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On regular Stein neighborhoods of
a union of two totally real planes in C2

Tadej Starčič (Ljubljana)

Abstract. We find regular Stein neighborhoods of a union of totally real planes
M = (A+ iI)R2 and N = R2 in C2, provided that the entries of a real 2× 2 matrix A are
sufficiently small. A key step in our proof is a local construction of a suitable function ρ
near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong
deformation retraction to M ∪N .

1. Introduction. The class of Stein manifolds is one of the most im-
portant classes of complex manifolds. There are many characterizations of
Stein manifolds (see Remmert [16], Grauert [11] and Cartan [3]). Also many
classical problems in complex analysis are solvable on Stein manifolds (see
the monographs [13] and [14]). Therefore it is a very useful property for
a subset of a manifold to have open Stein neighborhoods.

On the other hand, one would also like to understand the topology or
the homotopy type of such neighborhoods. Moreover, approximation theo-
rems can be obtained if neighborhoods have further suitable properties (see
Chirka [4]). Interesting results in this direction for real surfaces immersed (or
embedded) into a complex surface were given by Forstnerič [7, Theorem 2.2]
and Slapar [17]. If π : S → X is a smooth immersion of a closed real sur-
face into a complex surface with finitely many special double points and
only flat hyperbolic complex points, then π(S) has a basis of regular Stein
neighborhoods; these are open Stein neighborhoods which admit a strong
deformation retraction onto π(S) (for the precise definition see Section 4).
The problem is to find a good plurisubharmonic function locally near ev-
ery double point [6, 7, 17] or hyperbolic complex point [17]. We add here
that elliptic complex points prevent the surface from having a basis of Stein
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neighborhoods due to the existence of Bishop discs [2], while the surface is
locally polynomially convex at hyperbolic points by a result of Forstnerič
and Stout [9].

In this paper we consider a union of two totally real planes M and N
in C2 with M ∩ N = {0}. Every such union is complex-linearly equivalent
to R2 ∪M(A), where M(A) is the real span of the columns of the matrix
A + iI. Moreover, A is a real matrix determined up to real conjugacy and
such that A−iI is invertible. By a result of Weinstock [18] each compact sub-
set of R2∪M(A) is polynomially convex if and only if A has no purely imagi-
nary eigenvalue of modulus greater than one. For matrices A that satisfy this
condition it is then reasonable to try to find regular Stein neighborhoods for
R2 ∪M(A). If A = 0 the situation near the origin coincides with the special
double point of a real surface immersed in a complex surface, as mentioned
above. When A is diagonalizable over R with Trace(A) = 0, a regular Stein
neighborhood basis has been constructed by Slapar [17, Proposition 3].

In Section 4 we prove that regular Stein neighborhoods of R2 ∪M(A) in
C2 can be constructed if the entries of A are sufficiently small. An important
step in our proof is a local construction of a suitable function ρ near the
origin, depending smoothly on the entries of A. Furthermore, ρ is strictly
plurisubharmonic in complex tangent directions to its sublevel sets, and
such that the sublevel sets shrink down to M ∪ N . The Levi form of ρ is
a homogeneous polynomial of high degree, and it is difficult to control its
sign for larger entries of A. It would also be interesting to generalize the
construction to the case of a union of two totally real subspaces of maximal
dimension in Cn, though the computations of the Levi form would quickly
get very lengthy and hard to handle.

Every Stein manifold of dimension n can be realized as a CW-complex
of dimension at most n (see Andreotti and Frankel [1]). A natural question
related to our problem is whether one can find regular Stein neighborhoods
of a handlebody obtained by attaching a totally real handle to a strongly
pseudoconvex domain. For results in this direction see the monograph [10]
and the papers by Eliashberg [5], Forstnerič and Kozak [8] and others. We
shall not consider this matter here.

2. Preliminaries. A real linear subspace in Cn is called totally real if it
contains no complex subspace. It is clear that the real dimension of a totally
real subspace in Cn is at most n.

Now let M and N be linear totally real subspaces of real dimension n
in Cn, intersecting only at the origin. The next lemma describes the basic
properties of the union of such subspaces. It is well known, and not difficult
to prove. We refer to [18] for the proof and a short note on linear totally
real subspaces in Cn.
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Lemma 2.1. Let M and N be linear totally real subspaces of real di-
mension n in Cn and with M ∩N = {0}. Then there exists a non-singular
complex linear transformation which maps N onto Rn ≈ (R × {0})n ⊂ Cn
and M onto M(A) = (A + iI)Rn, where A is a matrix with real entries
and such that i is not an eigenvalue of A. Moreover, any non-singular real
matrix S maps M(A) ∪ Rn onto M(SAS−1) ∪ Rn.

