pazy [15] for a more detailed treatment of the relations
between classical and mild solutions of evolution equations of the form (2.1).

We now state an assumption that will be used in the rest of the paper.

Assumption 2.2. We assume that A(t) is 1-periodic, i.e., A(t+1) = A(t)
for all t ∈ R+. Then (U(t, s))t≥s≥0 becomes 1-periodic in the sense that

(2.4) U(t+ 1, s+ 1) = U(t, s) for all t ≥ s ≥ 0.

We also assume that the space Y considered as a subspace of Y ′′ (through
the canonical embedding) is invariant under the operator U ′(1, 0) dual to
U(1, 0).

We now state a Massera type theorem for the existence of a periodic
solution.

Theorem 2.3. Let X be a Banach space with a separable predual Y .
Assume that f ∈ M and there exists u0 ∈ X such that a mild solution u
of (2.1) with u(0) = u0 (i.e., u(t) = U(t, 0)u0 +

	t
0 U(t, s)f(s) ds for t ≥ 0)

satisfies u ∈ Cb(R+, X) and

(2.5) ‖u‖Cb ≤Mu‖f‖M
for some Mu. Then, under Assumption 2.2, if f is 1-periodic, then equation
(2.1) has a 1-periodic mild solution û satisfying

(2.6) ‖û‖Cb ≤ (Mu + 1)Keα‖f‖M.

Furthermore, if the evolution family U(t, s)t≥s≥0 satisfies

(2.7)
lim
t→∞
‖U(t, 0)x‖ = 0 for x ∈ X such that U(t, 0)x is bounded in R+,

then the 1-periodic mild solution of (2.1) is unique.

Proof. The existence of a 1-periodic solution is clearly equivalent to the
existence of an x̂ ∈ X such that x̂ = U(1, 0)x̂ +

	1
0 U(1, s)f(s) ds. To prove

the existence of such an x̂ we consider the function u(t) = U(t, 0)u0 +	t
0 U(t, s)f(s) ds, which belongs to Cb(R+, X) by hypothesis. For a 1-periodic
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function f and (U(t, s))t≥s≥0 satisfying (2.4), it can be easily seen by induc-
tion that

(2.8) u(k + 1) = U(1, 0)u(k) +

1�

0

U(1, s)f(s) ds for all k ∈ N.

Next, for each n ∈ N we define the Cesàro sum xn by

(2.9) xn :=
1

n

n∑
k=1

u(k).

Then, the inequality (2.5) implies

(2.10) sup
k∈N
‖u(k)‖ ≤Mu‖f‖M.

Hence, {xn}n∈N is also bounded in X, and by (2.10) we have

(2.11) sup
n∈N
‖xn‖ ≤Mu‖f‖M.

Since the space X = Y ′ and Y is separable, by Banach–Alaoglu’s Theorem
there exists a subsequence {xnk} of {xn} such that

(2.12) {xnk}
weak∗−−−−→ x̂ with ‖x̂‖ ≤Mu‖f‖M.

A straightforward calculation using (2.9) yields

U(1, 0)xn +

1�

0

U(1, s)f(s) ds− xn =
1

n

(
u(n+ 1)− u(1)

)
.

Since the sequence {u(n)}n∈N is bounded in X, we deduce that

lim
n→∞

(
U(1, 0)xn +

1�

0

U(1, s)f(s) ds− xn
)

= lim
n→∞

1

n

(
u(n+ 1)− u(1)

)
= 0

strongly in X. This implies that for the subsequence {xnk} from (2.12) we
have

(2.13) U(1, 0)xnk +

1�

0

U(1, s)f(s) ds− xnk
weak∗−−−−→ 0.

Combining (2.12) and (2.13) we obtain

(2.14) U(1, 0)xnk +

1�

0

U(1, s)f(s) ds
weak∗−−−−→ x̂ ∈ X.

We will prove that

U(1, 0)x̂+

1�

0

U(1, s)f(s) ds = x̂.
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To do so, denoting by 〈·, ·〉 the duality between Y and Y ′ and using the fact
that U ′(1, 0) leaves Y invariant (see Assumption 2.2), for all h ∈ Y we have〈

U(1, 0)xnk +

1�

0

U(1, s)f(s) ds, h
〉

= 〈U(1, 0)xnk , h〉+
〈 1�

0

U(1, s)f(s) ds, h
〉

= 〈xnk , U
′(1, 0)h〉+

〈 1�

0

U(1, s)f(s) ds, h
〉

nk→∞−−−−→ 〈x̂, U ′(1, 0)h〉+
〈 1�

0

U(1, s)f(s) ds, h
〉

= 〈U(1, 0)x̂, h〉+
〈 1�

0

U(1, s)f(s) ds, h
〉

=
〈
U(1, 0)x̂+

1�

0

U(1, s)f(s) ds, h
〉
.

This yields

(2.15) U(1, 0)xnk +

1�

0

U(1, s)f(s) ds
weak∗−−−−→ U(1, 0)x̂+

1�

0

U(1, s)f(s) ds ∈ X.

