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On the volume of a pseudo-effective class and semi-positive
properties of the Harder—Narasimhan filtration on
a compact Hermitian manifold

ZHIwEI WANG (Beijing)

Abstract. This paper divides into two parts. Let (X,w) be a compact Hermitian
manifold. Firstly, if the Hermitian metric w satisfies the assumption that 80w” = 0 for all k,
we generalize the volume of the cohomology class in the Kéhler setting to the Hermitian
setting, and prove that the volume is always finite and the Grauert—Riemenschneider type
criterion holds true, which is a partial answer to a conjecture posed by Boucksom. Secondly,
we observe that if the anticanonical bundle K)}l is nef, then for any € > 0, there is a smooth
function ¢. on X such that we := w+ i@gqﬁs > 0 and Ricci(w.) > —ewe. Furthermore, if w
satisfies the assumption as above, we prove that for a Harder—-Narasimhan filtration of T'x
with respect to w, the slopes p., (F;/Fi—1) are nonnegative for all i; this generalizes a result
of Cao which plays an important role in his study of the structures of Kahler manifolds.

1. Introduction. In this paper, we recall some results in Kéhler ge-
ometry and study to what extent they can be generalized to the case of
Hermitian manifolds.

Let L be a holomorphic line bundle on a compact complex manifold X.
One defines the volume of L as

|
vol(L) := lim sup %hO(X, kL).
—00

It is well-known that if vol(L) > 0, then L is big. From [17], one knows
that if vol(L) > 0, the limsup is in fact a limit, so that vol(L) can be seen
as a measure of the bigness of L. From the definition, vol(kL) = k" vol(L).
Thus one can also define the volume of a Q-line bundle by setting vol(L) =
k=" vol(kL) for some k such that kL is an actual line bundle.
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Boucksom [4] introduced a formula expressing the volume of L in terms
of c1(L):
vol(L) = max S T
X
for T ranging over the closed positive (1, 1)-currents in the cohomology class
c1(L), if L is not pseudo-effective, then we let vol(L) = 0. Here T, is the
absolutely continuous part of the Lebesgue decomposition of 7" on X. Fur-
thermore, the volume of a line bundle is generalized to cohomology classes:
to cohomology class a € H1 (X, R), we define

vol(a) := sup S T
T x
for T' ranging over the closed positive (1, 1)-currents in the class «, in case «
is pseudo-effective; otherwise we let vol(a) = 0. The Kéhler property plays
an important role in the proof of the finiteness of the above volumes. Here
we mention a couple of results in [4]:

(a) If a € HYY(X,R) is nef, then vol(a) = ™.
(b) A class a € HV(X,R) is big if and only if vol(a) > 0.

In fact, (b) is a Grauert-Riemenschneider type criterion for bigness. For
completeness let us recall the Grauert-Riemenschneider conjecture (now it
is a theorem): a compact complex variety Y is Moishezon if and only if there
is a proper nonsingular modification X — Y and a line bundle L over X such
that the curvature i@, is > 0 on a dense open subset. A compact complex
manifold is said to be Moishezon if it is birational to a projective manifold.
Siu [31] first proved this conjecture by getting a stronger result that X is
Moishezon as soon as i®p > 0 everywhere and i@; > 0 at least at one
point. Later Demailly [12 [13] gave another proof of a stronger result than
the conjecture by using his holomorphic Morse inequalities. Also Berndtsson
[1] gave another proof. It is proved in [24] that a compact complex manifold
X is Moishezon if and only if X admits an integral Kahler current, i.e. there
exists a big line bundle L on X. Now one can see that (b) above is obviously
a generalization of the Grauert—Riemenschneider criterion. In fact, it gives
a criterion for a transcendental class to be big rather than an integral class.

To conclude, the philosophy of the study of the volumes defined above
is to ask for the existence of a Kahler current in a class « provided that
vol(a) > 0. In [4], the following conjecture was posed.

CONJECTURE 1.1. If a compact compler manifold X carries a closed
positive (1,1)-current T with § Ty > 0, then X is in the Fujiki class.

A compact complex manifold X is said to be in the Fujiki class if it is
bimeromorphic to a Kéhler manifold. Demailly [I5] proved that a compact
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complex manifold X is in the Fujiki class if and only if it carries a Kéahler
current.