Our goal is to construct Stein neighborhoods of a union of totally real
planes M and N in C2, intersecting only at the origin (see Section 4). It
is easy to see that non-singular linear transformations map Stein domains
onto Stein domains and totally real subspaces onto totally real subspaces.
According to Lemma 2.1 the general situation thus reduces to the case
N = R2 ≈ (R × {0})2 ⊂ C2 and M = (A + iI)R2, where A satisfies one of
three conditions listed below. (In each case we also add an orthogonal com-
plement M⊥ to M , and the squared Euclidean distance function dM to M
in C2 = (R+ iR)2 ≈ R4; they are all given in corresponding real coordinates
(x, y, u, v) ≈ (x+ iy, u+ iv) ∈ C2.)

Case 1. A is diagonalizable over R, i.e. A =
[
a 0
0 d

]
, a, d ∈ R,

(2.1)

M = Span{(a, 1, 0, 0), (0, 0, d, 1)},
M⊥ = Span{(1,−a, 0, 0), (0, 0, 1,−d)},

dM (x, y, u, v) =
(u− dv)2

1 + d2
+

(x− ay)2

1 + a2
.

Case 2. A has complex eigenvalues (but i is not an eigenvalue), i.e.
A =

[
a −d
d a

]
, a, d ∈ R, d 6= 0, a2 + (1− d2)2 6= 0,

(2.2)

M = Span{(a, 1, d, 0), (−d, 0, a, 1)},
M⊥ = Span{(0,−d, 1,−a), (1,−a, 0, d)},

dM (x, y, u, v) =
(u− dy − av)2

1 + a2 + d2
+

(x− ay + dv)2

1 + a2 + d2
.

Case 3. A is non-diagonalizable, i.e. A =
[
a d
0 a

]
, a ∈ R, d 6= 0,

(2.3)

M = Span{(a, 1, 0, 0), (d, 0, a, 1)},

M⊥ = Span

{
(0, 0, 1,−a),

(
1,−a, −ad

1 + a2
,
−d

1 + a2

)}
,

dM (x, y, u, v) =
(u− av)2

1 + a2
+

((1 + a2)(x− ay)− dau− dv)2

(1 + a2)((1 + a2)2 + d2)
.

Our construction of Stein domains involves strictly plurisubharmonic
functions and strongly pseudoconvex domains. Here we recall the basic def-
initions and establish the notation.



4 T. Starčič

Given a C2-function ρ on a complex manifold X, we define the Levi form
by

L(z)(ρ;λ) = 〈∂∂ρ(z), λ ∧ λ̄ 〉, z ∈ X, λ ∈ T 1,0
z X ≈ TzX,

where T 1,0
z X is the eigenspace corresponding to the eigenvalue i of the un-

derlying almost complex structure operator J on the complexified tangent
bundle C⊗R TX. In local holomorphic coordinates z = (z1, . . . , zn) we have

L(z)(ρ;λ) =

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)λjλk, λ =

n∑
j=1

λj
∂

∂zj
.

A function ρ is strictly plurisubharmonic if L(z)(ρ; ·) is a positive definite
Hermitian quadratic form for all z ∈ X.

Let ρ : Cn → R be a C2 defining function for a domain Ω ⊂ Cn, i.e.
Ω = {z ∈ Cn : ρ(z) < c} and bΩ = {z ∈ Cn : ρ(z) = c} for some c ∈ R. If
also dρ(z) 6= 0 for every z ∈ bΩ, we say that Ω has C2-boundary.

A domain Ω ⊂ Cn is strongly Levi pseudoconvex if for every z ∈ bΩ the
Levi form of ρ is positive in all complex tangent directions to bΩ:

L(z)(ρ;λ) > 0, z ∈ bΩ, λ ∈ TC
z (bΩ) := Tz(bΩ) ∩ iTz(bΩ).

If ρ strictly plurisubharmonic in a neighborhood of bΩ, the domain Ω is said
to be strongly pseudoconvex.

Throughout this paper (z1, z2) will be the local holomorphic coordinates
and (x, y, u, v) the corresponding real coordinates on C2 with z1 = x + iy
and z2 = u+ iv. Holomorphic and antiholomorphic derivatives are denoted
by ∂

∂z1
= 1

2

(
∂
∂x − i

∂
∂y

)
, ∂
∂z1

= 1
2

(
∂
∂x + i ∂∂y

)
or briefly by ∂ρ

∂z1
= ρz1 , ∂ρ

∂z1
= ρz1 ,

and the same for ∂
∂z2

, ∂
∂z2

.