It now follows from (2.14) and (2.15) that

(2.16) U(1, 0)x̂+

1�

0

U(1, s)f(s) ds = x̂.

The solution û ∈ Cb(R+, X) of (2.3) with û(0) = x̂ is clearly 1-periodic.
Therefore, û(t) is a 1-periodic mild solution to (2.1).

The inequality (2.6) now follows from (2.5) and (2.12).

We now prove that if (U(t, s))t≥s≥0 satisfies (2.7), then the periodic mild
solution is unique. Indeed, let û1, û2 be two 1-periodic mild solutions to (2.1).
Then, setting v = û1 − û2, we see that v is 1-periodic and, by (2.3),

(2.17) v(t) = U(t, 0)(û1(0)− û2(0)) for t ≥ 0.

Since v(·) is bounded on R+, (2.7) implies that

(2.18) lim
t→∞
‖v(t)‖ = 0.

This fact, together with the periodicity of v, shows that v(t) = 0 for all
t ≥ 0, so û1 = û2.
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3. Bounded and periodic solutions to semilinear problems. For
a Banach space X with a separable predual Y as in the previous section, we
now consider the semilinear evolution equation

(3.1)


du

dt
= A(t)u(t) + g(t, u(t)),

u(0) = u0 ∈ X,

where the linear operators A(t), t ≥ 0, act on X and satisfy the hypotheses
of Theorem 2.3, and the nonlinear term g : [0,∞)×X → X satisfies:

(1) g belongs to the class (L,ϕ, ρ) for some L, ρ > 0 and 0 < ϕ ∈ P,

(2) g(t, x) is 1-periodic with respect to t for each fixed x ∈ X.
(3.2)

Furthermore, by a mild solution to (3.1) we mean a function u satisfying

(3.3) u(t) = U(t, 0)u0 +

t�

0

U(t, τ)g(τ, u(τ)) dτ for all t ≥ 0.

We then come to our next result on the existence and uniqueness of a peri-
odic mild solution to (3.1).

Theorem 3.1. Assume that there exists a constant M such that for each
f ∈M there is a mild solution u of (2.1) satisfying u ∈ Cb(R+, X) and

‖u‖Cb ≤M‖f‖M,

and that the evolution family U(t, s)t≥s≥0 satisfies

lim
t→∞
‖U(t, 0)x‖ = 0 for x ∈ X such that U(t, 0)x is bounded in R+.

Let g satisfy (3.2). Then, if γ := ‖ϕ‖M is small enough, equation (3.1) has
a unique 1-periodic mild solution û in Cb(R+, X).

Proof. Consider the closed set B1ρ ⊂ Cb(R+, X) defined by

(3.4) B1ρ := {v ∈ Cb(R+, X) : v is 1-periodic and ‖v‖Cb ≤ ρ}.

We then define a transformation Φ as follows: Consider the equation

(3.5) u(t) = U(t, 0)u(0) +

t�

0

U(t, τ)g(τ, v(τ)) dτ for t ≥ 0.

Then for v ∈ B1ρ we set Φ(v) := u where u ∈ Cb(R+, X) is the unique 1-
periodic solution to (3.5) (guaranteed by Theorem 2.3). We will prove that
if γ is small enough, then Φ acts from B1ρ into itself and is a contraction. To

do so, fixing any v ∈ B1ρ, since g belongs to the class (L,ϕ, ρ) with ϕ ∈ P
we have



Periodic solutions, conditional stability, and admissibility 183

‖g(·, v(·))‖M = sup
t≥0

t+1�

t

‖g(τ, v(τ))‖ dτ(3.6)

≤ L sup
t≥0

t+1�

t

‖ϕ(τ)‖ dτ ≤ L‖ϕ‖M := Lγ.

Applying Theorem 2.3 for the right-hand side g(·, v(·)) instead of f(·) we
deduce that for v ∈ B1ρ there exists a unique 1-periodic solution u to (3.5)
satisfying

(3.7) ‖u‖Cb ≤ (M + 1)Keα‖g(·, v(·))‖M ≤ (M + 1)KLγeα.

Therefore, if γ is small enough, then Φ acts from B1ρ into itself.
Now, by (3.5) we have

(3.8) Φ(v)(t) = U(t, 0)u(0) +

t�

0

U(t, τ)g(τ, v(τ)) dτ for Φ(v) = u.

Furthermore, for v1, v2 ∈ B1ρ and u1 = Φ(v1) and u2 = Φ(v2), by the repre-
sentation (3.8) we find that u = Φ(v1)−Φ(v2) is the unique 1-periodic mild
solution to

u(t) = U(t, 0)u(0) +

t�

0

U(t, τ)
(
g(τ, v1(τ))− g(τ, v2(τ))

)
dτ for all t ≥ 0.

