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Global exponential stability of positive periodic solutions for
an epidemic model with saturated treatment

Bingwen Liu (Changde)

Abstract. This paper is concerned with an SIR model with periodic incidence rate
and saturated treatment function. Under proper conditions, we employ a novel argument
to establish a criterion on the global exponential stability of positive periodic solutions
for this model. The result obtained improves and supplements existing ones. We also use
numerical simulations to illustrate our theoretical results.

1. Introduction. In [LBJ], Li et al. proposed the following system of
differential equations:

(1.1)



S′(t) = A− dS(t)− λ(t)S(t)I(t)

1 + kI(t)
,

I ′(t) =
λ(t)S(t)I(t)

1 + kI(t)
− (d + ε+ µ)I(t)− γI(t)

1 + αI(t)
,

R′(t) = µI(t) +
γI(t)

1 + αI(t)
− dR(t),

to describe the dynamics of an SIR model with periodic incidence rate and
saturated treatment function. Here S represents the number of individuals
susceptible to the disease, I represents the number of infected individuals
infectious and able to spread the disease by contacting with the susceptibles,
and R is the number of the infectives removed or recovered. Moreover, the
contact rate λ(t) is a + η term(t) and term(t) = sin(πt/6) is a periodic
function, and a, η and the other parameters are positive. The interpre-
tations and values of parameters are described in of [LBJ, Table 1]. The
detailed biological explanations of the parameters of (1.1) can be found in
[AS, GF, KRG].
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For any x = (x1, . . . , xn) ∈ Rn, we let |x| denote the absolute-value
vector |x| = (|x1|, . . . , |xn|) and define ‖x‖ = maxi∈{1,...,n} |xi|. Also, let R+

be the nonnegative real number space.

The initial conditions associated with (1.1) are as follows:

S(t0) > 0, I(t0) > 0,(1.2)

R(t0) ≥ 0.(1.3)

Because the third equation in (1.1) is independent of the first two, the
authors in [LBJ] established some sufficient conditions for the existence of
positive periodic solutions of the reduced system

(1.4)


S′(t) = A− dS(t)− λ(t)S(t)I(t)

1 + kI(t)
,

I ′(t) =
λ(t)S(t)I(t)

1 + kI(t)
− (d + ε+ µ)I(t)− γI(t)

1 + αI(t)
,

with initial value (1.2). However, it is difficult to obtain the stability of
positive periodic solutions for (1.4), which is formulated as a challenging
problem at the end of [LBJ]. Moreover, it is well known that the global
exponential convergence behavior of solutions plays a key role in character-
izing the behavior of a dynamical system since the exponential convergence
rate can be estimated (see [BBI, L, S, X, YGW, ZYP]). This motivates us
to study the global exponential stability of positive periodic solutions for
SIR model (1.1).

As is well known, many infectious diseases exhibit periodic fluctuations
and there is a saturation phenomenon during the treatment. Therefore, the
coefficients in the differential equations of population and ecology prob-
lems are usually periodic. So we consider the following nonautonomous SIR
model:

(1.5)



S′(t) = A(t)− d(t)S(t)− λ(t)S(t)I(t)

1 + k(t)I(t)
,

I ′(t) =
λ(t)S(t)I(t)

1 + k(t)I(t)
− (d(t) + ε(t) + µ(t))I(t)− γ(t)I(t)

1 + α(t)I(t)
,

R′(t) = µ(t)I(t) +
γ(t)I(t)

1 + α(t)I(t)
− d(t)R(t),

where A,d, k, α, ε, µ, γ : R → (0,∞) and λ : R → R+ are continuous T -
periodic functions with T > 0. Obviously, (1.1) is a special case of (1.5).

For simplicity of notation, for a bounded continuous function g defined
on R, we denote

g+ = sup
t∈R
|g(t)| and g− = inf

t∈R
|g(t)|.
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It will always be assumed that

(1.6) k(t) ≤ α(t) for all t ∈ R.

2. Preliminaries and lemmas

Lemma 2.1. Every solution of (1.5) with initial value conditions (1.2)
and (1.3) is positive and bounded on (t0,∞).

Proof. From [H, Theorem 1.3.1], we can deduce that there exists a unique
solution (S(t, t0, x0), I(t, t0, x0), R(t, t0, x0)) of (1.5) passing through (t0, x0)
with initial value x0 = (S(t0), I(t0), R(t0)) satisfying (1.2) and (1.3). Let
[t0, T

∗) be the maximal right-interval of existence of

(S(t), I(t), R(t)) = (S(t, t0, x0), I(t, t0, x0), R(t, t0, x0)).

We first prove that

(2.1) S(t) > 0 for all t ∈ [t0, T
∗).

Assume, by way of contradiction, that (2.1) does not hold. Then there must
exist T1 ∈ (t0, T

∗) such that

S(T1) = 0, S(s) > 0 for all s ∈ [t0, T1), S′(T1) ≤ 0.