If ρ defines a domain Ω ⊂ C2, we have

TC
z (bΩ) =

{
(w1, w2) :

∂ρ

∂z1
(z)w1 +

∂ρ

∂z2
(z)w2 = 0

}
,

and we consider the following vector in the complex tangent direction to bΩ:

(2.4) λρ =

(
∂ρ

∂z2
,− ∂ρ

∂z1

)
∈ TC(bΩ).

A straightforward calculation then gives

L(ρ;λρ) = ρz1z1ρz2ρz2 + ρz2z2ρz1ρz1 − ρz2z1ρz1ρz2 − ρz1z2ρz2ρz1(2.5)

= ρz1z1 |ρz2 |2 + ρz2z2 |ρz1 |2 − 2 Re(ρz2z1ρz1ρz2).
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In terms of real partial derivatives, we have

L(ρ;λρ) =
1

16

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)((
∂ρ

∂u

)2

+

(
∂ρ

∂v

)2)
(2.6)

+
1

16

(
∂2ρ

∂u2
+
∂2ρ

∂v2

)((
∂ρ

∂x

)2

+

(
∂ρ

∂y

)2)
− 1

8

(
∂2ρ

∂x∂u
+

∂2ρ

∂y∂v

)(
∂ρ

∂x

∂ρ

∂u
+
∂ρ

∂y

∂ρ

∂v

)
+

1

8

(
− ∂2ρ

∂x∂v
+

∂2ρ

∂y∂u

)(
∂ρ

∂v

∂ρ

∂x
− ∂ρ

∂y

∂ρ

∂u

)
.

3. Local construction at the intersection. In this section we give a
local construction of regular Stein neighborhoods near M ∩N = {0} of the
union of two totally real planes M,N ⊂ C2. Our goal is to find a function
ρ : Cn → R satisfying the following properties:

(1) M ∪N = {ρ = 0} = {∇ρ = 0},
(2) Ωε = {ρ < ε} is strongly Levi pseudoconvex for any sufficiently small

ε > 0.

Observe that in this case the flow of the negative gradient vector field −∇ρ
gives a strong deformation retraction of Ωε onto M ∪N .

To fulfil conditions (1) and (2) one might take linear combinations of
products of squared Euclidean distance functions to M and N in C2 respec-
tively. However, the Levi form of such a function would be a polynomial
of high degree, and therefore difficult to control. To simplify the situation
we prefer to work with homogeneous polynomials. The following lemma is
a preparation for our key result, Lemma 3.3.

Lemma 3.1. Let A, M and dM be as in (2.1), (2.2) or (2.3), and let
N = R2 with dN (x, y, u, v) = y2 + v2. Then the function

ρ = dα+1
M dβN + dαMd

β+1
N , α, β ≥ 1,

has the following properties:

(1) M ∪N = {ρ = 0} = {∇ρ = 0}.
(2) There exist constants r, ε0 > 0 such that ρ is strictly plurisubhar-

monic on ({dM < ε0} ∪ {dN < ε0}) \ (M ∪N ∪Br), where Br is the
ball centered at 0 and with radius r. In addition, for α = β = 1 the
Levi form of ρ is positive on a neighborhood of (M ∪N) \ {0}, and
for α, β ≥ 2 it vanishes on M ∪N .

(3) For any ε > 0 and Ωε = {ρ < ε} the Levi form of ρ in the complex
tangent direction to the boundary bΩε is



6 T. Starčič

L(ρ;λρ) =
1

k
d3α−2M d3β−2N P, λρ ∈ TC(bΩε),

where k is a positive polynomial in the entries of A, and P is a
homogeneous polynomial of degree 10 in the variables x, y, u, v and
with coefficients depending polynomially on the entries of A.

Proof. Property (1) is an immediate consequence of the definition of ρ.
Next, we fix m,n ≥ 1, and for any λ =

∑2
j=1 λj

∂
∂zj
∈ T (C2) we obtain

L(dmMd
n
N ;λ) = mdm−1M dnNL(dM ;λ) + (m− 1)mdm−2M dnN

∣∣∣∣ 2∑
j=1

∂dM
∂zj

λj

∣∣∣∣2(3.1)

+ 2mndn−1N dm−1M Re

(( 2∑
j=1

∂dM
∂zj

λj

)( 2∑
j=1

∂dN
∂zj

λj

))

+ ndn−1N dmML(dN ;λ) + (n− 1)ndn−2N dmM

∣∣∣∣ 2∑
j=1

∂dN
∂zj

λj

∣∣∣∣2.
It is well known and easy to check that the functions dM and dN are

strictly plurisubharmonic. Moreover, there exists a constant c > 0 such that

L(dM ;λ) ≥ c|λ|2, L(dN ;λ) ≥ c|λ|2, λ ∈ T (C2).