Thus, from Theorem 2.3 and the fact that g belongs to the class (L,ϕ, ρ)
we get

‖Φ(v1)− Φ(v2)‖Cb ≤ (M + 1)Keα sup
t≥0

t+1�

t

‖g(τ, v1(τ))− g(τ, v2(τ))‖ dτ(3.9)

≤ (M + 1)Keα sup
t≥0

t+1�

t

‖ϕ(τ)‖ dτ ‖v1 − v2‖Cb

≤ (M + 1)Keα‖ϕ‖M‖v1 − v2‖Cb
= (M + 1)Kγeα‖v1 − v2‖Cb .

We thus conclude that if γ := ‖ϕ‖M is small enough, then Φ : B1ρ → B1ρ is a
contraction. Therefore, for this value of γ there exists a unique fixed point
û of Φ in B1ρ, and by definition of Φ, û is the unique 1-periodic mild solution
to (3.1).

4. Periodic solutions in the case of dichotomic evolution
families

4.1. Existence, uniqueness and conditional stability. In this sub-
section, we will consider equations (2.3) and (3.3) in the case that the evolu-
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tion family (U(t, s))t≥s≥0 has an exponential dichotomy. This assumption is
convenient to prove the existence of bounded solutions to (2.3) (i.e., bounded
mild solutions to (2.1)). Therefore, the existence and uniqueness of periodic
solutions to (2.3) and hence to (3.3) easily follow. Moreover, using the cone
inequality (Theorem 1.6), we will show the conditional stability of such pe-
riodic solutions.

We start with the definitions of exponential dichotomy and stability of
an evolution family.

Definition 4.1. Let U := (U(t, s))t≥s≥0 be an evolution family on a
Banach space X.

(1) U is said to have an exponential dichotomy on [0,∞) if there ex-
ist bounded linear projections P (t), t ≥ 0, on X and positive con-
stants N , ν such that

(a) U(t, s)P (s) = P (t)U(t, s), t ≥ s ≥ 0,
(b) the restriction U(t, s)| : KerP (s) → KerP (t), t ≥ s ≥ 0, is an

isomorphism, with inverse U(s, t)| := (U(t, s)|)
−1, 0 ≤ s ≤ t,

(c) ‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ P (s)X, t ≥ s ≥ 0,
(d) ‖U(s, t)|x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ KerP (t), t ≥ s ≥ 0.

The projections P (t), t ≥ 0, are called the dichotomy projections,
and the constants N, ν the dichotomy constants.

(2) U is called exponentially stable if it has an exponential dichotomy
with the dichotomy projections P (t) = Id for all t ≥ 0. In other
words, U is exponentially stable if there exist positive constants N
and ν such that

(4.1) ‖U(t, s)‖ ≤ Ne−ν(t−s) for all t ≥ s ≥ 0.

We remark that properties (a)–(d) of the dichotomy projections P (t)
already imply that

(1) H := supt≥0 ‖P (t)‖ <∞,
(2) t 7→ P (t) is strongly continuous

(see [7, Lemma 4.2]). We refer the reader to [11] for characterizations of
exponential dichotomies of evolution families in general admissible spaces.

If (U(t, s))t≥s≥0 has an exponential dichotomy with dichotomy projec-
tions (P (t))t≥0 and constants N, ν > 0, then we can define the Green func-
tion on a half-line as follows:

(4.2) G(t, τ) :=

{
P (t)U(t, τ) for t > τ ≥ 0,

−U(t, τ)|(I − P (τ)) for 0 ≤ t < τ .

Then

(4.3) ‖G(t, τ)‖ ≤ (1 +H)Ne−ν|t−τ | for t 6= τ ≥ 0.



Periodic solutions, conditional stability, and admissibility 185

The following lemma gives the form of bounded solutions of (2.3), (3.3).

Lemma 4.2. Let the evolution family (U(t, s))t≥s≥0 have an exponential
dichotomy with dichotomy projections (P (t))t≥0 and dichotomy constants
N, ν > 0. Let f ∈M and let g satisfy (3.2). Then:

(a) Equation (2.3) has bounded solutions in Cb(R+, X). Every bounded
solution v of (2.3) can be written in the form

(4.4) v(t) = U(t, 0)ζ0 +

∞�

0

G(t, τ)f(τ) dτ, t ≥ 0,

for some ζ0 ∈ X0 := P (0)X where G(t, τ) is defined by (4.2).
(b) Let u ∈ Cb(R+, X) be a solution to (3.3) such that supt≥0 ‖u(t)‖ ≤ ρ

for a fixed ρ > 0. Then, for t ≥ 0,

(4.5) u(t) = U(t, 0)v0 +

∞�

0

G(t, τ)g(τ, u(τ)) dτ for some v0 ∈ X0,

where G and X0 are as in (a).

Proof. (a) Set y(t) :=
	∞
0 G(t, τ)f(τ) dτ for t ≥ 0. Since f ∈ M, using

(4.3) and (1.6) we obtain

‖y(t)‖ ≤ (1 +H)N

∞�

0

e−ν|t−τ |‖f(τ)‖ dτ

≤ N(1 +H)(N1‖Λ1T
+
1 f‖∞ +N2‖Λ1f‖∞)

1− e−ν
for all t ≥ 0.