But from the first equation of (1.5), we have

S′(T1) = A(T1)− d(T1)S(T1)−
λ(T1)S(T1)I(T1)

1 + k(T1)I(T1)
= A(T1) > 0,

a contradiction. Hence (2.1) holds.
Next, we claim that I(t) > 0 for t ∈ [t0, T

∗). Otherwise, there must exist
T2 ∈ (t0, T

∗) such that

I(T2) = 0, I(s) > 0 for all s ∈ [t0, T2).

In view of the second equation of (1.5), we get

I ′(v) =
λ(v)S(v)I(v)

1 + k(v)I(v)
− (d(v) + ε(v) + µ(v))I(v)− γ(v)I(v)

1 + α(v)I(v)

≥ λ(v)S(v)I(v)

1 + k(v)I(v)
− (d(v) + ε(v) + µ(v) + γ(v))I(v)

≥ λ(v)S(v)I(v)

1 + k(v)I(v)
− (d+ + ε+ + µ+ + γ+)I(v) for all v ∈ [t0, T2],

and hence

I(T2) ≥ e−(T2−t0)(d
++ε++µ++γ+)I(t0)

+

T2�

t0

e−(T2−v)(d
++ε++µ++γ+)λ(v)S(v)I(v)

1 + k(v)I(v)
dv > 0.

This contradicts I(T2) = 0 and the claim is proved.
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Now, we prove that R(t) > 0 for all t ∈ (t0, T
∗). If R(t0) > 0, then by

continuity we can choose a small positive constant η∗ such that

(2.2) R(t) > 0 for all t ∈ (t0, t0 + η∗] ⊂ (t0, T
∗).

If R(t0) = 0, then

R′(t0) = µ(t0)I(t0) +
γ(t0)I(t0)

1 + α(t0)I(t0)
− d(t0)R(t0)

= µ(t0)I(t0) +
γ(t0)I(t0)

1 + α(t0)I(t0)
> 0,

which implies that (2.2) also holds. Now, we claim that

(2.3) R(t) > 0 for all t ∈ (t0 + η∗, T ∗).

Otherwise, there must exist T3 ∈ (t0 + η∗, T ∗) such that

(2.4) R(T3) = 0 and R(s) > 0 for all s ∈ (t0 + η∗, T3).

From (1.5) and (2.4), we have

0 ≥ R′(T3) = µ(T3)I(T3) +
γI(T3)

1 + α(T3)I(T3)
> 0,

which is a contradiction, and hence (2.3) holds.

From the above discussion, we find that

S(t), I(t), R(t) > 0 for all t ∈ (t0, T
∗),

which together with (1.5) yields

S′(t) = A(t)− d(t)S(t)− λ(t)S(t)I(t)

1 + k(t)I(t)
≤ A+ − d−S(t),

I ′(t) =
λ(t)S(t)I(t)

1 + k(t)I(t)
− (d(t) + ε(t) + µ(t))I(t)− γ(t)I(t)

1 + α(t)I(t)

≤ λ+S(t)

k−
− (d− + ε− + µ−)I(t),

R′(t) = µ(t)I(t) +
γ(t)I(t)

1 + α(t)I(t)
− d(t)R(t)

≤ (µ+ + γ+)I(t)− d−R(t).
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Therefore,

S(t) ≤ S(t0)
ed

−t0

ed−t
+
A+

d−
ed

−t − ed−t0

ed−t
≤ S(t0) +

A+

d−
=: M1,

I(t) ≤ I(t0)e
(d−+ε−+µ−)t0

e(d−+ε−+µ−)t
+
M1λ

+(e(d
−+ε−+µ−)t − e(d−+ε−+µ−)t0)

k−(d− + ε− + µ−)e(d−+ε−+µ−)t

≤ I(t0) +
M1λ

+

k−(d− + ε− + µ−)
=: M2,

R(t) ≤ R(t0)e
d−t0

ed−t
+

(µ+ + γ+)M2

d−
ed

−t − ed−t0

ed−t

≤ R(t0) +
(µ+ + γ+)M2

d−
=: M3,

for all t ∈ (t0, T
∗). It follows that S(t), I(t) and R(t) are bounded on [t0, T

∗).
From [H, Theorem 1.2.1], we easily obtain T ∗ =∞.

Lemma 2.2. Let

LS = sup
t∈R

A(t)

d(t)
≥ lS = inf

t∈R

A(t)

d(t) + λ(t)/k(t)
> 0,

lI = inf
t∈R

1

k(t)

[λ(t) inft∈R
A(t)

d(t)+λ(t)/k(t) − γ(t)

d(t) + ε(t) + µ(t)
− 1

]
> 0,

and let (S(t), I(t), R(t)) be a solution of system (1.5) with initial conditions
(1.2) and (1.3). Then

lS ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤ LS , lim inf
t→∞

I(t) ≥ lI , lim inf
t→∞

R(t) > 0.

