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On the Dirichlet problem associated with
the Dunkl Laplacian

Mohamed Ben Chrouda (Monastir)

Abstract. This paper deals with the questions of the existence and uniqueness of a
solution to the Dirichlet problem associated with the Dunkl Laplacian ∆k as well as the
hypoellipticity of ∆k on noninvariant open sets.

1. Introduction. Let R be a root system in Rd, d ≥ 1. We fix a positive
subsystem R+ of R and a nonnegative multiplicity function k : R → R+.
For every α ∈ R, let Hα be the hyperplane orthogonal to α, and σα be the
reflection with respect to Hα, that is, for every x ∈ Rd,

σαx = x− 2
〈x, α〉
|α|2

α

where 〈·, ·〉 denotes the Euclidean inner product of Rd. The set of hyper-
planes Hα, α ∈ R+, divides Rd into connected open components, called Weyl
chambers generated by R. We consider the differential-difference operators
Ti, 1 ≤ i ≤ d, defined in [6], for f ∈ C1(Rd), by

Tif(x) =
∂f

∂xi
(x) +

∑
α∈R+

k(α)αi
f(x)− f(σαx)

〈α, x〉
,

and called Dunkl operators in the literature. These operators are used in
the study of certain exactly solvable models of quantum mechanics, namely
the Calogero–Moser–Sutherland type (see [10, 12]). Dunkl operators bear a
rich analytic structure, not only because of their commutativity [6], but also
thanks to the existence of an intertwining operator between Dunkl operators
and the usual partial derivatives [8]. In particular, a counterpart of Fourier
analysis, called Dunkl analysis, was developed (see [7, 11]). It was shown in
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[9, 13], using tools from Dunkl analysis, that the Dunkl Laplacian defined by

∆k =

d∑
i=1

T 2
i

is hypoelliptic on every invariant open subset D of Rd, i.e., σα(D) = D
for every α ∈ R+. However, the question of whether ∆k is hypoelliptic on
noninvariant open sets remains open.

The Dunkl Laplacian is a prototype of differential-difference (nonlocal)
operators. It generates a Hunt process [15], and therefore it generates a
balayage space in the sense of [3] where a general framework of balayage
spaces has been developed. Some specific elements of potential theory related
to the Dunkl Laplacian, namely the Green function, harmonic measures,
regular sets and the Dirichlet problem, have been studied in [2]. In particular,
the authors consider, for an invariant bounded open set D, the following
Dirichlet problem:

(1)

{
∆kh = 0 on D,

h = f on Rd \D,

where the function f is assumed to be continuous. To establish the existence
of a twice continuously differentiable function h on D such that both equa-
tions of (1) are pointwise fulfilled, they use the hypoellipticity of ∆k on D,
and therefore they need to assume that D is invariant. So, we are led to the
following questions: If we consider a noninvariant open set D, what can be
said about the hypoellipticity of ∆k on D as well as on the existence of a
solution to problem (1), bearing in mind that when ∆k is not hypoelliptic
on D, the technical approach used in [2] becomes invalid? The present paper
deals with these two questions. Let us give a short description of our results.

By a solution of problem (1), we mean every function h : Rd → R which
is continuous on Rd such that h = f on Rd \D and�

Rd
h(x)∆kϕ(x)wk(x) dx = 0 for every ϕ ∈ C∞c (D),

where C∞c (D) denotes the space of infinitely differentiable functions on D
with compact support and wk is the invariant weight function defined on Rd
by

wk(x) =
∏
α∈R+

|〈x, α〉|2k(α).

Note that ∆k = ∆, the classical Laplacian, when k ≡ 0. The set D is
called ∆k-regular if, for every continuous function f on Rd \D, problem (1)

admits a unique solution; this solution will be denoted by H∆k
D f . Given a

noninvariant bounded open set D, assume that D ⊂ Rd \
⋃
α∈R+

Hα.



Dirichlet problem associated with the Dunkl Laplacian 81

We first prove that u is a solution of problem (1) if and only if u is a
solution of the Schrödinger equation ∆ − q = g on D for some functions
q and g. It is known (see [4, 5]) that to solve this equation, we need to
assume that q is in the Kato class of D, which requires, in our case, that
the intersection of D, the closure of D, with every hyperplane Hα, α ∈ R+,
should be empty.