Throughout this paper, we say that a Hermitian metric w satisfies as-
sumption (x) if 90w* =0 for all k € {1,...,n — 1}.

Now let (X,w) be a compact Hermitian manifold, and a an arbitrary
cohomology class « in H;g (X,R). One defines the volume of « as

vol(a) := sup S T
T x

for T ranging over the closed positive (1, 1)-currents in the class «, in case
« is pseudo-effective; if it is not, we set vol(a) = 0. We will see that the
supremum involved is always finite under our assumption (*). It is trivial
that the volume vol(a) of a big class « is nonzero. Firstly, we will prove that
(a) also holds when (X,w) is a compact Hermitian manifold endowed with
a Gauduchon metric w satisfying assumption (x). Furthermore, by adapt-
ing arguments from [4] and [10], we are able to prove the following partial
solution to Conjecture (1.1

THEOREM 1.2. Let X be a compact complex manifold, and let w be a
Gauduchon metric on X satisfying assumption (). If X carries a pseudo-
effective class o € H;g (X,R) such that vol(«) > 0, then X is Kdhler.

Thus for the same reason as in [4], this definition is compatible with the
previous one when X is assumed to satisfy assumption (x).

Since every compact complex surface always carries a Gauduchon metric
satisfying assumption (%), Theorem states that the Grauert—Riemen-
schneider type criterion always holds true on compact complex surfaces,
which was proved in [4] by a different argument.

Chiose [I0] proved that if X is a compact complex manifold, which ad-
mits a Gauduchon metric satisfying assumption (%), and a nef class a €
H;g(X, R) has positive volume, then « is a big class and X is in the Fujiki
class, and finally Ké&hler. The main difference between our Theorem and
Chiose’s result is that we only assume that « is a pseudo-effective class. In
general, the nef cone is only a subset of the pseudo-effective cone.

Recently, there has been important progress on the study of the structure
of compact Kéhler manifolds with nef anticanonical bundles. In [28] 29)], it is
proved that if X is a compact Kéhler manifold with K nef, then 7 (X) has
polynomial growth, and as a consequence it has a nilpotent subgroup of finite
index. In [6, [7], it is proved that a compact Kéhler manifold X with K
nef is projective and rationally connected if and only if H(X, (T%)®™) =0
for all m > 1. This result is a partial solution to a conjecture attributed
to Mumford. The following two properties are crucial to prove the above
results.
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(1) Let (X,w) be a compact Kahler manifold, where {w} is the Kéahler
class on X. Then K)_(l is nef if and only if for every ¢ > 0, there
exists a Kihler metric w. = w + i0d¢. in the cohomology class {w}
such that Ricci(w:) > —ews.

(2) Let (X,w) be a compact Kihler manifold with Ky nef. Let

0=FyCFLC---CFs=Tx
be a Harder—Narasimhan filtration of Tx with respect to w. Then
tew(Fi/Fi—1) >0 for all i.

Since on a compact Hermitian manifold, K)_(1 can also be defined, and there
is an analogue of the Harder—Narasimhan filtration, it is natural to ask
whether we can get similar characterizations of nef K;(l and the Harder—
Narasimhan filtration on a compact Hermitian manifold. In this paper, we
prove

THEOREM 1.3. Let (X,w) be a compact Hermitian manifold. Then the
following properties are equivalent:
(i) Ky' is nef.
(ii) For every e > 0, there exists a smooth real function ¢ such that
W, = w +100¢: > 0 and Ricci(wy.) > —ewy, -

THEOREM 1.4. Let (X,w) be a compact complex manifold with a Gaudu-
chon metric w satisfying assumption (x). Assume that K;(l is nef. Let

0=FCF C---CFs=Tx
be a Harder—Narasimhan filtration of Tx with respect to w. Then
po(Fi/Fiz1) >0 for all i.

The structure of this paper is as follows. In Section [2| we prepare the
technical preliminaries. In Section [3| we prove that for any nef class a €
Hé’g (X, R), the volume satisfies vol(a) = a". This is a generalization of [4]
Theorem 4.1]. In Sections and @ we prove Theorems and

respectively.

2. Technical preliminaries. Let X be a compact complex n-fold. We
will use dd® to denote the operator 0.

DEFINITION 2.1. A closed real (1,1)-current 7" on X is said to be almost
positive if T > ~ for some smooth real (1,1)-form . A function ¢ € L{ (X)
is called almost plurisubharmonic if its complex Hessian dd€p is an almost
positive current.