For some constant b > 0 we also have∣∣∣∣( 2∑
j=1

∂dM
∂zj

λj

)( 2∑
j=1

∂dN
∂zj

λj

)∣∣∣∣ ≤ b√dNdM |λ|2, λ ∈ T (C2).

Therefore, if we are sufficiently far away from N and close enough to M , but
not on M , the term mdm−1M dnNL(dM ;λ) in (3.1) will dominate the third term
in (3.1), and will thus make L(dmMd

n
N ;λ) positive there, for all λ. Similarly,

the term ndn−1N dmML(dN ;λ) makes L(dmMd
n
N ;λ) positive, provided that we are

far away from M and close to N , but not on N . Hence ρ = dα+1
M dβN+dαMd

β+1
N

satisfies the first part of (2). Clearly, since ∇dM vanishes on M and ∇dN
vanishes on N , the Levi form of ρ is positive on (M ∪N)\{0} for α = β = 1,
and vanishes on M ∪N for α, β ≥ 2. This concludes the proof of (2).

To prove (3) we need to factor L(ρ;λρ) (see (2.5)) into a product of

d3α−2M d3β−2N and a polynomial in x, y, u, v with coefficients depending on the
entries of A. Here we have

λρ =
(
(α+ 1)dβNd

α
M + αdβ+1

N dα−1M

)
λdM(3.2)

+
(
(β + 1)dβNd

α
M + βdβ−1N dα+1

M

)
λdN .

Firstly, since
∑2

j=1
∂dM
∂zj

λdM j = 0 and
∑2

j=1
∂dN
∂zj

λdN j = 0, we can clearly

factor
∑2

j=1
∂dM
∂zj

λρj and
∑2

j=1
∂dN
∂zj

λρj respectively into a product of dαM or

dβN and a polynomial in x, y, u, v.
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Next, we observe that d2α−2M (respectively d2β−2N ) factors out of L(dM ;λρ)
(respectively L(dN ;λρ)), trivially. An easy and straightforward computation
by using (2.6) shows further that L(dN ;λdN ) = 1

2dN , while if dM is as in
case (2.1), (2.2) or (2.3), we obtain, respectively,

L(dM ;λdM ) =



1
2dM ,

((1 + a2 + d2)2 − 4d2)

2(1 + a2 + d2)2
dM ,

(1 + a2)2

2((1 + a2)2 + d2)
dM .

Hence d2α−1M and d2β−1N factor out of L(dM ;λρ) and L(dN ;λρ), respectively.

From (3.1) applied for m = α + 1, n = β and m = α, n = β + 1 it now

follows immediately that L(ρ;λρ) factors into a product of d3α−2M d3β−2N and
a polynomial in x, y, u, v. However, there are terms of L(ρ;λρ) which include
d3α+3
M as a factor. For dM as in case (2.1) we then see that L(ρ;λρ) is of the

form

(3.3) L(ρ;λρ) =
1

(1 + a2)5(1 + d2)5
d3α−2M d3β−2N P,

where P is a homogeneous polynomial of degree 10 in x, y, u, v and the
coefficients of P are polynomials in a, d. If dM is of the form (2.2) or (2.3),
we have

(3.4) L(ρ;λρ) =
1

(1 + a2 + d2)5
d3α−2M d3β−2N P

and

(3.5) L(ρ;λρ) =
1

(1 + a2)5((1 + a2)2 + d2)5
d3α−2M d3β−2N P,

respectively, where P again has all the properties required.

We note here that by choosing suitable substitutions, it is possible to
compute the polynomial P in Lemma 3.1(3) explicitly, but on the other
hand this might involve very long expansions of polynomials. (See also the
proof of Lemma 3.3 for this approach in the special case A = 0.)

Before stating our key lemma we prove the following result on homoge-
neous polynomials.

Lemma 3.2. Let Q,R ∈ R[x1, . . . , xm] be real homogeneous polynomials
in m variables and of even degree s. Assume further that Q vanishes at the
origin and is positive elsewhere. Then Q ≥ ε0|R| for any sufficiently small
constant ε0 > 0 with equality precisely at the origin.

Proof. We denote by ‖x‖ =
√
x21 + · · ·+ x2m the standard Euclidean

norm of x = (x1, . . . , xm) ∈ Rm.
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Since Q vanishes at the origin and is positive elsewhere, there exists a
constant c > 0 such that Q(x) ≥ c for all x on the unit sphere, i.e. ‖x‖ = 1.
Also, there exists a constant C > 0 such that |R(x)| ≤ C for any x on the
unit sphere.

