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Complete noncompact submanifolds with flat normal bundle

Hai-Ping Fu (Nanchang)

Abstract. Let Mn (n ≥ 3) be an n-dimensional complete super stable minimal
submanifold in Rn+p with flat normal bundle. We prove that if the second fundamental
form A of M satisfies

	
M
|A|α < ∞, where α ∈ [2(1 −

√
2/n), 2(1 +

√
2/n)], then M is

an affine n-dimensional plane. In particular, if n ≤ 8 and
	
M
|A|d < ∞, d = 1, 3, then

M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with
constant mean curvature and finite Lα-norm curvature in R7 are considered.

1. Introduction. Let Nn+1 be an oriented (n+1)-dimensional Rieman-
nian manifold and i : Mn → Nn+1 be an isometric immersion of a connected
orientable n-dimensional manifold M with constant mean curvature H. De-
note by H and A the mean curvature and the second fundamental form
of M , respectively. It is convenient to introduce the trace-free second fun-
damental form of M , i.e., φ := A−HI, where I denotes the identity. Thus
|A|2 = |φ|2 +nH2. When Nn+1 is the simply connected space form Qn+1(c)
with constant curvature c ∈ {−1, 0, 1}, i.e., the hyperbolic space Hn+1,
Euclidean space Rn+1 or the standard sphere Sn+1, Cheung and Zhou [4]
obtained the following Simon inequality:

(1.1) |φ|∆|φ| ≥ 2

n

∣∣∇|φ|∣∣2 − |φ|4 − n(n− 2)√
n(n− 1)

H|φ|3 + n(H2 + c)|φ|2.

Definition 1.1. The immersion i is called weakly stable if

(1.2)
�

M

[|∇f |2 − (Ric(ν, ν) + |A|2)f2] ≥ 0

for any f ∈ C∞0 (M) satisfying
	
M f = 0, where ∇f is the gradient of f in

the induced metric of M , while i is called strongly stable if (1.2) holds for
any f ∈ C∞0 (M). The immersion i is simply called stable if H 6= 0 and i is
weakly stable, or if H = 0 (i.e., M is minimal) and i is strongly stable.
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It is known that a complete stable minimal surface in R3 must be a
plane, which was proved by Do Carmo and Peng [6], and independently by
Fischer-Colbrie and Schoen [10]. Do Carmo and Peng [7] showed that if M
is a stable complete minimal hypersurface in Rn+1 and

lim
R→∞

1

R2+2q

�

B(2R)\B(R)

|A|2 = 0 for some q <
√

2/n,

then M is a hyperplane. Shen and Zhu [14] showed that if M is a complete
stable minimal hypersurface in Rn+1 with finite total curvature, that is,

�

M

|A|n <∞,

then M is a hyperplane.

Let Mn be an n-minimal submanifold in Rn+p. Spruck [18] proved that
for a variation vector field E = fυ, the second variation of Vol(Mt) satisfies

d2 Vol(Mt)

dt2
≥

�

M

(|∇f |2 − |A|2f2),

where υ is a unit normal vector field and f ∈ C∞0 (M). Motivated by this,
Wang [20] introduced the concept of super stability for minimal submani-
folds. M is said to be super stable if

(1.3) 0 ≤
�

M

(|∇f |2 − |A|2f2), ∀f ∈ C∞0 (M).

When p = 1, the definition of super stability is exactly the same as that of
stability, and the normal bundle is trivially flat. Wang [20] proved that a
complete super stable minimal submanifold in Rn+p with finite total curva-
ture is an affine plane.

Because the normal bundle becomes complicated in higher codimen-
sion, we consider the simplest case when the normal bundle is flat. In 2006,
Smoczyk, Wang and Xin [16] proved the Bernstein type theorem for minimal
submanifolds in Rn+p with flat normal bundle under a certain growth condi-
tion. In 2008, Seo [13] showed that if M is a complete super stable minimal
submanifold in Rn+p with flat normal bundle and

	
M |A|

2 < ∞, then M is
an affine plane. Recently, the present author [11], [12] proved that a com-
plete super stable n-minimal submanifold in Rn+p (n ≤ 7) with flat normal
bundle which satisfies

	
M |A|

3 <∞ is an affine plane, and a complete super
stable n-minimal submanifold in Rn+p (n ≤ 5) with

	
M |A| <∞ is an affine

plane.