Moreover, it is straightforward that

y(t) = U(t, 0)y(0) +

t�

0

U(t, τ)f(τ) dτ for t ≥ 0.

Since v(t) is a solution of (2.3), we obtain

v(t)− y(t) = U(t, 0)(v(0)− y(0)) for t ≥ 0.

Let now ζ0 = v(0)−y(0). The boundedness of v(·) and y(·) on [0,∞) implies
that ζ0 ∈ X0. Finally, since v(t) = U(t, 0)ζ0 + y(t) for t ≥ 0, the equality
(4.4) follows.

(b) Similarly to (a) we set y(t) :=
	∞
0 G(t, τ)g(τ, u(τ)) dτ for t ≥ 0. Since

g satisfies the conditions in (3.2), using estimates (4.3) and (1.8) we obtain

‖y(t)‖ ≤ (1 +H)N

∞�

0

e−ν|t−τ |‖g(τ, u(τ))‖ dτ ≤ (1 +H)NL

∞�

0

e−ν|t−τ |ϕ(τ) dτ

≤ (1 +H)NL(N1 +N2)

1− e−ν
‖ϕ‖M for t ≥ 0.
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Also, it is straightforward that

y(t) = U(t, 0)y(0) +

t�

0

U(t, τ)g(τ, u(τ)) dτ for t ≥ 0.

Since u(t) is a solution of (3.3) we obtain u(t)− y(t) = U(t, 0)(u(0)− y(0))
for t ≥ 0. Let now v0 = u(0)−y(0). The boundedness of u(·) and y(·) on R+

implies that v0 ∈ X0. Finally, the relation u(t) = U(t, 0)v0 + y(t) for t ≥ 0
yields (4.5).

Remark 4.3. By straightforward computations we can prove that the
converses of (a) and (b) are also true, i.e., a solution of (4.4) satisfies (2.3)
for t ≥ 0, and that of (4.5) satisfies (3.3) for t ≥ 0.

We next prove the existence of bounded solutions to (2.3) and (3.3) (i.e.,
bounded mild solutions to (2.1) and (3.1)) and hence of periodic solutions.

Theorem 4.4. Consider equations (2.3) and (3.3). Let the evolution
family (U(t, s))t≥s≥0 satisfy (2.4) and have an exponential dichotomy with
dichotomy projections P (t), t ≥ 0, and constants N, ν. Let f ∈ P and
suppose that g satisfies (3.2) with positive constants ρ, L and a function
ϕ ∈ P. Then:

(a) Equation (2.3) has a unique 1-periodic solution in Cb(R+, X).
(b) If ‖ϕ‖M is sufficiently small, then (3.3) has a unique 1-periodic

solution in Cb(R+, X).

Proof. (a) For a given f ∈ P, taking ζ0 = 0 ∈ X0 in (4.4) we see that
(2.3) has a bounded solution

(4.6) u(t) =

∞�

0

G(t, τ)f(τ) dτ,

and by (4.3) and (1.8),

‖u‖Cb ≤ (1 +H)N

∞�

0

e−ν|t−τ |‖f(τ)‖ dτ

≤ (1 +H)N(N1 +N2)

1− e−ν
‖f‖M for all t ≥ 0.

Applying Theorem 2.3 we see that for the 1-periodic function f ∈ P there
exists a 1-periodic solution û of (2.3) satisfying

(4.7) ‖û‖Cb ≤
(

(1 +H)N(N1 +N2)

1− e−ν
+ 1

)
Keα‖f‖M.

The uniqueness of the 1-periodic solution follows from the fact that for two
1-periodic and continuous (hence bounded onR+) solutions û and v̂we deduce
from (4.4) that ‖û(t)− v̂(t)‖ = ‖U(t, 0)(u0 − v0)‖ ≤ Ne−νt‖u0 − v0‖ → 0 as
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t→∞ since u0, v0 ∈ X0. This, together with periodicity, implies û(t) = v̂(t)
for all t ≥ 0, finishing the proof of (a).

(b) By (a), for each 1-periodic f , the linear problem (2.3) has a unique
1-periodic solution û ∈ Cb(R+, X) satisfying (4.7). Therefore, (b) follows
from Theorem 3.1.

We now prove the conditional stability of periodic solutions to (3.3).

Theorem 4.5. Let the assumptions of Theorem 4.4 hold, and let û be
the 1-periodic solution of (3.3) obtained in Theorem 4.4(b). Denote by Br(x)
(resp. Br(v)) the ball in X (resp. in Cb(R+, X)) centered at x (resp. at v)
with radius r. Let Bρ(0) be the ball containing û as in Theorem 4.4(b).
Suppose further that there exists a positive ϕ1 ∈ P such that

‖g(t, v1(t))− g(t, v2(t))‖ ≤ ϕ1(t)‖v1 − v2‖ for all v1, v2 ∈ B2ρ(0).