Proof. From Lemma 2.1, the solution (S(t), I(t), R(t)) is positive and
bounded on (t0,∞). By the fluctuation lemma [S, Lemma A.1], there exist
sequences {t1p}p≥1, {t2p}p≥1, {t3p}p≥1 and {t4p}p≥1 such that

(2.5)

t1p →∞, S(t1p)→ lim sup
t→∞

S(t), S′(t1p)→ 0,

t2p →∞, S(t2p)→ lim inf
t→∞

S(t), S′(t2p)→ 0,

t3p →∞, I(t3p)→ lim inf
t→∞

I(t), I ′(t3p)→ 0,

t4p →∞, R(t4p)→ lim inf
t→∞

R(t), R′(t4p)→ 0,


as p→∞.

The first two lines in (2.5) yield

S′(t1p) = A(t1p)− d(t1p)S(t1p)−
λ(t1p)S(t1p)I(t1p)

1 + k(t1p)I(t1p)

≤ d(t1p)

[
A(t1p)

d(t1p)
− S(t1p)

]
≤ d(t1p)

[
sup
t∈R

A(t)

d(t)
− S(t1p)

]
,
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S′(t2p) = A(t2p)− d(t2p)S(t2p)−
λ(t2p)S(t2p)I(t2p)

1 + k(t2p)I(t2p)

≥ A(t2p)− d(t2p)S(t2p)−
λ(t2p)S(t2p)

k(t2p)

= A(t2p)− S(t2p)

(
d(t2p) +

λ(t2p)

k(t2p)

)
≥
(
d(t2p) +

λ(t2p)

k(t2p)

)[
inf
t∈R

A(t)

d(t) + λ(t)/k(t)
− S(t2p)

]
and

(2.6)

S′(t1p)

d(t1p)
≤ sup

t∈R

A(t)

d(t)
− S(t1p),

S′(t2p)

d(t2p) + λ(t2p)/k(t2p)
≥ inf

t∈R

A(t)

d(t) + λ(t)/k(t)
− S(t2p).

Letting p→∞ in (2.6) implies that

lS ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤ LS .

Furthermore, we prove that there exists a positive constant l such that

(2.7) lim inf
t→∞

I(t) ≥ l.

Otherwise, lim inft→∞ I(t) = 0. For each t ≥ t0, we define

m(t) = max
{
ξ : ξ ≤ t, I(ξ) = min

t0≤s≤t
I(s)

}
.

Observe that m(t)→∞ as t→∞ and that

(2.8) lim
t→∞

I(m(t)) = 0.

However, I(m(t)) = mint0≤s≤t I(s), and so I ′(m(t)) ≤ 0 for all m(t) > t0.
Let ε > 0 and t∗0 > t0 be such that

inf
t∈R

1

k(t)

[λ(t)
(
inft∈R

A(t)
d(t)+λ(t)/k(t) − ε

)
− γ(t)

d(t) + ε(t) + µ(t)
− 1

]
> 0

and

S(t) > inf
t∈R

A(t)

d(t) + λ(t)/k(t)
− ε > 0 for all t ≥ t∗0.

According to (1.5) and (1.6), we have

0 ≥ I ′(m(t)) =
λ(m(t))S(m(t))I(m(t))

1 + k(m(t))I(m(t))

−
(
d(m(t)) + ε(m(t)) + µ(m(t))

)
I(m(t))− γ(m(t))I(m(t))

1 + α(m(t))I(m(t))
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≥ I(m(t))

{
λ(m(t))S(m(t))− γ(m(t))

1 + k(m(t))I(m(t))

−
(
d(m(t)) + ε(m(t)) + µ(m(t))

)}
for all m(t) ≥ t∗0.

Thus, for all m(t) ≥ t∗0,

d(m(t)) + ε(m(t)) + µ(m(t)) ≥ λ(m(t))S(m(t))− γ(m(t))

1 + k(m(t))I(m(t))

and

I(m(t)) ≥ 1

k(m(t))

{
λ(m(t))S(m(t))− γ(m(t))

d(m(t)) + ε(m(t)) + µ(m(t))
− 1

}

≥ 1

k(m(t))

{λ(m(t))
(
inft∈R

A(t)
d(t)+λ(t)/k(t) − ε

)
− γ(m(t))

d(m(t)) + ε(m(t)) + µ(m(t))
− 1

}

≥ inf
t∈R

{
1

k(t)

[λ(t)
(
inft∈R

A(t)
d(t)+λ(t)/k(t) − ε

)
− γ(t)

d(t) + ε(t) + µ(t)
− 1

]}
> 0,

which contradicts (2.8). This proves (2.7).

By the continuity and boundedness of the coefficient functions in (1.5),
we can select a subsequence, still denoted by {tip}∞p=1, such that

the limits of S(tip), γ(tip), d(tip) + ε(tip) + µ(tip), k(tip), α(tip)(2.9)

and λ(tip) as p→∞ exist for all i = 3, 4.

In view of (1.5), (1.6), (2.5) and (2.9), we obtain

I ′(t3p)

I(t3p)
=

λ(t3p)S(t3p)

1 + k(t3p)I(t3p)
− (d(t3p) + ε(t3p) + µ(t3p))−

γ(t3p)

1 + α(t3p)I(t3p)
(2.10)

≥
λ(t3p)S(t3p)− γ(t3p)

1 + k(t3p)I(t3p)
− (d(t3p) + ε(t3p) + µ(t3p)).