In this paper we study super stable minimal submanifolds in Rn+p with
flat normal bundle, and prove
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Theorem 1.2. Let Mn (n ≥ 3) be a super stable complete minimal
submanifold in Rn+p with flat normal bundle. If

lim
R→∞

1

R2

�

B(2R)\B(R)

|A|2α = 0 for some α ∈ [1−
√

2/n, 1 +
√

2/n],

then M is an affine n-dimensional plane.

Corollary 1.3. Let Mn (3 ≤ n ≤ 8) be a super stable complete im-
mersed minimal submanifold in Rn+p with flat normal bundle. If�

M

|A|d <∞, d = 1, 3,

then M is an affine n-dimensional plane.

Remark 1.4. Theorem 1.2 and Corollary 1.3 can be regarded as gener-
alizations of the results due to Do Carmo and Peng [7], Seo [13] and Fu [11].

Shen and Zhu [15] proved that any complete noncompact strongly sta-
ble hypersurface with constant mean curvature and finite total curvature in
Rn+1 must be a hyperplane. Alencar and Do Carmo [1] showed that any
complete noncompact strongly stable hypersurface with constant mean cur-
vature and finite L2 norm of traceless second fundamental form in Rn+1

(n ≤ 5) is a hyperplane. The author [12] proved that any complete non-
compact stable hypersurface with constant mean curvature and finite Ld

(d = 1, 3) norm of the traceless second fundamental form in Rn+1 (n ≤ 5)
is a hyperplane.

Here we prove the following

Theorem 1.5. Let M be a strongly stable complete noncompact hyper-
surface in R7 with constant mean curvature. If

�

M

|φ|2α <∞ for some α ∈
(

1−
√

1

3
,

√
5 +

√
5− 2

√
5

3

]
,

then M is a hyperplane.

Remark 1.6. Theorem 1.5 extends Theorems 4.1 of [15]. In [8], it is
claimed that the dimension condition of the result due to Alencar and Do
Carmo [1] is improved from n ≤ 5 to n ≤ 6. Unfortunately, there is an error
in the proof of [8, Theorem 3] (see [15, Remark 4.2]). For n = 3, 4, Cheng
[2] proved that any complete noncompact stable hypersurface in Rn+1 with
constant mean curvature is minimal. For n = 5, the present author proved
a similar result [12].

2. Complete minimal submanifolds with flat normal bundle. We
follow the notation of Chern–Do Carmo–Kobayashi [3].
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Let Mn be an n-minimal submanifold in Rn+p. We choose an orthonor-
mal frame e1, . . . , en+p in Rn+p such that, restricted to M , the vectors
e1, . . . , en are tangent to M . We shall denote the second fundamental form
by hαij . Then |A|2 =

∑
(hαij)

2 and

(2.1) 2|A|∆|A|+ 2
∣∣∇|A|∣∣2 = ∆|A|2 = 2

∑
(hαijk)

2 + 2
∑

(hαij)∆h
α
ij .

By [3, (2.23)], we have∑
(hαij)∆h

α
ij = −

∑
(hαikh

β
jk − h

α
jkh

β
ik)(h

α
ilh

β
jl − h

α
jlh

β
il)−

∑
hαijh

α
klh

β
ijh

β
kl.

Since M has flat normal bundle, we have hαikh
β
jk − h

α
jkh

β
ik = 0. Therefore,∑

(hαij)∆h
α
ij = −

∑
hαijh

α
klh

β
ijh

β
kl.

For each α, let Hα denote the symmetric matrix (hαij), and set Sαβ =∑
hαijh

β
ij . Then the p× p matrix (Sαβ) is symmetric and can be assumed to

be diagonal for a suitable choice of en+1, . . . , en+p. Thus

(2.2)
∑

(hαij)∆h
α
ij = −

∑
S2
αα = −

∑
α

(∑
i,j

(hαij)
2
)2
.

Moreover,

(2.3) |A|4 = (|A|2)2 =
(∑

α

∑
i,j

(hαij)
2
)2
≥
∑
α

(∑
i,j

(hαij)
2
)2
.

Hence from (2.1)–(2.3) we have

2|A|∆|A|+ 2
∣∣∇|A|∣∣2 ≥ 2

∑
(hαijk)

2 − 2|A|4.

Since
∑

(hαijk)
2 = |∇A|2, we get

(2.4) |A|∆|A|+
∣∣∇|A|∣∣2 ≥ |∇A|2 − |A|4.