Then, if ‖ϕ1‖M is small enough, to each v0 ∈ Bρ/(2N)(P (0)û(0)) ∩ P (0)X
there corresponds a unique solution u(t) of (3.3) on R+ with P (0)u(0) = v0
and u ∈ Bρ(û). Moreover,

(4.8) ‖u(t)− û(t)‖ ≤ Cµe−µt‖P (0)u(0)− P (0)û(0)‖ for t ≥ 0,

for some positive constants Cµ and µ independent of u and û.

Proof. For v0 ∈ Bρ/(2N)(P (0)û(0))∩P (0)X we will prove that the trans-
formation F defined by

(Fw)(t) = U(t, 0)v0 +

∞�

0

G(t, τ)(g(τ, w(τ)) dτ for t ≥ 0

acts from Bρ(û) into itself and is a contraction. In fact, for w(·) ∈ Bρ(û),

(4.9) ‖w‖Cb ≤ ‖w − û‖Cb + ‖û‖Cb ≤ 2ρ

and ‖g(t, w)− g(t, û)‖ ≤ ϕ1(t)‖w − û‖Cb ≤ ρϕ1(t). Therefore, setting

y(t) := (Fw)(t) = U(t, 0)v0 +

∞�

0

G(t, τ)(g(τ, w(τ)) dτ for t ≥ 0

we obtain

‖y(t)− û(t)‖ ≤ Ne−νt‖v0 − P (0)û(0)‖

+ (1 +H)N

∞�

0

e−ν|t−τ |‖g(τ, w)− g(τ, û)‖ dτ

≤ Ne−νt‖v0 − P (0)û(0)‖+ (1 +H)N

∞�

0

e−ν|t−τ |ρϕ1(τ) dτ

≤ N‖v0 − P (0)û(0)‖+
(1 +H)Nρ(N1 +N2)‖ϕ1‖M

1− e−ν
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for all t ≥ 0. Hence,

‖Fw − û‖Cb ≤ N‖v0 − P (0)û(0)‖+
(1 +H)Nρ(N1 +N2)‖ϕ1‖M

1− e−ν
.

Using now the fact that ‖v0−P (0)û(0)‖ ≤ ρ/(2N) we find that if ‖ϕ1‖M is
small enough, then F acts from Bρ(û) into Bρ(û).

Now, for x, z ∈ Bρ(û) (thus, as in (4.9), ‖x‖Cb , ‖z‖Cb ≤ 2ρ) we estimate

‖(Fx)(t)− (Fz)(t)‖ ≤
∞�

0

‖G(t, τ)‖ ‖g(τ, x)− g(τ, z))‖ dτ

≤ (1 +H)N

∞�

0

e−ν|t−τ |‖g(τ, x)− g(τ, z)‖ dτ

≤ (1 +H)N(N1 +N2)‖ϕ1‖M
1− e−ν

‖x− z‖Cb for all t ≥ 0.

Therefore,

‖Fx− Fz‖Cb ≤
(1 +H)N(N1 +N2)‖ϕ1‖M

1− e−ν
‖x− z‖Cb .

Since (1+H)N(N1+N2)‖ϕ1‖M
1−e−ν < 1 we deduce that F : Bρ(û) → Bρ(û) is a

contraction. Thus, there exists a unique u ∈ Bρ(û) such that Fu = u. By
definition of F we see that u is the unique solution in Bρ(û) of (4.5) for
t ≥ 0. By Lemma 4.2 and Remark 4.3, u is the unique solution of (3.3) in
Bρ(û).

Finally, we prove (4.8). To do so, since both û and u are bounded on R+,
we can use (4.5) to write

u(t)− û(t) = U(t, 0)(P (0)u(0)− P (0)û(0))

+

∞�

0

G(t, τ)
(
g(τ, u(τ))− g(τ, û(τ))

)
dτ.

Therefore,

‖u(t)− û(t)‖ ≤ Ne−νt‖P (0)u(0)− P (0)û(0)‖

+ (1 +H)N

∞�

0

e−ν|t−τ |‖g(τ, u(τ))− g(τ, û(τ))‖ dτ

≤ Ne−νt‖P (0)u(0)− P (0)û(0)‖

+ (1 +H)N

∞�

0

e−ν|t−τ |ϕ1(τ)‖u(τ)− û(τ)‖ dτ for t ≥ 0.
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Set φ(t) = ‖u(t)− û(t)‖. Then ess supt≥0 φ(t) <∞ and

φ(t) ≤ Ne−νt‖P (0)u(0)− P (0)û(0)‖(4.10)

+ (1 +H)N

∞�

0

e−ν|t−τ |ϕ1(τ)φ(τ) dτ for t ≥ 0.