However, homogeneous polynomials are uniquely determined by their
values on the unit sphere. Thus Q(x) ≥ c‖x‖s and |R(x)| ≤ C‖x‖s for
any x, and with equalities precisely at the origin. The conclusion follows.

The following lemma is essential in the proof of Theorem 4.1, where we
construct Stein neighborhoods.

Lemma 3.3. Let A, M , dM , N and dN be as in Lemma 3.1, and let

ρ = d2MdN + dMd
2
N .

If the entries of A are sufficiently close to zero, then for any ε > 0 the
sublevel set Ωε = {ρ < ε} is strongly Levi pseudoconvex.

Proof. By Lemma 3.1 the Levi form of ρ = d2MdN+dMd
2
N in the complex

tangent direction λρ (see (2.4)) to the boundary of Ωε = {ρ < ε} is

(3.6) L(ρ;λρ) =
1

k
dMdNP, λρ ∈ TC(bΩε),

where k is a positive polynomial in a, d (see (3.3), (3.4) or (3.5)), and P
is a homogeneous polynomial of degree 10 in x, y, u, v. Furthermore, the
coefficients of P are polynomials in a, d; these are the entries of A (see (2.1),
(2.2) or (2.3)).

We now write P as a sum of two polynomials in x, y, u, v:

(3.7) P = Q+R,

where the coefficients of Q do not depend on a or d, and the coefficients of
R are polynomials in a, d without constant term.

Observe further that for a = d = 0 the Levi form in (3.6) is equal to
the product (x2 +u2)(y2 + v2)Q. On the other hand, it is precisely the Levi
form of the function

ρ0(x, y, u, v) = (x2 + u2)2(v2 + y2) + (x2 + u2)(v2 + y2)2

in the complex tangent direction λρ0 to the boundary of its sublevel set,
which means that

(3.8) L(ρ0;λρ0) = (x2 + u2)(y2 + v2)Q.

To simplify the computation of the Levi form of ρ0 by using (2.5) and
(3.1), we now replace certain expressions by new variables. We introduce
the notation

(3.9) V = v2 + y2, Z = u2 + x2, ω = V + Z,
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and we apply (3.1) for dM = Z, dN = V in the cases m = 2, n = 1 and
m = 1, n = 2. After adding the expressions obtained and slightly regrouping
like terms, we get

L(ρ0;λ) = (2ZV + V 2)L(Z;λ) + (Z2 + 2V Z)L(V ;λ)(3.10)

+ (4Z + 4V ) Re

(( 2∑
j=1

∂Z

∂zj
λj

)( 2∑
j=1

∂V

∂zj
λj

))

+ 2V

∣∣∣∣ 2∑
j=1

∂Z

∂zj
λj

∣∣∣∣2 + 2Z

∣∣∣∣ 2∑
j=1

∂V

∂zj
λj

∣∣∣∣2.
Next, observe that

∂Z

∂z1
= x,

∂Z

∂z2
= u,

∂V

∂z1
= −iy, ∂V

∂z2
= −iv,

and by (2.4),

(3.11) λZ = (u,−x), λV = (−iv, iy).

By taking α = β = 1 and dM = Z, dN = V in (3.2), we further deduce that

(3.12) λρ0 = (Z + ω)V λZ + (V + ω)ZλV .

An easy computation gives

(3.13) L(V ;λ) = L(Z;λ) = 1
2 |λ|

2, λ ∈ T (C2).

By combining (3.9), (3.11), (3.12), (3.13), and by regrouping terms, we now
get

L(V ;λρ0) = 1
2

(
(Z + ω)2V 2(u2 + x2) + (V + ω)2Z2(v2 + y2)

)
(3.14)

= 1
2

(
(Z + ω)2V 2Z + (V + ω)2Z2V

)
= 1

2V Z
(
V Z(Z + V ) + 4ωV Z + ω2(V + Z)

)
= 1

2V Zω(5V Z + ω2).

It is also easy to calculate

(3.15)

2∑
j=1

∂Z

∂zj
λρ0j = −i(V + ω)Z∆,

2∑
j=1

∂V

∂zj
λρ0j = i(Z + ω)V ∆,

where ∆ = xv − uy. By using (3.9) and (3.15) we can regroup and simplify
the sum of the last three terms in (3.10). We obtain

−4ω(V + ω)(Z + ω)V Z∆2 + 2V ((V + ω)Z∆)2 + 2Z((Z + ω)V ∆)2

= −2V Z∆2
(
2ω(V + ω)(Z + ω)− (Z(V + ω)2 + V (Z + ω)2)

)
= −2V Z∆2

(
2ω(V Z + ω(V + Z) + ω2)− ((ZV + ω2)(V + Z) + 4ωV Z)

)
= −2V Z∆2

(
2ω(V Z + 2ω2)− (5ωV Z + ω3)

)
= −6V Zω∆2(ω2 − V Z).
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Finally, we have

L(ρ0;λρ0) = 1
2V Zω(5V Z + ω2)(4ZV + V 2 + Z2)− 6V Zω∆2

(
ω2 − V Z

)
= 1

2V Zω
(
(5V Z + ω2)(2ZV + ω2)− 12∆2(ω2 − V Z)

)
.