Letting p→∞ in (2.9) and (2.10) implies that

lim inf
t→∞

I(t) = lim
p→∞

I(t3p) ≥ lim
p→∞

1

k(t3p)

[
λ(t3p)S(t3p)− γ(t3p)

d(t3p) + ε(t3p) + µ(t3p)
− 1

]

≥ inf
t∈R

1

k(t)

[λ(t) inft∈R
A(t)

d(t)+λ(t)/k(t) − γ(t)

d(t) + ε(t) + µ(t)
− 1

]
= lI > 0.

Similarly,

R′(t4p) = µ(t4p)I(t4p) +
γ(t4p)I(t4p)

1 + α(t4p)I(t4p)
− d(t4p)R(t4p) ≥ µ(t4p)I(t4p)− d(t4p)R(t4p)
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yields

lim inf
t→∞

R(t) = lim
p→∞

R(t4p) ≥ inf
t∈R

µ(t)

d(t)
lim inf
t→∞

I(t) > 0.

The proof of Lemma 2.2 is now completed.

Lemma 2.3. Assume that

sup
t∈R

{
−d(t) +

λ(t)LS

(1 + k(t)lI)2

}
< 0,(2.11)

sup
t∈R

{
−[d(t) + ε(t) + µ(t)] +

λ(t)

k(t)
+

λ(t)LS

(1 + k(t)lI)2

}
< 0,(2.12)

and the assumptions of Lemma 2.2 hold. Let

(S(t), I(t), R(t)), (Ŝ(t), Î(t), R̂(t))

be the solutions of system (1.5) with initial conditions (1.2) and (1.3). Then
there exist t̂0 ≥ t0 and positive constants ζ and K such that

(2.13) |S(t)− Ŝ(t)| ≤ Ke−ζt, |I(t)− Î(t)| ≤ Ke−ζt, for all t ≥ t̂0.
Moreover, there exist constants tR ≥ t̂0 and KR > 0 such that

(2.14) |R(t)− R̂(t)| ≤ KRe
−ζt for all t ≥ tR.

Proof. Let

x(t) = (x1(t), x2(t)) = (S(t)− Ŝ(t), I(t)− Î(t)) for all t ∈ [t0,∞).

Then (1.5) gives

x′1(t) = −d(t)[S(t)− Ŝ(t)]− λ(t)I(t)

1 + k(t)I(t)
[S(t)− Ŝ(t)]

− λ(t)Ŝ(t)
I(t)− Î(t)

(1 + k(t)I(t))(1 + k(t)Î(t))

= −
[
d(t) +

λ(t)I(t)

1 + k(t)I(t)

]
x1(t)− λ(t)Ŝ(t)

x2(t)

(1 + k(t)I(t))(1 + k(t)Î(t))
,

x′2(t) =
λ(t)I(t)

1 + k(t)I(t)
x1(t) + λ(t)Ŝ(t)

x2(t)

(1 + k(t)I(t))(1 + k(t)Î(t))

−
[
d(t) + ε(t) + µ(t) +

γ(t)

(1 + α(t)I(t))(1 + α(t)Î(t))

]
x2(t),

which implies

(2.15) x1(t) = e
−

	t
t̂0
[d(θ)+

λ(θ)I(θ)
1+k(θ)I(θ)

] dθ
x1(t̂0) +

t�

t̂0

e
−

	t
v [d(θ)+

λ(θ)I(θ)
1+k(θ)I(θ)

] dθ

×
[
−λ(v)Ŝ(v)

x2(v)

(1 + k(v)I(v))(1 + k(v)Î(v))

]
dv,
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and

(2.16) x2(t) = e
−

	t
t̂0
[d(θ)+ε(θ)+µ(θ)+

γ(t)

(1+α(θ)I(θ))(1+α(θ)Î(θ))
] dθ
x2(t̂0)

+

t�

t̂0

e
−

	t
v [d(θ)+ε(θ)+µ(θ)+

γ(t)

(1+α(θ)I(θ))(1+α(θ)Î(θ))
] dθ
[

λ(v)I(v)

1 + k(v)I(v)
x1(v)

+λ(v)Ŝ(v)
x2(v)

(1 + k(v)I(v))(1 + k(v)Î(v))

]
dv,

for all t ≥ t̂0. Let ε < min{lI , lS} be a positive constant such that

sup
t∈R

{
−d(t) +

λ(t)(LS + ε)

[1 + k(t)(lI − ε)]2

}
< 0,

sup
t∈R

{
−[d(t) + ε(t) + µ(t)] +

λ(t)

k(t)
+

λ(t)(LS + ε)

[1 + k(t)(lI − ε)]2

}
< 0.

This can be achieved because of (2.11) and (2.12). Consequently, we can
choose positive constants ζ and τ such that

sup
t∈R

{
ζ − d(t) +

λ(t)(LS + ε)

[1 + k(t)(lI − ε)]2

}
< −τ,(2.17)

sup
t∈R

{
ζ − [d(t) + ε(t) + µ(t)] +

λ(t)

k(t)
+

λ(t)(LS + ε)

[1 + k(t)(lI − ε)]2

}
< −τ.(2.18)

From Lemma 2.2, we can choose t̂0 > t0 such that

S(t) ≤ LS + ε, Ŝ(t) ≤ LS + ε, Î(t) ≥ lI − ε, for all t ≥ t̂0.