We will apply the cone inequality (Theorem 1.6) to the Banach space
W := Cb(R+,R) with K being the set of all nonnegative functions. We then
consider the linear operator B defined for u ∈W by

(Bu)(t) = (1 +H)N

∞�

0

e−ν|t−τ |ϕ1(τ)u(τ) dτ for t ≥ 0.

By (1.8) we have

sup
t≥0

(Bu)(t) = sup
t≥0

(1 +H)N

∞�

0

e−ν|t−τ |ϕ1(τ)u(τ) dτ

≤ (1 +H)N

1− e−ν
(N1 +N2)‖ϕ1‖M‖u‖∞.

Therefore, B ∈ L(W ) and ‖B‖ ≤ (1+H)N
1−e−ν (N1 + N2)‖ϕ1‖M < 1. Obviously,

B leaves the cone K invariant. Now (4.10) can be rewritten as

φ ≤ Bφ+ z for z(t) = Ne−νt‖P (0)u(0)− P (0)û(0)‖, t ≥ 0.

Hence, by Theorem 1.6 we obtain φ ≤ ψ, where ψ is a solution in W of the
equation ψ = Bψ + z which can be rewritten as

ψ(t) = Ne−νt‖P (0)u(0)− P (0)û(0)‖(4.11)

+ (1 +H)N

∞�

0

e−ν|t−τ |ϕ1(τ)ψ(τ) dτ for t ≥ 0.

We now estimate ψ. To that end, for

0 < µ < ν + ln
(
1− (1 +H)N(N1 +N2)‖ϕ1‖M

)
we set w(t) = eµtψ(t) for t ≥ 0. Then, by (4.11) we obtain

w(t) = Ne−(ν−µ)t‖P (0)u(0)− P (0)û(0)‖(4.12)

+ (1 +H)N

∞�

0

e−ν|t−τ |+µ(t−τ)ϕ1(τ)w(τ) dτ for t ≥ 0.

We next consider the linear operator D defined for u ∈W by

(Du)(t) = (1 +H)N

∞�

0

e−ν|t−τ |+µ(t−τ)ϕ1(τ)u(τ) dτ for t ≥ 0.
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By (1.8) we have

sup
t≥0

(Du)(t) = sup
t≥0

(1 +H)N

∞�

0

e−ν|t−τ |+µ(t−τ)ϕ1(τ)u(τ) dτ

≤ sup
t≥0

(1 +H)N

∞�

0

e−(ν−µ)|t−τ |ϕ1(τ)u(τ) dτ

≤ (1 +H)N

1− e−(ν−µ)
(N1 +N2)‖ϕ1‖M‖u‖∞.

Therefore, D ∈ L(W ) and ‖D‖ ≤ (1+H)N

1−e−(ν−µ) (N1 +N2)‖ϕ1‖M.

Equation (4.12) can now be rewritten as

w = Dw + z for z(t) = Ne−(ν−µ)t‖P (0)u(0)− P (0)û(0)‖, t ≥ 0.

Since µ < ν + ln(1− (1 +H)N(N1 +N2)‖ϕ1‖M), we obtain

‖D‖ ≤ (1 +H)N

1− e−(ν−µ)
(N1 +N2)‖ϕ1‖M < 1.

Therefore, the equation w = Dw + z is uniquely solvable in W , and its
solution is w = (I −D)−1z. Hence,

‖w‖∞ = ‖(I −D)−1z‖∞ ≤ ‖(I −D)−1‖ ‖z‖∞ ≤
‖z‖∞

1− ‖D‖

≤ N

1− (1+H)N

1−e−(ν−µ) (N1 +N2)‖ϕ1‖M
‖P (0)u(0)− P (0)û(0)‖.

Therefore,

‖w‖∞≤ Cµ‖P (0)u(0)−P (0)û(0)‖ for Cµ :=
N

1− (1+H)N

1−e−(ν−µ) (N1 +N2)‖ϕ1‖M
.

This yields

w(t) ≤ Cµ‖P (0)u(0)− P (0)û(0)‖ for t ≥ 0.

Hence, ψ(t) = e−µtw(t) ≤ Cµe−µt‖P (0)u(0)−P (0)û(0)‖. Since ‖u(t)− û(t)‖
= φ(t) ≤ ψ(t), we obtain

‖u(t)− û(t)‖ ≤ Cµe−µt‖P (0)u(0)− P (0)û(0)‖,
finishing the proof of Theorem 4.5.

Remark 4.6. The assertion of the above theorem gives the conditional
stability of the periodic solution û in the sense that for any other solution
u such that P (0)u(0) ∈ Bρ/(2N)(P (0)û(0)) ∩ P (0)X and u being in a small
ball Bρ(û) we have ‖u(t)− û(t)‖ → 0 exponentially as t→∞ (see (4.8)).