By means of the above Schrödinger equation, we show that D is ∆k-
regular provided it is ∆-regular, and we give an analytic formula charac-
terizing the solution H∆k

D f (see Theorem 1 below). We deduce from this
formula that, for every x ∈ D, H∆k

D f(x) depends only on the values of f on⋃
α∈R+

σα(D) and on ∂D, the Euclidean boundary of D. If, in addition, we

assume that f is locally Hölder continuous on
⋃
α∈R+

σα(D) then H∆k
D f is

continuously twice differentiable on D and therefore the first equation in (1)

is fulfilled by H∆k
D f not only in the distributional sense but also pointwise.

Finally, we show that, for a ∆k-regular open set D, if D is noninvariant
then ∆k is not hypoelliptic on D. Therefore the condition “D is invariant”
is necessary and sufficient for the hypoellipticity of ∆k on D.

2. Main results. We first present some various facts on the Dirichlet
boundary value problem associated with Schrödinger’s operator which are
needed for our approach. We refer to [4, 5] for details. Let G be the Green
function on Rd, but without the constant factors:

G(x, y) =


|x− y|2−d if d ≥ 3,

ln 1
|x−y| if d = 2,

|x− y| if d = 1.

Let D be a bounded domain of Rd and let q ∈ J(D), the Kato class on D,
i.e., q is a Borel measurable function on Rd such that the function G(1D|q|)
defined, for x ∈ Rd, by

G(1D|q|)(x) :=
�

D

G(x, y)|q(y)| dy

is continuous on Rd. Note that the Kato class J(D) contains all bounded
Borel measurable functions on D. Assume that D is ∆-regular. Then, for
every continuous function f on ∂D, there exists a unique continuous function
h on D such that h = f on ∂D and

(2)
�
h(x)(∆− q)ϕ(x) dx = 0 for every ϕ ∈ C∞c (D).

Moreover, h ≥ 0 when f ≥ 0. We denote by H∆−q
D f the unique continuous

extension of f to D which satisfies the Schrödinger equation (2). Let G∆D
and G∆−qD denote, respectively, the Green potential operator of ∆|D and of
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∆|D − q, i.e., for every Borel bounded function g on D and every x ∈ D,

G∆Dg(x) :=

∞�

0

P∆t g(x) and G∆−qD g(x) :=

∞�

0

P∆−qt g(x),

where P∆t (resp. P∆−qt ) is the semigroup generated by ∆|D (resp. ∆|D − q)
(see [5] for more details). Then G∆Dg ∈ C0(D), the set of all continuous
functions on D vanishing at ∂D. Moreover, G∆Dg ∈ Cn+1(D) whenever
g ∈ Cn(D) (see for example [1, Corollary 5.5.4] or [14, Theorem 4.6.6]).

Also, it was shown in [5, pp. 86–88] that G∆−qD g ∈ C0(D) and that, for
every x ∈ D,

(3) G∆−qD g(x) = G∆Dg(x)−G∆D(qG∆−qD g)(x).

Moreover, if in addition we assume that q ∈ C∞(D) then, proceeding by
induction, it follows from (3) that, for every n ∈ N,

(4) G∆−qD g ∈ Cn(D) if and only if G∆Dg ∈ Cn(D).

Now, seeing from (3) that�
G∆−qD g(x)(∆− q)ϕ(x) dx = −

�
g(x)ϕ(x) dx for every ϕ ∈ C∞c (D),

we immediately conclude that the function h defined for x ∈ D by

(5) h(x) = H∆−q
D f(x) +G∆−qD g(x)

is the unique continuous extension of f to D such that

(6)
�
h(x)(∆− q)ϕ(x) dx = −

�
g(x)ϕ(x) dx for every ϕ ∈ C∞c (D).

Now we are ready to establish our first main result.

Theorem 1. Let D be a bounded open set such that D is contained
in one of the Weyl chambers generated by R. If D is ∆-regular then D is
∆k-regular. Moreover, for every continuous function f on Rd \D and every
x ∈ D,

(7) H∆k
D f(x) =

1√
wk(x)

(
H∆−q
D (f

√
wk)(x) +G∆−qD (

√
wkNf)(x)

)
,

where q and Nf are the functions defined, for x ∈ D, by

q(x) :=
∑
α∈R+

(
|α|k(α)

〈x, α〉

)2

,

Nf(x) :=
∑
α∈R+

|α|2k(α)

〈x, α〉2
f(σαx).

Proof. Let f be a continuous function on Rd \D. We intend to prove the
existence and uniqueness of a continuous function h on D such that h = f
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on Rd \D and

(8)
�
h(x)∆kϕ(x)wk(x) dx = 0 for every ϕ ∈ C∞c (D).