Let ‖x‖0 = max{supt∈[t0,t̂0] |x1(t)|, supt∈[t0,t̂0] |x2(t)|}, and K0 > 1 be a
constant. It is obvious that

‖x(t̂0)‖ < ‖x‖0 + ε < K0(‖x‖0 + ε) = K0(‖x‖0 + ε)eζt̂0e−ζt̂0 .

In the following, we will show

(2.19) ‖x(t)‖ < K0(‖x‖0 + ε)eζt̂0e−ζt for all t > t̂0.

Otherwise, one of the following two cases must occur:

Case I: There exists θ1 > 0 such that

(2.20)
|x1(θ1)| = K0(‖x‖0 + ε)eζt̂0e−ζθ1 ,

‖x(t)‖ < K0(‖x‖0 + ε)eζt̂0e−ζt for all t ∈ [t̂0, θ1).

Case II: There exists θ2 > 0 such that

(2.21)
|x2(θ2)| = K0(‖x‖0 + ε)eζt̂0e−ζθ2 ,

‖x(t)‖ < K0(‖x‖0 + ε)eζt̂0e−ζt for all t ∈ [t̂0, θ2).
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If Case I holds, then in view of (2.15), (2.17) and (2.20), we have

|x1(θ1)| =
∣∣∣∣e− 	θ1

t̂0

[
d(θ)+

λ(θ)I(θ)
1+k(θ)I(θ)

]
dθ
x1(t0)

+

θ1�

t̂0

e
−

	θ1
v

[
d(θ)+

λ(θ)I(θ)
1+k(θ)I(θ)

]
dθ
[
−λ(v)Ŝ(v)

x2(v)

(1 + k(v)I(v))(1 + k(v)Î(v))

]
dv

∣∣∣∣
≤ e−

	θ1
t̂0

d(θ) dθ|x1(t0)|

+

θ1�

t̂0

e−
	θ1
v d(θ) dθλ(v)(LS + ε)

|x2(v)|
[1 + k(v)(lI − ε)]2

dv

≤ e−
	θ1
t̂0

d(θ) dθ
(‖x‖0 + ε)

+

θ1�

t̂0

e−
	θ1
v d(θ) dθ λ(v)(LS + ε)

[1 + k(v)(lI − ε)]2
K0(‖x‖0 + ε)eζt̂0e−ζv dv

= K0(‖x‖0 + ε)eζt̂0e−ζθ1
{

1

K0
e
−

	θ1
t̂0

(d(θ)−ζ) dθ

+

θ1�

t̂0

e−
	θ1
v (d(θ)−ζ) dθ λ(v)(LS + ε)

[1 + k(v)(lI − ε)]2
dv

}

≤ K0(‖x‖0 + ε)eζt̂0e−ζθ1
{

1

K0
e
−

	θ1
t̂0

(d(θ)−ζ) dθ

+

θ1�

t̂0

e−
	θ1
v (d(θ)−ζ) dθ(d(v)− ζ) dv

}

= K0(‖x‖0 + ε)eζt̂0e−ζθ1{1− (1− 1/K0)e
−

	θ1
t̂0

(d(θ)−ζ) dθ}

< K0(‖x‖0 + ε)eζt̂0e−ζθ1 ,

which contradicts the first equation in (2.20). Hence, (2.19) holds.

If Case II holds, then together with (2.16) and (2.18), (2.21) implies that

|x2(θ2)| =
∣∣∣∣e− 	θ2

t̂0

[
d(θ)+ε(θ)+µ(θ)+

γ(θ)

(1+α(θ)I(θ))(1+α(θ)Î(θ))

]
dθ
x2(t̂0)

+

θ2�

t̂0

e
−

	θ2
v

[
d(θ)+ε(θ)+µ(θ)+

γ(θ)

(1+α(θ)I(θ))(1+α(θ)Î(θ))

]
dθ

×
[

λ(v)I(v)

1 + k(v)I(v)
x1(v) + λ(v)Ŝ(v)

x2(v)

(1 + k(v)I(v))(1 + k(v)Î(v))

]
dv

∣∣∣∣
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≤ e−
	θ2
t̂0

[d(θ)+ε(θ)+µ(θ)] dθ|x2(t̂0)|

+

θ2�

t̂0

e−
	θ2
v [d(θ)+ε(θ)+µ(θ)] dθ

[
λ(v)

k(v)
|x1(v)|+ λ(v)(LS + ε)

[1 + k(v)(lI − ε)]2
|x2(v)|

]
dv

≤ e−
	θ2
t̂0

[d(θ)+ε(θ)+µ(θ)] dθ
(‖x‖0 + ε)

+

θ2�

t̂0

e−
	θ2
v [d(θ)+ε(θ)+µ(θ)] dθ

×
[
λ(v)

k(v)
+

λ(v)(LS + ε)