For an exponentially stable evolution family (see Definition 4.1(2)) we
have the following direct consequence of Theorem 4.5.
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Corollary 4.7. Let the assumptions of Theorem 4.4 hold, and let û
be the periodic solution of (3.3) obtained in Theorem 4.4(b). Let further
the evolution family (U(t, s))t≥s≥0 be exponentially stable. Then the periodic
solution û is exponentially stable in the sense that for any other solution
u ∈ Cb(R+, X) of (3.3) such that ‖u(0)− û(0)‖ is small enough we have

(4.13) ‖u(t)− û(t)‖ ≤ Ce−µt‖u(0)− û(0)‖ for all t ≥ 0,

for some positive constants C and µ independent of u and û.

Proof. Just apply Theorem 4.5 for P (t) = Id for all t ≥ 0.

4.2. Local stable manifold near the periodic solution. In this
subsection, under the same hypotheses as in §4.1, we will prove the existence
of a local stable manifold for equation (3.3) near its periodic solution. As
previously, we denote by Br(x) the ball in X centered at x with radius r. We
now give the definition of a local stable manifold for (3.3) near its periodic
solution.

Definition 4.8. Let û be a continuous and 1-periodic solution to (3.3).
A set S ⊂ R+×X is said to be a local stable manifold for (3.3) near û if for
every t ∈ R+ the phase space X splits into a direct sum X = X0(t)⊕X1(t)
such that

inf
t∈R+

Sn(X0(t), X1(t)) := inf
t∈R+

inf
i=0,1
{‖x0 + x1‖ : xi ∈ Xi(t), ‖xi‖ = 1} > 0

and if there exist positive constants ρ, ρ0, ρ1 and a family of Lipschitz con-
tinuous mappings

ht : Bρ0(û(t)) ∩X0(t)→ Bρ1(û(t)) ∩X1(t), t ∈ R+,

with the Lipschitz constants being independent of t, such that:

(i) S = {(t, x+ht(x)) ∈ R+× (X0(t)⊕X1(t)) : t ∈ R+, x ∈ Bρ0(û(t))∩
X0(t)}, and we define St := {x+ ht(x) : (t, x+ ht(x)) ∈ S}, t ≥ 0,

(ii) St is homeomorphic to

Bρ0(û(t)) ∩X0(t) := {x ∈ X0(t) : ‖x− û(t)‖ ≤ ρ0}
for all t ≥ 0,

(iii) to each x0 ∈ St0 there corresponds a unique solution u(t) of (3.3)
on [t0,∞) with u(t0) = x0 and ess supt≥t0 ‖u(t)‖ ≤ ρ.

Note that, if we identify X0(t)⊕X1(t) with X0(t)×X1(t), then we can
write St = graph(ht).

We now prove our last result on the existence of a stable manifold for
solutions to (3.3).

Theorem 4.9. Let the assumptions of Theorems 4.4 and 4.5 hold with
positive functions ϕ and ϕ1. Let û be the 1-periodic solution of (3.3) obtained
in Theorem 4.4 thanks to the sufficient smallness of ‖ϕ‖M. Then, if ‖ϕ1‖M
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is sufficiently small, there exists a local stable manifold S near the solution û.
Moreover, every solution u(t) on S is exponentially attracted to û(t) in the
sense that there exist positive constants µ and Cµ, independent of t0 ≥ 0,
such that

(4.14) ‖u(t)− û(t)‖ ≤ Cµe−µ(t−t0)‖P (t0)u(t0)− P (t0)û(t0))‖ for all t ≥ t0.

Proof. We will apply [12, Theorem 3.8]. To this end, let u be a solution
to (3.3) and set w = u− û. Then u satisfies (3.3) if and only if

w(t) = U(t, 0)w(0)(4.15)

+

t�

0

U(t, τ)[g(τ, w(τ) + û(τ))− g(τ, û(τ))] dτ for t ≥ 0.

Setting now F (t, w) = g(t, w + û) − g(t, û), we find that F (t, 0) = 0 and F
belongs to the class (2ρ, ϕ1, 2ρ) since g satisfies the assumption of Theorem
4.5. Therefore, by [12, Theorem 3.8], if ‖ϕ1‖M is small enough, then there
exists a local stable manifold S (near 0) for (4.15). Returning to the solution
u of (3.3), by replacing w with u−û, we see that S is the local stable manifold
for (3.3) near û. Finally, (4.14) follows from (4.8).

We finally illustrate our results by the following example.

4.3. An example. We consider the problem

(4.16)


wt(x, t) = a(t)[wxx(x, t) + δw(x, t)]

+ ψ(t)[|w|k−1w(x, t) + h(x, t)] for 0 < x < π, t ≥ 0,

w(0, t) = w(π, t) = 0, t ≥ 0.

Here, δ ∈ R and δ 6= n2 for all n ∈ N; the function a(·) ∈ L1,loc(R+) is
1-periodic and satisfies 0 < γ0 ≤ a(t) ≤ γ1 for fixed γ0, γ1; the exponent
k > 1 is an integer; the function h : [0, π] × R+ → R is continuous on
[0, π]× R+ and 1-periodic with respect to t.