After replacing ω, V, Z,∆ in the above expression back by the variables
x, y, u, v, and comparing them to (3.8), we obtain the factorization

(3.16) Q(x, y, u, v) = 1
2(x2 + y2 + u2 + v2)P0(x, y, u, v),

where P0 is a homogeneous polynomial of degree 8 in x, y, u, v.

Next, we examine the sign of the polynomial P0. We use the Cauchy–
Schwarz inequality

∆2 = (xv − yu)2 ≤ (x2 + u2)(y2 + v2) = V Z

to see that

P0 = (5V Z + ω2)(2ZV + ω2)− 12∆2
(
ω2 − V Z

)
≥ 22(V Z)2 − 5(V Z)ω2 + ω4 ≥ 22

(
V Z − 5

44ω
2
)2

+ 63
88ω

4.

This proves that P0 and hence also Q (see (3.16)) vanish at the origin and
are positive everywhere else. Moreover,

(3.17) P0(x, y, u, v) ≥ 63
88(x2 + y2 + u2 + v2)4.

We now show that the polynomial P in (3.7) vanishes at the origin and is
positive elsewhere, provided that the entries a, d of A are chosen sufficiently
small. Recall that the polynomial R (see (3.7)) is of the form

(3.18) R(x, y, u, v) =
∑
|α|=10

Sα(a, d)xα1yα2uα3vα4 ,

where α = (α1, . . . , α4) is a multiindex, and Sα is a polynomial in a, d.
Remember also that all Sα are without constant terms and hence Sα(0, 0)
= 0. We denote by N0 the number of terms of R. Since Q is a homogeneous
polynomial of degree 10 (see (3.16)), which is positive everywhere except at
the origin, we can use Lemma 3.2 to get a constant ε0 > 0 such that

(3.19)
1

N0
Q ≥ ε0|xα1yα2uα3vα4 |, α = (α1, . . . , α4), |α| = 10,

where equality holds precisely at the origin. By a continuity argument, we
also have |Sα(a, d)| < ε0 for all a, d small enough, and uniformly for all
coefficients Sα of R. It then follows from (3.19) that for all sufficiently small
a and d, we have Q ≥ |R|, with equality precisely at the origin. This implies
that P vanishes at the origin and is positive elsewhere. Finally, the Levi
form of ρ (see (3.6)) is then positive in the complex tangent direction to bΩε
for any ε.
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Remark 3.4. By analyzing the part of the proof of Lemma 3.3 where
Lemma 3.2 was applied, we can tell how small the entries of the matrix A
in the assumption of Lemma 3.3 can be. By combining (3.16) and (3.17) we
see that

(3.20) Q(x, y, u, v) ≥ 63
176(x2 + y2 + u2 + v2)5.

As we expect the entries a, d of A to be smaller than one, we can roughly
estimate the coefficients Sα of R (see (3.7) and (3.18)) by |Sα(a, d)| ≤
Nα max{|a|, |d|}, where Nα denotes the sum of the moduli of the coefficients
of Sα. Thus

(3.21) N1N0 max{|a|, |d|}(x10 + y10 + u10 + v10) ≥ |R(x, y, u, v)|,
where N1 = max|α|=10Nα and N0 is the number of terms of R. It follows

from (3.20) and (3.21) that for any |a|, |d| < 63
176N0N1

we have Q ≥ |R|, with
equality precisely at the origin.

Remark 3.5. The conclusion of Lemma 3.3 holds, for instance, also for
the function d2Md

2
N + dMd

3
N . One might expect to prove even more. But on

the other hand, it is not clear at the moment how that would improve the
conclusion of the lemma for larger entries of A.

4. Regular Stein neighborhoods of the union of totally real
planes. A system {Ωε}ε∈(0,1) of open Stein neighborhoods of a set S in a
complex manifold X is called regular if for every ε ∈ (0, 1) we have

(1) Ωε =
⋃
t<εΩt, Ωε =

⋂
t>εΩt,

(2) S =
⋂
ε∈(0,1)Ωε is a strong deformation retract of Ωε.