(1 + k(v)(lI − ε))2

]
K0(‖x‖0 + ε)eζt̂0e−ζv dv

≤ e−
	θ2
t̂0

[d(θ)+ε(θ)+µ(θ)] dθ
(‖x‖0 + ε) +

θ2�

t̂0

e−
	θ2
v [d(θ)+ε(θ)+µ(θ)] dθ

× [d(v) + ε(v) + µ(v)− ζ]K0(‖x‖0 + ε)eζt̂0e−ζv dv

= K0(‖x‖0 + ε)eζt̂0e−ζθ2
{

1

K0
e
−

	θ2
t̂0

[d(θ)+ε(θ)+µ(θ)−ζ] dθ

+

θ2�

t̂0

e−
	θ2
v [d(θ)+ε(θ)+µ(θ)−ζ] dθ[d(v) + ε(v) + µ(v)− ζ] dv

}

= K0(‖x‖0 + ε)eζt̂0e−ζθ2{1− (1− 1/K0)e
−

	θ2
t̂0

[(d(θ)+ε(θ)+µ(θ))−ζ] dθ}

< K0(‖x‖0 + ε)eζt̂0e−ζθ2 ,

which contradicts the first equation in (2.21) and proves (2.19).

Letting ε→ 0+, it follows from (2.19) that

(2.22) ‖x(t)‖ ≤ K0‖x‖0eζt̂0e−ζt for all t > t̂0,

which proves (2.13).

Now, we prove that (2.14) holds. Without loss of generality, we assume
that

‖R‖∞ = sup
t≥t0
|R(t)− R̂(t)| > 0.

Let

x3(t) = R(t)− R̂(t) for all t ∈ (t0,∞).

Then

x′3(t) = µ(t)x2(t) +
γ(t)x2(t)

(1 + α(t)I(t))(1 + α(t)Î(t))
− d(t)x3(t)

and
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(2.23) x3(t) = e
−

	t
t̃0

d(θ) dθ
x3(t̃0) +

t�

t̃0

e−
	t
v d(θ) dθ

×
[
µ(v)x2(v) +

γ(v)x2(v)

(1 + α(t)I(v))(1 + α(v)Î(v))

]
dv

for all t ≥ t̃0 ≥ t̂0. For any ε > 0, since d− − ζ > 0, we can choose tR ≥ t̂0
and K∗0 > K0 such that

−(d− − ζ) +
(µ+ + γ+)K0‖x‖0eζt̂0

K∗0‖R‖∞eζtR
< 0

and

(2.24) − (d− − ζ) +
(µ+ + γ+)K0‖x‖0eζt̂0
K∗0 (‖R‖∞ + ε)eζtR

≤ −(d− − ζ) +
(µ+ + γ+)K0‖x‖0eζt̂0

K∗0‖R‖∞eζtR
< 0.

Consequently,

|x3(tR)| < ‖R‖∞ + ε < K∗0 (‖R‖∞ + ε)eζtRe−ζtR .

Now, we will show

(2.25) |x3(t)| < K∗0 (‖R‖∞ + ε)eζtRe−ζt for all t > tR.

Otherwise, there must exist θ∗ > tR such that

(2.26)
|x3(θ∗)| = K∗0 (‖R‖∞ + ε)eζtRe−ζθ

∗
,

|x3(t)| < K∗0 (‖R‖∞ + ε)eζtRe−ζt for all t ∈ [tR, θ
∗).

From (2.23), (2.24) and (2.26), we have

|x3(θ∗)| =
∣∣∣∣e− 	θ∗

tR
d(θ) dθ

x3(tR)

+

θ∗�

tR

e−
	θ∗
v d(θ) dθ

[
µ(v)x2(v) +

γ(v)x2(v)

(1 + α(v)I(v))(1 + α(v)Î(v))

]
dv

∣∣∣∣
≤ e−d−(θ∗−tR)|x3(tR)|+

θ∗�

tR

e−d
−(θ∗−v)(µ+ + γ+)|x2(v)| dv

≤ e−d−(θ∗−tR)(‖R‖∞ + ε) +

θ∗�

tR

e−d
−(θ∗−v)(µ+ + γ+)K0‖x‖0eζt̂0e−ζv dv

≤ K∗0 (‖R‖∞ + ε)eζtRe−ζθ
∗

×
{

1

K∗0
e−(θ

∗−tR)(d−−ζ) +

θ∗�

tR

e−(θ
∗−v)(d−−ζ) (µ+ + γ+)K0‖x‖0eζt̂0

K∗0 (‖R‖∞ + ε)eζtR
dv

}
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≤ K∗0 (‖R‖∞ + ε)eζtRe−ζθ
∗

×
{

1

K∗0
e−(θ

∗−tR)(d−−ζ) +

θ∗�

tR

e−(θ
∗−v)(d−−ζ)(d− − ζ) dv

}
= K∗0 (‖R‖∞ + ε)eζtRe−ζθ

∗{1− (1− 1/K∗0 )e−(θ
∗−tR)(d−−ζ)}

< K∗0 (‖R‖∞ + ε)eζtRe−ζθ
∗
,

which contradicts the first equation in (2.26). Hence, (2.25) holds. Letting
ε→ 0+, we deduce from (2.25) that (2.14) holds, which ends the proof.