We next set X := L2[0, π], and let A : X ⊃ D(A) → X be defined by
Ay = y′′ + δy, with the domain

D(A) = {y ∈ X : y and y′ are absolutely continuous,

y′′ ∈ X, y(0) = y(π) = 0}.
It can be seen [3] that A is the generator of an analytic semigroup (T(t))t≥0.
Since σ(A) = {−n2 + δ : n = 1, 2, . . .}, applying the spectral mapping
theorem for analytic semigroups we get

(4.17) σ(T(t)) = etσ(A) = {et(−n2+δ) : n = 1, 2, . . .},
and hence σ(T(t)) ∩ Γ = ∅ for all t > 0,

where Γ := {λ ∈ C : |λ| = 1}.
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Setting now A(t) := a(t)A we see that A(t) is 1-periodic, and the family
(A(t))t≥0 generates a 1-periodic (in the sense of Assumption 2.2) evolution

family U(t, s)t≥s≥0 which is defined by U(t, s) = T(
	t
s a(τ) dτ).

By (4.17) we see that the analytic semigroup (T(t))t≥0 is hyperbolic (or
has an exponential dichotomy) with the projection P satisfying

(1) ‖T(t)x‖ ≤ Ne−βt‖x‖ for x ∈ PX, t ≥ 0,
(2) ‖T(−t)|x‖ = ‖(T(t)|)

−1x‖ ≤ Ne−βt‖x‖ for x ∈ KerP , t ≥ 0, where
the invertible operator T(t)| is the restriction of T (t) to KerP , and
N, β are positive constants.

Using the hyperbolicity of (T(t))t≥0 it is straightforward to check that the
evolution family U(t, s)t≥s≥0 has an exponential dichotomy with the projec-
tion P (t) = P for all t ≥ 0 and the dichotomy constants N and ν := βγ0 by
the following estimates:

‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ PX, t ≥ s ≥ 0,

‖U(s, t)|x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ KerP, t ≥ s ≥ 0.

We then define a function g : R+×X → X by g(t, w) = ψ(t)[|w|k−1w+H(t)]
for w ∈ X and H(t) = h(·, t) being an X-valued function, where the real
function ψ(t) is defined for fixed constants b > 0, c > 1 by

(4.18) ψ(t) =

{
b(t− j) if t ∈

[
j + 1

2 −
1
2c , j + 1

2 + 1
2c

]
for j = 0, 1, 2, . . . ,

0 otherwise.

Equation (4.16) can now be rewritten as

du

dt
= A(t)u(t) + g(t, u(t)) for u(t) = w(·, t).

Since ψ(t) and H(t) = h(·, t) are 1-periodic, it follows that g(t, w) is 1-
periodic with respect to t for each fixed w ∈ X. Moreover, ‖g(t, 0)‖ =
ψ(t)‖H(t)‖ ≤ γψ(t) for γ := supt∈[0,1](

	π
0 |h(x, t)|2 dx)1/2, and we have

‖g(t, v1)− g(t, v2)‖ = ψ(t)
∥∥|v1|k−1v1 − |v2|k−1v2∥∥

= ψ(t)
∥∥|v1|k−1v1 − |v1|k−1v2 + |v1|k−1v2
− |v1|k−2|v2|v2 + · · ·+ |v1| |v2|k−2v2 − |v2|k−1v2

∥∥
≤ ψ(t)

k−1∑
j=0

∥∥|v1 − v2| |v1|j |v2|k−1−j∥∥
≤ ψ(t)k‖v1 − v2‖rk−1 for all v1, v2 ∈ Br(0)

and

‖g(t, v)‖ = ‖g(t, v)− g(t, 0)‖+ ‖g(t, 0)‖ ≤ ψ(t)(krk + γ) for all v ∈ Br(0).
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Setting

L := r +
γ

krk−1
and ϕ(t) := krk−1ψ(t)

we obtain

sup
t≥0

t+1�

t

|ϕ(τ)| dτ ≤ sup
j∈N

j+1/2+1/2c�

j+1/2−1/2c
krk−1b(t− j) dt

≤ sup
j∈N

j+1/2+1/2c�

j+1/2−1/2c
krk−1b dt =

bkrk−1

2c−1
.

Hence, ϕ ∈ M(R+) and ‖ϕ‖M ≤ bkrk−1/2c−1. Therefore, for any fixed
constants b, k and r, the norm ‖ϕ‖M can be made sufficiently small if we
choose c large enough.

Therefore, g satisfies the hypotheses of Theorems 4.4 and 4.5 with ρ = r,
ϕ(t) = kρk−1ψ(t) and ϕ1(t) = k(2ρ)k−1ψ(t). These theorems imply that if
c is large enough (consequently, ‖ϕ‖M and ‖ϕ1‖M are small enough), then
equation (4.16) has one and only one 1-periodic mild solution û ∈ Bρ(0), and
this solution û is conditionally stable in the sense of Remark 4.6. Moreover,
by Theorem 4.9, there exists a local stable manifold for mild solutions to
(4.16) near the periodic solution û.
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