We say that a function ¢ on X has analytic singularities along a sub-
scheme V() (corresponding to a coherent ideal sheaf .#) if there exists
¢ > 0 such that ¢ is locally congruent to §log(3"|fi|*) modulo smooth
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functions, where f1,..., f are local generators of .#. Note that a function
with analytic singularities is automatically almost plurisubharmonic, and is
smooth away from the support of V(.%).

We say an almost positive (1, 1)-current has analytic singularities if we
can find a smooth form # and a function ¢ on X with analytic singularities
such that T' = 0 + dd“p. Note that one can always write T' = 0 + dd‘p with
0 smooth and ¢ almost plurisubharmonic on a compact complex manifold.

2.1. 00-cohomology. Let X be an arbitrary compact complex mani-
fold of complex dimension n. Since the d9-lemma does not hold in general,
it is better to work with d9-cohomology which is defined as

Hg%q(X, (C) = (COO<X’ Apv‘IT;‘() N ker d)/agcw()g Ap_l’q_lT;()_

By means of the Frolicher spectral sequence, one can see that H g’g (X,C)
is finite-dimensional and can be computed either with spaces of smooth
forms or with currents. In both cases, the quotient topology of H g’g(X ,C)
induced by the Fréchet topology of smooth forms or by the weak topology of
currents is Hausdorff, and the quotient map under this Hausdorff topology
is continuous and open.

In this paper, we will just need the (1, 1)-cohomology space H;g(X, C).
The real structure on the space of (1,1)-smooth forms (or (1,1)-currents)

induces a real structure on Hgg(X, C), and we denote by H(;g(X, R) the

space of real points. A class a € H;’gl (X,C) can be seen as an affine space

of closed (1, 1)-currents. We denote by {T'} € H;g(X, C) the class of the
current T'. Since ¢00 is a real operator (on forms or currents), if 7" is a real
closed (1, 1)-current, its class {T'} lies in H;’gl (X,R) and consists of all the
closed currents T+ i00p where ¢ is a real current of degree 0.

DEFINITION 2.2. Let (X,w) be a compact Hermitian manifold. A coho-
mology class a € H;LI(X, R) is said to be pseudo-effective if it contains a
positive current; « is nef if, for each € > 0, o contains a smooth form 6, with
0. > —ew; «v is big if it contains a K&hler current, i.e. a closed (1, 1)-current
T such that T' > ew for € > 0 small enough. Finally, « is a Kdhler class if it
contains a Kéhler form.

Since any two Hermitian forms w; and w9 are commensurable (i.e. C L,
< w; < Cwy for some C' > 0), these definitions do not depend on the choice
of w.

2.2. Lebesgue decomposition of a current. In this subsection, we
refer to [4,26]. For a measure ;o on a manifold M we denote by piac and figing
the uniquely determined absolute continuous and singular measures (with
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respect to the Lebesgue measure on M) such that

B = Hac + HUsing,
which is called the Lebesgue decomposition of p. If T is a (1,1)-current of
order 0 on X, written locally T = i) Tj;dz; A dz;, we define its absolutely
continuous and singular components by

The = Z.Z(Tz’j>acdzi A dzj: Tsing = iZ(Tij)singdZi A dzj-
The Lebesgue decomposition of T is then
T ="Ta+ Tsing-

If T"> 0, it follows that T., Tsing > 0. Moreover, if T' > « for a continuous
(1,1)-form c, then The > @, Tying > 0. The Radon-Nikodym theorem ensures
that T, is (the current associated to) a (1,1)-form with L  coefficients.
The form T),(x)" exists for almost all x € X and is denoted T}%.

Note that in general T, is not closed, even when T is, so that the decom-
position does not induce a significant decomposition at the cohomological
level. However, when T is a closed positive (1, 1)-current with analytic singu-
larities along a subscheme V', the residual part R in the Siu decomposition
(cf. [30]) of T is nothing but T,., and the divisorial part ), v(7, Yy)[Y]
is Tiing- The following facts are well-known.