From (2.4) and the curvature estimate by Y. Xin [21, Lemma 3.1], we obtain

(2.5) |A|∆|A|+ |A|4 ≥ 2

n

∣∣∇|A|∣∣2.
Proof of Theorem 1.2. By (2.5), we compute, for any positive constant α,

|A|α∆|A|α = |A|α
(
α(α− 1)|A|α−2

∣∣∇|A|∣∣2 + α|A|α−1∆|A|
)

(2.6)

=
α− 1

α

∣∣∇|A|α∣∣2 + α|A|2α−2|A|∆|A|

≥ α− 1

α

∣∣∇|A|α∣∣2 +
2α

n
|A|2α−2|∇|A||2 − α|A|2α+2

=
α− 1

α

∣∣∇|A|α∣∣2 +
2

nα
|∇|A|α|2 − α|A|2α+2

=

(
1− n− 2

nα

)∣∣∇|A|α∣∣2 − α|A|2α+2.
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We first consider the case of α ∈ (1−
√

2/n, 1+
√

2/n). Let ϕ ∈ C∞0 (M).
Multiplying (2.6) by ϕ2 and integrating on M , we obtain(

1− n− 2

nα

) �

M

∣∣∇|A|α∣∣2ϕ2 ≤
�

M

|A|α∆|A|αϕ2 + α
�

M

|A|2|A|2αϕ2

= α
�

M

|A|2|A|2αϕ2 −
�

M

∣∣∇|A|α∣∣2ϕ2 − 2
�

M

|A|αϕ〈∇ϕ,∇|A|α〉,

which gives(
2− n− 2

nα

) �

M

|∇|A|α|2ϕ2 ≤ α
�

M

|A|2|A|2αϕ2(2.7)

− 2
�

M

|A|αϕ〈∇ϕ,∇|A|α〉.

Using the Cauchy–Schwarz inequality, we can rewrite (2.7) as(
2− n− 2

nα
− ε
) �

M

ϕ2
∣∣∇|A|α∣∣2 ≤ 1

ε

�

M

|A|2α|∇ϕ|2(2.8)

+ α
�

M

|A|2|A|2αϕ2

for any ε > 0.
On the other hand, replacing f by |A|αϕ in (1.3), we get�

M

|A|2|A|2αϕ2 ≤
�

M

∣∣∇|A|α∣∣2ϕ2 +
�

M

|A|2α|∇ϕ|2(2.9)

+2
�

M

|A|αϕ〈∇ϕ,∇|A|α〉,

which gives �

M

|A|2|A|2αϕ2 ≤ (1 + ε)
�

M

∣∣∇|A|α∣∣2ϕ2(2.10)

+

(
1 +

1

ε

) �

M

|A|2α|∇ϕ|2.

If 2− n−2
nα − ε > 0, then inserting (2.10) to (2.8), we obtain

B
�

M

|∇|A|α|2ϕ2 ≤ D
�

M

|A|2α|∇ϕ|2,(2.11)

where

B =

(
2− n− 2

nα
− ε
)
− (1 + ε)α, D =

1

ε
+
α(1 + ε)

ε
.

For α ∈ (1 −
√

2/n, 1 +
√

2/n), it is easy to see that 2 − n−2
nα > 0

and 2 − n−1
nα − α > 0. Then we can choose ε > 0 sufficiently small so that
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2− n−2
nα − ε > 0 and B > 0. It follows from (2.11) that

�

M

∣∣∇|A|α∣∣2ϕ2 ≤ C
�

M

|A|2α|∇ϕ|2,(2.12)

where C is a constant that depends on α and ε. Let ϕ be a smooth function
on [0,∞) such that ϕ ≥ 0, ϕ = 1 on [0, R] and ϕ = 0 in [2R,∞) with
|ϕ′| ≤ 1/R. Then considering ϕ ◦ r, where r is the function in the definition
of B(R), from (2.12) we have

�

M

∣∣∇|A|α∣∣2ϕ2 ≤ C

R2

�

B(2R)\B(R)

|A|2α.(2.13)

By the assumption that limR→∞
1
R2

	
B(2R)\B(R) |A|

2α = 0, letting R → ∞
in (2.13) we conclude that ∇|A|α = 0, and |A| is constant. Thus it follows
by substituting the above |A| into (2.9) that

�

B(R)

|A|2|A|2α ≤
�

M

|A|2|A|2αϕ2 ≤ 1

R2

�

B(2R)

|A|2α.

So letting R → ∞, we get |A| ≡ 0. Hence M is totally geodesic, i.e., M is
an affine n-dimensional plane.