Remark 2.1. Lemma 2.3 shows that a T -periodic solution (Ŝ(t), Î(t),
R̂(t)) of (1.5) is globally exponentially stable.

3. Main results

Theorem 3.1. Under the assumptions of Lemma 2.3, system (1.5) has
exactly one positive T -periodic solution which is globally exponentially stable.

Proof. Let (S̃(t), Ĩ(t), R̃(t)) be a solution of (1.5) with initial conditions

(3.1) S̃(t0), Ĩ(t0) > 0, R̃(t0) ≥ 0.

By Lemmas 2.1 and 2.2, the solution (S̃(t), Ĩ(t), R̃(t)) is bounded and

(3.2) lim inf
t→∞

S̃(t) > 0, lim inf
t→∞

Ĩ(t) > 0, lim inf
t→∞

R̃(t) > 0.

By the periodicity of the coefficients of (1.5), one can easily see that, for
any nonnegative integer h, (S̃(t+ hT ), Ĩ(t+ hT ), R̃(t+ hT )) is a solution of
(1.5) with initial values

(S̃(t0 + hT ), Ĩ(t0 + hT ), R̃(t0 + hT )).

In particular, (S̆(t), Ĭ(t), R̆(t)) = (S̃(t+ T ), Ĩ(t+ T ), R̃(t+ T )) is a solution
of (1.5) with initial values

(S̆(t0), Ĭ(t0), R̆(t0)) = (S̃(t0 + T ), Ĩ(t0 + T ), R̃(t0 + T )).

It follows from Lemma 2.3 that there exist t̆0 > t0 and K̆ such that, for any
nonnegative integer h and t+ hT ≥ t̆0,
(3.3)

|S̃(t+ (h+ 1)T )− S̃(t+ hT )| = |S̆(t+ hT )− S̃(t+ hT )| ≤ K̆e−ζ(t+hT ),
|Ĩ(t+ (h+ 1)T )− Ĩ(t+ hT )| = |Ĭ(t+ hT )− Ĩ(t+ hT )| ≤ K̆e−ζ(t+hT ),
|R̃(t+ (h+ 1)T )− R̃(t+ hT )| = |R̆(t+ hT )− R̃(t+ hT )| ≤ K̆e−ζ(t+hT ).

Now, we show that {(S̃(t + qT ), Ĩ(t + qT ), R̃(t + qT ))}q is convergent
on any compact interval as q → ∞. Let [a, b] ⊂ R be an arbitrary interval.
Choose a nonnegative integer q0 such that t + q0T ≥ t̆0 for t ∈ [a, b]. Then
for t ∈ [a, b] and q > q0 we have
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S̃(t+ qT ) = S̃(t+ q0T ) +

q−1∑
h=q0

[S̃(t+ (h+ 1)T )− S̃(t+ hT )],

Ĩ(t+ qT ) = Ĩ(t+ q0T ) +

q−1∑
h=q0

[Ĩ(t+ (h+ 1)T )− Ĩ(t+ hT )],

R̃(t+ qT ) = R̃(t+ q0T ) +

q−1∑
h=q0

[R̃(t+ (h+ 1)T )− R̃(t+ hT )],

which, together with (3.3), implies that {(S̃(t+ qT ), Ĩ(t+ qT ), R̃(t+ qT ))}q
converges uniformly to a continuous function, say (S∗(t), I∗(t), R∗(t)), on
[a, b]. Because of arbitrariness of [a, b], (S̃(t + qT ), Ĩ(t + qT ), R̃(t + qT )) →
(S∗(t), I∗(t), R∗(t)) as q → ∞ for t ∈ R. Moreover, (S∗(t), I∗(t), R∗(t)) is
bounded and

S∗(t) ≥ lim inf
t→∞

S̃(t)>0, I∗(t) ≥ lim inf
t→∞

Ĩ(t)>0, R∗(t) ≥ lim inf
t→∞

R̃(t)>0,

for all t ∈ R.
It remains to show that (S∗(t), I∗(t), R∗(t)) is a T -periodic solution

of (1.5). The periodicity is obvious since

S∗(t+ T ) = lim
q→∞

S̃((t+ T ) + qT ) = lim
q+1→∞

S̃(t+ (q + 1)T ) = S∗(t),

I∗(t+ T ) = lim
q→∞

Ĩ((t+ T ) + qT ) = lim
q+1→∞

Ĩ(t+ (q + 1)T ) = I∗(t),

R∗(t+ T ) = lim
q→∞

R̃((t+ T ) + qT ) = lim
q+1→∞

R̃(t+ (q + 1)T ) = R∗(t),

for all t ∈ R. Now, note that (S̃(t+ qT ), Ĩ(t+ qT ), R̃(t+ qT )) is a solution
to (1.5), that is,

S̃(t+ qT )− S̃(t0 + qT ) =

t�

t0

[
A(s+ qT )− d(s+ qT )S̃(s+ qT )