Theorem 4.1. Let A be a real 2×2 matrix such that A−iI is invertible.
Further, let M = (A+ iI)R2 and N = R2. If the entries of A are sufficiently
small, then M∪N has a regular system of strongly pseudoconvex Stein neigh-
borhoods in C2. Moreover, away from the origin the neighborhoods coincide
with sublevel sets of the squared Euclidean distance functions to M and N ,
respectively.

As noted in Section 2, the general case of the union of two totally real
planes intersecting at the origin reduces to the situation described in Theo-
rem 4.1. Furthermore, we may assume that M is as in one of the three cases
(2.1), (2.2) or (2.3).

Proof of Theorem 4.1. Lemma 3.3 furnishes a function ρ = d2MdN +
dMd

2
N , where dM and dN respectively are squared Euclidean distance

functions to M and N in C2. For any ε > 0, the sublevel set Ωε =
{ρ < ε} is strongly Levi pseudoconvex. Also, the Levi form of ρ is posi-
tive on (M ∪ N) \ {0} and we have {ρ = 0} = {∇ρ = 0} = M ∪ N (see
Lemma 3.1).
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We proceed by patching ρ away from the origin with the squared distance
functions. First, we choose open balls Br and B2r centered at 0 and with
radii r and 2r. Next, for every ε > 0 we set

Tε,M = {z ∈ C2 \Br : dM (z) < ε}, Tε,N = {z ∈ C2 \Br : dN (z) < ε}

and observe that for ε small enough the union Tε = Tε,M ∪ Tε,N is disjoint.
We now glue the function ρ on B2r with the restrictions ρM = dM |Tε,M and
ρN = dN |Tε,N :

ρ0(z) = θ(z)ρ(z) + (1− θ(z))ρM (z) + (1− θ(z))ρN (z), z ∈ B2r ∪ Tε.

Here θ is a smooth cut-off function which is supported on B2r and equals
one on Br. More precisely, θ = χ(|z1|2 + |z2|2), where χ is another cut-off
function with χ(t) = 1 for t ≤ r, and χ(t) = 0 for t ≥ 2r. Observe that ρ0
coincides with ρ on Br, and with dM or dN on Tε,M \ B2r and Tε,N \ B2r

respectively.

It is immediate that {ρ0 = 0} = M∪N and that ∇ρ0 vanishes on M∪N .
On (B2r \Br) \ (M ∪N), but close to M ∪N , we have ∇θ close to tangent
directions to M ∪N , and ∇ρM and ∇ρN are close to normal directions to
M and N respectively. After possibly choosing ε smaller and shrinking Tε,
we get {∇ρ0 = 0} = M ∪ N . Finally, if ε is sufficiently small, the flow of
the negative gradient vector field −∇ρ0 gives us a deformation retraction of
Ωε = {ρ0 < ε} onto M ∪N .

It remains to verify that Ωε is indeed Stein, provided that ε is chosen
small enough. Since ρ, dM , dN and their gradients all vanish on M ∪N , for
z ∈M ∪N and any λ ∈ Tz(C2) we have

L(z)(ρ0;λ) = θ(z)L(z)(ρ;λ) + (1− θ(z))L(z)(ρM ;λ) + (1− θ(z))L(z)(ρN ;λ).

The Levi form of ρ0 is thus positive on (M ∪N) \ {0}. By choosing ε small
enough, it is then positive on Ωε \ Br. Furthermore, as ρ0 coincides with ρ
on Br, the Levi form of ρ0 is positive in the complex tangent direction to
bΩε (by Lemma 3.3).

We now use a standard argument to get a strictly plurisubharmonic
function in all directions also on bΩε ∩ Br. We set a new defining function
for Ωε:

(4.1) ρ̃(z) = (ρ0(z)− ε)eC(ρ0(z)−ε),

where C is a large constant (to be chosen). By computation we get

L(z)(ρ̃;λ) = L(z)(ρ0;λ) + 2C

∣∣∣∣ 2∑
j=1

∂ρ0
∂zj

(z)λj

∣∣∣∣2, z ∈ bΩε, λ ∈ Tz(C2).

After taking C large enough the Levi form of ρ̃ becomes positive in all direc-
tions on bΩε. This proves strong pseudoconvexity ofΩε. Since the restrictions
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of plurisubharmonic functions to analytic sets are plurisubharmonic and sat-
isfy the maximum principle (see [12]), we cannot have any compact analytic
subset of positive dimension in C2. As Ωε ⊂ C2 is strongly pseudoconvex, it
is Stein by a result of Grauert (see [11, Proposition 5]).