In the case of α = 1−
√

2/n or 1 +
√

2/n, from (2.6) we get

�

M

ϕ2|A|α∆|A|α ≥
(

1− n− 2

nα

) �

M

ϕ2
∣∣∇|A|α∣∣2(2.14)

− α
�

M

|A|2ϕ2|A|2α.

We compute
�

M

ϕ2|A|α∆|A|α = −
�

M

〈∇(ϕ2|A|α),∇|A|α〉(2.15)

=
�

M

〈|A|α∇ϕ+∇(ϕ|A|α), |A|α∇ϕ−∇(ϕ|A|α)〉

=
�

M

|A|2α|∇ϕ|2 −
�

M

|∇(ϕ|A|α)|2.

Combining (2.15) with (2.14), we obtain

(2.16)

(
1− n− 2

nα

) �

M

ϕ2
∣∣∇|A|α∣∣2 +

�

M

∣∣∇(ϕ|A|α)
∣∣2

≤
�

M

|A|2α|∇ϕ|2 + α
�

M

|A|2ϕ2|A|2α.
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By the Schwarz inequality,

(2.17)
�

M

ϕ2
∣∣∇|A|α∣∣2 =

�

M

〈∇(ϕ|A|α)− |A|α∇ϕ,∇(ϕ|A|α)− |A|α∇ϕ〉

= −2
�

M

〈∇(ϕ|A|α), |A|α∇ϕ〉+
�

M

(∣∣∇(ϕ|A|α)
∣∣2 + |A|2α|∇ϕ|2

)
≥
(

1− 1

ε

) �

M

|A|2α|∇ϕ|2 + (1− ε)
�

M

|∇(ϕ|A|α)|2.

Combining (2.17) with (2.16), we get

(2.18)

[
1 + (1− ε)

(
1− n− 2

nα

)] �

M

|∇(ϕ|A|α)|2 ≤ α
�

M

|A|2ϕ2|A|2α

+

[
1 +

(
1

ε
− 1

)(
1− n− 2

nα

)] �

M

|A|2α|∇ϕ|2.

Choosing ϕ as above, from (2.18) we obtain

(2.19)

[
1 + (1− ε)

(
1− n− 2

nα

)] �

B(R)

∣∣∇|A|α∣∣2
≤ α

�

M

|A|2|A|2α +

[
1 +

(
1

ε
− 1

)(
1− n− 2

nα

)]
1

R2

�

B(2R)\B(R)

|A|2α.

Using the assumption, and letting R→∞ and ε→ 0, from (2.19) we get�

M

∣∣∇|A|α∣∣2 ≤ �

M

|A|2|A|2α.(2.20)

Similar to the proof of (2.20), from (2.10) one concludes that�

M

∣∣∇|A|α∣∣2 =
�

M

|A|2|A|2α.

Hence, either |A| = 0, i.e., M is totally geodesic, or equality holds in (2.5).
Furthermore, all inequalities leading to (2.5) become equalities. Thus for
α = n+ 1, . . . , n+ p,

∑
i,j(h

α
ij)

2 has at least p− 1 zeros. So it is easy to see

from a theorem of [9] that M lies in a totally geodesic Rn+1 ↪→ Rn+p. Hence
the eigenvalues of A are λ with multiplicity n− 1 and −(n− 1)λ with λ 6= 0
because |A| > 0. By a result of Do Carmo and Dajczer [5, Cor. 4.4], this
neighborhood is part of a catenoid. Hence i(M) is contained in a catenoid C
by minimality of the immersion. Since M is complete and i is a local isom-
etry into the catenoid C which is simply connected for n ≥ 3, i(M) must be
an embedding [17, p. 330]. Hence i(M) is a catenoid. Since Tam and Zhou
[19] proved that the catenoid is n−2

n -stable, this is a contradiction. Hence
M is totally geodesic, i.e., M is an affine n-dimensional plane.
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3. Complete noncompact strongly stable hypersurfaces in R7

Theorem 3.1. Let M be a strongly stable complete noncompact hyper-
surface in R7 with constant mean curvature. If

lim
R→∞

1

R2

�

B(2R)\B(R)

|φ|2α = 0

for some α ∈
[√

5−
√

5− 2
√

5

3
,

√
5 +

√
5− 2

√
5

3

]
,

then M is a hyperplane.

Proof. By (1.1), as in (2.6), we obtain, for any positive constant α,

|φ|α∆|φ|α ≥
(

1− n− 2

nα

)∣∣∇|φ|α∣∣2 − α|φ|2α+2

− α n(n− 2)√
n(n− 1)

H|φ|2α+1 + αnH2|φ|2α.