− λ(s+ qT )S̃(s+ qT )Ĩ(s+ qT )

1 + k(s+ qT )Ĩ(s+ qT )

]
ds,

Ĩ(t+ qT )− Ĩ(t0 + qT ) =

t�

t0

[
λ(s+ qT )S̃(s+ qT )Ĩ(s+ qT )

1 + k(s+ qT )Ĩ(s+ qT )

− (d(s+ qT ) + ε(s+ qT ) + µ(s+ qT ))Ĩ(s+ qT )

− γ(s+ qT )Ĩ(s+ qT )

1 + α(s+ qT )Ĩ(s+ qT )

]
ds,

R̃(t+ qT )− R̃(t0 + qT ) =

t�

t0

[
µ(s+ qT )Ĩ(s+ qT )+

γ(s+ qT )Ĩ(s+ qT )

1 + α(s+ qT )Ĩ(s+ qT )

×d(s+ qT )R̃(s+ qT )

]
ds,
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for t ≥ t0. Letting q →∞ gives

S∗(t)− S∗(t0) =

t�

t0

[
A(s)− d(s)S∗(s)− λ(s)S∗(s)I∗(s)

1 + k(s)I∗(s)

]
ds,

I∗(t)− I∗(t0)

=

t�

t0

[
λ(s)S∗(s)I∗(s)

1 + k(s)I∗(s)
− (d(s) + ε(s) + µ(s))I∗(s)− γ(s)I∗(s)

1 + α(s)I∗(s)

]
ds,

R∗(t)−R∗(t0) =

t�

t0

[
µ(s)I∗(s) +

γ(s)I∗(s)

1 + α(s)I∗(t)
− d(s)R∗(s)

]
ds,

for t ≥ t0, so (S∗(t), I∗(t), R∗(t)) is a solution to (1.5) on [t0,∞).

Finally, by Lemma 2.3, (S∗(t), I∗(t), R∗(t)) is globally exponentially sta-
ble. This completes the proof of Theorem 3.1.

Remark 3.1. Assume that all parameters are constants. Then the au-
tonomous SIR model (1.1) has exactly one endemic equilibrium which is
globally exponentially stable.

4. An example. In this section, we will illustrate the existence and
global exponential stability of positive periodic solutions for system (1.1) by
simulations.

Let A(t) = 20, d(t) = 0.02, λ(t) = 2× 10−3 + 5× 10−4 sin(πt/3), k(t) =
α(t) = 0.5, ε(t) = 0.05, µ(t) = 0.02 and γ = 0.05. Then

LS = sup
t∈R

A(t)/d(t) = 1000, lS = inf
t∈R

A(t)

d(t) + λ(t)/k(t)
= 800 > 0,

lI = inf
t∈R

1

k(t)

[λ(t) inft∈R
A(t)

d(t)+λ(t)/k(t) − γ(t)

d(t) + ε(t) + µ(t)
− 1

]
≥ 21 > 0,

sup
t∈R

{
−d(t) +

λ(t)LS

(1 + k(t)lI)2

}
≤ 10

529
− 1

50
< 0,

sup
t∈R

{
−[d(t) + ε(t) + µ(t)] +

λ(t)

k(t)
+

λ(t)LS

(1 + k(t)lI)2

}
≤ 10

529
− 17

200
< 0.

This implies that

(4.1)

S′(t)=20− 0.02S(t)− (2× 10−3 + 5× 10−4 sin(πt/3))S(t)I(t)

1 + 0.5I(t)
,

I ′(t)=
(2×10−3+5×10−4 sin(πt/3))S(t)I(t)

1+0.5I(t)
−0.09I(t)− 0.05I(t)

1+0.5I(t)
,

R′(t)=0.02I(t) +
0.05I(t)

1 + 0.5I(t)
− 0.01R(t),

satisfies all the conditions in Theorem 3.1. Hence, system (4.1) has exactly
one positive 6-periodic solution (S∗(t), I∗(t), R∗(t)). Moreover, it is globally
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exponentially stable with exponential convergence rate ζ ≈ 0.002. This fact
is confirmed by the numerical simulations in Figures 1–3.

0 100 200 300 400 500 600
839.5

840

840.5

841

841.5

842

842.5

843

843.5

t

S
(t

)

Fig. 1. Numerical solution S(t) of (4.1) for (S(0), I(0), R(0)) = (843, 28, 58)
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Fig. 2. Numerical solution I(t) of (4.1) for (S(0), I(0), R(0)) = (843, 28, 58)
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Fig. 3. Numerical solution R(t) of (4.1) for (S(0), I(0), R(0)) = (843, 28, 58)
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Remark4.1. To the best of our knowledge, there is no result on the global
exponential stability of positive periodic solutions for the SIR model with pe-
riodic incidence rate and saturated treatment function. We also mention that
the results in [AS, GF, KRG, LBJ] cannot be applied to the global exponen-
tial stability of positive periodic solutions for system (4.1). Here we employ
a novel proof to establish some criteria which guarantee the existence and
global exponential stability of positive periodic solutions for the SIR model.
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