Remark 4.2. The assumption of taking the entries of A in Theorem 4.1
sufficiently small is essential, and enables the application of Lemma 3.3; see
Remark 3.4 for an estimate of how small the entries of A can be.

Lemma 3.3 can also be applied to give an extension of a result on certain
closed real surfaces immersed into a complex surface ([7, Theorem 2.2] and
[17, Theorem 2]).

Proposition 4.3. Let π : S → X be a smooth immersion of a closed
real surface into a Stein surface satisfying the following properties:

(1) π has only transverse double points (no multiple points) p1, . . . , pk,
and in a neighborhood of each point pj (j ∈ {1, . . . , k}) there exist
holomorphic coordinates ψj : Uj → Vj ⊂ C2 such that ψj(pj) = 0,

ψj(S̃ ∩Uj) = (R2∪Mj)∩Vj, where S̃ = π(S) and Mj = (Aj + iI)R2

with Aj − iI invertible.
(2) π has finitely many complex points pk+1, . . . , pm, which are flat hy-

perbolic.

If the entries of Aj for every j ∈ {1, . . . , k} are sufficiently close to zero,

then S̃ has a regular strongly pseudoconvex Stein neighborhood basis in X.

The proofs given in [7, Theorem 2.2] and [17, Theorem 2] apply mutatis
mutandis to our situation. For completeness we include a sketch.

Proof of Proposition 4.3. By Lemma 3.3 for every j ∈ {1, . . . , k} there
exists a smooth non-negative function ρj : Vj → R which is strictly plurisub-
harmonic away from the origin and whose sublevel sets {ρj < ε} are strongly
Levi pseudoconvex. Furthermore, {ρj = 0} = {∇ρj = 0} = (R2 ∪Mj) ∩ Vj
(see also Lemma 3.1). Next we set ϕj = ρj ◦ ψj : Uj → R and observe that
ϕj inherits the above properties from ρj .

By [17, Lemma 8] for every j ∈ {k + 1, . . . ,m} there exists a small
neighborhood Uj of pj and a smooth non-negative function ϕ : Uj → R
which is strictly plurisubharmonic on Uj \ {pj} and such that {ϕj = 0} =

{∇ϕj = 0} = S̃ ∩ Uj .
Further, let ϕ0 = dS̃ and dp be the squared distance functions to S̃ and

to p ∈ S̃ respectively in X, relative to some Riemannian metric on X. It is
well known that the squared distance function to a smooth totally real sub-
manifold is strictly plurisubharmonic in a neighborhood of the submanifold
(see e.g. [17, Proposition 2] or [15, Proposition 4.1]). Therefore ϕ0 is strictly
plurisubharmonic in some open neighborhood U0 of S̃ \ {p1, . . . , pm}.
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We now patch the functions ϕj for all j ∈ {0, 1, . . . ,m}. First, we denote

U =
⋃m
j=0 Uj and let r : U → S̃ be defined as r(z) = p if dS̃(z) = dp(z).

The map r is well defined and smooth, provided that the sets Uj are chosen
small enough. Next, we choose a partition of unity {θj}0≤j≤m subordinated

to {Uj ∩ S̃}0≤j≤m, and such that for every j ∈ {1, . . . ,m} the function θj
equals one near pj . Finally, we define

ρ(z) =
m∑
j=0

θj(r(z))ϕj(z), z ∈ U.

We see that S̃ = {ρ = 0} and ∇ρ(z) =
∑m

j=0 θj(r(z))∇ϕj(z) for all z ∈ U ,
thus we further have

L(p)(ρ;λ) =

m∑
j=0

θj(p)L(p)(ϕj ;λ), p ∈ S̃, λ ∈ Tp(U).

After shrinking U we deduce that {∇ρ = 0} = S̃ and ρ is strictly plurisub-
harmonic away from the points p1, . . . , pm.

It remains to show thatΩε = {ρ < ε} are Stein domains. Since ρ coincides
with ϕj near pj for every j ∈ {1, . . . ,m}, each Ωε is strongly Levi pseudocon-
vex near pj . For a given ε we can, much as in the proof of Theorem 4.1 (see
(4.1)), choose a positive constant C such that ρ̃(z) =

(
ρ(z) − ε

)
eC(ρ(z)−ε)

is a defining function for Ωε, and ρ̃ is strictly plurisubharmonic on bΩε.
The function ρ̃ might not be strictly plurisubharmonic only near p1, . . . , pm.
Since X is Stein, we globally have a strictly plurisubharmonic function,
and by standard cutting and patching techniques (see e.g. [14]) we obtain a
strictly plurisubharmonic exhaustion function for Ωε. By Grauert’s theorem
[11, Theorem 2], Ωε is then Stein.
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