We first consider the case of

α ∈
(√

5−
√

5− 2
√

5

3
,

√
5 +

√
5− 2

√
5

3

)
.

Using the same argument as in the proof of Theorem 1.2, we obtain φ = 0,
i.e., M is totally umbilical. Hence M is a hyperplane.

In the case of

α =

√
5−

√
5− 2

√
5

3
or

√
5 +

√
5− 2

√
5

3
,

it follows by the same method as employed in Theorem 1.2 that either
φ = 0, i.e., M is totally umbilical, or the equality (1.1) holds. Furthermore,
all inequalities leading to (1.1) become equalities. From the proof of [4,
(1.1)], we deduce that φ = 0, i.e., M is totally umbilical. Hence M is a
hyperplane.

Proposition 3.2. Let Mn (n ≥ 3) be a complete stable hypersurface
in Qn+1(c) with constant mean curvature. For 2(1 −

√
2/n) < d <

2(1 +
√

2/n),

if
�

M

|φ|d <∞, then
�

M

|φ|d+2 <∞.

Remark 3.3. Proposition 3.2 is proved in [12].

By Theorem 3.1 and Proposition 3.2, we obtain Theorem 1.5.
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[9] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential
Geom. 5 (1971), 333–340.

[10] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces
in 3-manifolds of nonnegative scalar curvature, Comm. Pure. Appl. Math. 33 (1980),
199–211.

[11] H. P. Fu, Minimal submanifolds with flat normal bundle, Kodai Math. J. 33 (2010),
211–216.

[12] H. P. Fu, Bernstein type for complete submanifolds in space forms, Math. Nachr.
285 (2012), 236–244.

[13] K. Seo, Rigidity of minimal submanifolds with flat normal bundle, Comm. Korean
Math. Soc. 23 (2008), 421–426.

[14] Y. B. Shen and X. H. Zhu, On the stable complete minimal hypersurfaces in Rn+1,
Amer. J. Math. 120 (1998), 103–116.

[15] Y. B. Shen and X. H. Zhu, On complete hypersurfaces with constant mean curvature
and finite Lp-norm curvature in Rn+1, Acta Math. Sinica (English Ser.) 21 (2005),
631–642.

[16] K. Smoczyk, G Wang and Y. Xin, Bernstein type theorems with flat normal bundle,
Calc. Var. Partial Differential Equations 26 (2006), 57–67.

[17] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 4, Publish
or Perish, Boston, MA, 1975.

[18] J. Spruck, Remarks on the stability of minimal submanifolds of Rn, Math. Z. 144
(1975), 169–174.

http://dx.doi.org/10.1007/s00013-005-1601-x
http://dx.doi.org/10.1007/s00574-005-0030-6
http://dx.doi.org/10.1090/S0002-9947-1983-0694383-X
http://dx.doi.org/10.1090/S0273-0979-1979-14689-5
http://dx.doi.org/10.1590/S0001-37652000000300003
http://dx.doi.org/10.1002/cpa.3160330206
http://dx.doi.org/10.2996/kmj/1278076337
http://dx.doi.org/10.1002/mana.201000039
http://dx.doi.org/10.4134/CKMS.2008.23.3.421
http://dx.doi.org/10.1353/ajm.1998.0005
http://dx.doi.org/10.1007/s10114-004-0364-9
http://dx.doi.org/10.1007/s00526-005-0359-0
http://dx.doi.org/10.1007/BF01190946


154 H.-P. Fu

[19] L. F. Tam and D. T. Zhou, Stability properties for the higher dimensional catenoid
in Rn+1, Proc. Amer. Math. Soc. 137 (2009), 3451–3461.

[20] Q. L. Wang, On minimal submanifolds in an Euclidean space, Math. Nachr. 261/262
(2003), 176–180.

[21] Y. Xin, Bernstein type theorems without graphic condition, Asian J. Math. 9 (2005),
31–44.

Hai-Ping Fu
Department of Mathematics
Nanchang University
330031 Nanchang, P.R. China
E-mail: mathfu@126.com

http://dx.doi.org/10.1090/S0002-9939-09-09962-6
http://dx.doi.org/10.1002/mana.200310120
http://dx.doi.org/10.4310/AJM.2005.v9.n1.a3

	1 Introduction
	2 Complete minimal submanifolds with flat normal bundle
	3 Complete noncompact strongly stable hypersurfaces in R7
	References