It follows from [6] that

∆kϕ(x) = ∆ϕ(x) + 2
∑
α∈R+

k(α)

(
〈∇ϕ(x), α〉
〈α, x〉

− |α|
2

2

ϕ(x)− ϕ(σαx)

〈α, x〉2

)
,

where ∇ denotes the gradient on Rd. It is clear that for every x ∈ D,

∇(
√
wk)(x) =

√
wk(x)

∑
α∈R+

k(α)

〈x, α〉
α

and

∆(
√
wk)(x) =

√
wk(x)

( ∑
α,β∈R+

k(α)k(β)
〈α, β〉

〈x, α〉〈x, β〉
−
∑
α∈R+

|α|2 k(α)

〈x, α〉2

)
.

On the other hand, by formula (1) in [6, Proposition 1.7], we have∑
α,β∈R+, σασβ 6=idRd

k(α)k(β)
〈α, β〉

〈x, α〉〈x, β〉
= 0.

Since σασβ 6= idRd for every α, β ∈ R+ such that α 6= β, we immediately
deduce that ∑

α,β∈R+, α 6=β
k(α)k(β)

〈α, β〉
〈x, α〉〈x, β〉

= 0.

Consequently,

∆(
√
wk)(x) =

√
wk(x) q(x)−

√
wk(x)

∑
α∈R+

|α|2 k(α)

〈x, α〉2
.

Thus, for every ϕ ∈ C∞c (D),

∆(ϕ
√
wk)(x) = q(x)ϕ(x)

√
wk(x) +

√
wk(x)∆ϕ(x)

+ 2
√
wk(x)

∑
α∈R+

k(α)

(
〈∇ϕ(x), α〉
〈α, x〉

− |α|
2

2

ϕ(x)

〈α, x〉2

)
.

Hence, for every x ∈ D,

(9)
√
wk(x)∆kϕ(x)

=
(
∆(ϕ
√
wk)(x)− q(x)ϕ(x)

√
wk(x)

)
+
√
wk(x)Nϕ(x).

Since the map ϕ 7→ ϕ
√
wk is invertible on the space C∞c (D) and the func-

tion x 7→ wk(x)/〈x, α〉2 is invariant under the reflection σα, equation (8) is
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equivalent to the following Schrödinger equation: For every ψ ∈ C∞c (D),
�
h(x)

√
wk(x) (∆− q)ψ(x) dx = −

�√
wk(x)Nf(x)ψ(x) dx.

Finally, since q is bounded on D and therefore is in J(D), the statements
follow from (5) and (6).

It is worth noting that a bounded open set D is ∆-regular provided it
satisfies the following geometric assumption known as exterior cone con-
dition: for every z ∈ ∂D there exists a cone C of vertex z such that
C ∩ B(z, r) ⊂ Rd \ D for some r > 0, where B(z, r) is the ball of center
z and radius r (see, for example, [5]).

Remark. Note that, in order to obtain q ∈ J(D), the hypothesis of the
above theorem, “D ⊂ Rd \

⋃
α∈R+

Hα”, is nearly optimal. Indeed, assume
that there exists a cone Cz of vertex z ∈ D ∩ Hα for some α ∈ R+ with
k(α) 6= 0 such that Crz := Cz ∩B(z, r) ⊂ D for some r > 0. Then

G(1Dq)(z) ≥ |α|2k2(α)
�

Crz

G(z, y)
1

〈y, α〉2
dy

= |α|2k2(α)
�

Crz

G(z, y)
1

〈z − y, α〉2
dy

≥ k2(α)
�

Crz−z
G(0, y)

1

|y|2
dy =∞.

It follows from (7) that, for every x ∈ D, the map f 7→ H∆k
D f(x) defines

a positive Radon measure on Rd \ D since both f 7→ H∆−q
D (f

√
wk) and

f 7→ G∆−qD (
√
wkNf) define such measures. We denote this measure by

H∆k
D (x, dy).

Corollary 1. For every x ∈ D, H∆k
D (x, dy) is a probability measure

supported by

∂D ∪
⋃

α∈R+

σα(D)

and satisfies√
wk(x)√
wk(y)

H∆k
D (x, dy) = H∆−q

D (x, dy) +
∑
α∈R+

|α|2k(α)

〈y, α〉2
G∆−qD (x, σαy)dy.

Proof. Since ∆k1(x) = 0 for every x ∈ D, the uniqueness of solution

of problem (1) implies that H∆k
D 1(x) = 1, which means that H∆k

D (x, dy) is
a probability measure on Rd \ D. Let f be a nonnegative bounded Borel
function on Rd \D and let x ∈ D. By (7), we have
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wk(x)

�

Rd\D

f(y)H∆k
D (x, dy) =

�

∂D

√
wk(y) f(y)H∆−q

D (x, dy)

+
∑
α∈R+

�

σα(D)

|α|2k(α)

〈y, α〉2
f(y)

√
wk(y)G∆−qD (x, σαy) dy.

Hence, H∆k
D (x, dy) is supported by ∂D ∪

⋃
α∈R+

σα(D) and√
wk(x)√
wk(y)

H∆k
D (x, dy) = H∆−q

D (x, dy) +
∑
α∈R+

|α|2k(α)

〈y, α〉2
G∆−qD (x, σαy)dy.

Corollary 2. Let D be a ∆-regular bounded open set such that D is
contained in one of the Weyl chambers generated by R. Let f be a continuous
function on ∂D ∪

⋃
α∈R+

σα(D). If f is Hölder continuous on
⋃
α∈R+

σ(D)

then H∆k
D f ∈ C2(D) and, for every x ∈ D,

∆k(H
∆k
D f)(x) = 0.

Proof. Since H∆−q
D (f

√
wk) is a solution of equation (2), the hypoellip-

ticity of the operator ∆ − q on D implies that H∆−q
D (f

√
wk) ∈ C∞(D).

Moreover, since
√
wkNf is Hölder continuous on D, it follows from [14,

Theorem 4.6.6] that G∆D(
√
wkNf) ∈ C2(D), and consequently, by (4),

G∆−qD (
√
wkNf) ∈ C2(D). Then it follows from (7) that H∆k

D f ∈ C2(D).
For every ϕ ∈ C∞c (D), a direct computation using (9) yields

�
∆k(H

∆k
D f)(x)ϕ(x)wk(x) dx =

�
H∆k
D f(x)∆kϕ(x)wk(x) dx.

This completes the proof.

Let D be an open subset of Rd. The operator ∆k is said to be hypoelliptic
on D if, for every f ∈ C∞(D), every continuous function h on Rd which
satisfies�

Rd
h(x)∆kϕ(x)wk(x) dx =

�
f(x)ϕ(x)wk(x) dx for every ϕ ∈ C∞c (D)

is infinitely differentiable on D. The hypoellipticity of ∆k on invariant open
sets was proved in [9, 13]. However, the question whether ∆k is hypoelliptic
on noninvariant open sets remains open.

Theorem 2. Let D be a ∆k-regular open set. Then ∆k is hypoelliptic
on D if and only if D is invariant.

Proof. Obviously, it suffices to show that if D is noninvariant then ∆k

is not hypoelliptic on D. Assume that D is noninvariant. Since the open set
D \

⋃
α∈R+

Hα is also noninvariant, there exists a nonempty open ball B
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such that

B ⊂ D \
⋃

α∈R+

Hα and σα(B) ⊂ Rd \D for some α ∈ R+.

We choose B small enough that, for every α ∈ R+,

σα(B) ⊂ D or σα(B) ⊂ Rd \D.

Let I := {α ∈ R+ : σα(B) ⊂ Rd \D} and J := R+ \ I. Let f be a positive

continuous function on Rd \D, and denote H∆k
D f by h. Since B is ∆-regular

and h satisfies�
h(x)∆kϕ(x)wk(x) dx = 0 for every ϕ ∈ C∞c (B),

it follows from Theorem 1 that B is ∆k-regular and, for every x ∈ B,

(10) h(x) =
1√
wk(x)

(
H∆−q
B (h

√
wk)(x) +G∆−qB (

√
wkNh)(x)

)
.

For every x ∈ B, we define

g1(x) :=
∑
α∈J

|α|2k(α)

〈x, α〉2
h(σαx) and g2(x) :=

∑
α∈I

|α|2k(α)

〈x, α〉2
f(σαx).

It is clear that g2 is nontrivial and Nh = g1 + g2 on B. Now, assume that
h ∈ C∞(D). Then g1 ∈ C∞(B) and therefore G∆−qB (

√
wk g1) ∈ C∞(B).

Furthermore, as H∆−q
B (h

√
wk) ∈ C∞(B), it follows from (10) that

G∆−qB (
√
wk g2) ∈ C∞(B). Thus −(∆−q)G∆−qB (

√
wk g2) =

√
wk g2 ∈ C∞(B)

and so g2 ∈ C∞(B), a contradiction. Hence h is not infinitely differentiable
on D and consequently the Dunkl Laplacian ∆k is not hypoelliptic on D.
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