LEMMA 2.3 (cf. [4]). Let f:Y — X be a proper surjective holomorphic
map. If a is a locally integrable form of bidimension (k,k) on 'Y, then the
push-forward current f.a is absolutely continuous, hence a locally integrable
form of bidimension (k, k). In particular, when T is a positive current on'Y,
the push-forward current f.(Tac) is absolutely continuous, and fi(Tae) =

(f*T)ac-

The absolutely continuous part T, of a positive current T does not de-
pend continuously on 7', but we have the following semicontinuity property:

LEMMA 2.4 (cf. [4]). Let Ty, be a sequence of positive (1,1)-currents con-
verging weakly to T'. Then

Toc(x)™ > limsup Ty ac(x)™  for almost every x € X.
2.3. Regularization of currents. There are two basic types of regu-

larizations (inside a fixed cohomology class) for closed (1, 1)-currents, both
due to J.-P. Demailly.

THEOREM 2.5 (cf. [11} 14, [4]). Let T be a closed almost positive (1,1)-
current on a compact Hermitian manifold (X,w). Suppose that T' > ~ for
some smooth (1,1)-form v on X. Then:

(i) There exists a sequence of smooth forms 0 in {T'} which converges
weakly to T, and Op(x) — Tac(z) a.e., such that O > v — CApw



Volume and Harder—Narasimhan filtration 47

where C' > 0 is a constant depending on the curvature of (Tx,w)
only, and A\ is a decreasing sequence of continuous functions such
that A\(z) — v(T, ) for every x € X.

(ii) There exists a sequence Ty of currents with analytic singularities in
{T'} which converges weakly to T, and Ty ac(x) — Tac() a.e., such
that Ty, > v — exw for some sequence €, > 0 decreasing to 0, and
v(Ty, x) increases to v(T, z) uniformly with respect to x € X.

2.4. Resolution of singularities

DEFINITION 2.6. Let f : Y — X be a surjective holomorphic map be-
tween compact complex manifolds and 7" be a closed almost positive (1,1)-
current on X. Write T' = 6 + ddp for some smooth form 6 € {T'} and ¢ an
almost plurisubharmonic function on X. We define its pull-back f*T by f
to be f*0 4 dd°f*p. Note that this definition is independent of the choices
made, and we have {f*T} = f*{T'}.

We now use the notation of Definition From [23] 2 3], one can blow
up X along V(.#) and resolve the singularities to get a smooth modification
T X=X , where Xisa compact complex manifold, such that =17 is just
O(—D) for some simple normal crossing divisor D upstairs. The pull-back
w*T clearly has analytic singularities along V(u~!(.#)) = D, thus its Siu
decomposition reads

wT =0+cD,

where 6 is a smooth (1,1)-form. If T > ~ for some smooth form -, then
w*T > v, and thus 6 > p*v. We call this operation resolution of the singu-
larities of T

2.5. Lamari’s criterion

THEOREM 2.7. Let X be an n-dimensional compact complexr manifold
and let @ be a real (k,k)-form. Then there exists a real (k — 1,k — 1)-
current ¥ such that &+ dd°W is positive iff for any strictly positive 00-closed
(n—k,n —k)-form Y we have {, @ AT > 0.

2.6. Gauduchon metrics. Gauduchon [19] proved that for any n-dimen-
sional compact complex manifold X, there always exists a metric w such that
00w™ ! = 0. These metrics are called Gauduchon metrics. Actually, from
[20] we know that in the conformal class of every Hermitian metric, there is
a Gauduchon metric. As a consequence, if the Gauduchon metric w satisfies
assumption (x), then for any closed (1,1)-current 7" and k € {1,...,n}, the
integral {, T kA w™F only depends on the class of T and the metric w,
provided that T is well-defined.

The following two theorems, which we will state without proof, will play
key roles in this paper.
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THEOREM 2.8 ([8]). Let (X,w) be a compact Hermitian manifold. The
complex Monge—Ampére equation

(2.1) (w +i100p)" = =0~ =y

where ¢ > 0 and F is a smooth function on X, has a smooth solution ¢
such that wg := w +1i00¢ > 0.

THEOREM 2.9 ([33]). Let (X,w) be a compact Hermitian manifold. For
any smooth real-valued function F' on X, there exist a unique real number
C > 0 and a unique smooth real-valued function ¢ on X solving

(w +100¢)" = Cel'w™
with w 4 i00¢ > 0 and supy ¢ = 0. Furthermore, if 00w* =0 for 1 < k <
n—1, then
= Ixw"
{\eflwn
X

REMARK 2.10. Assumption (x) is also used in [2I] to solve the complex

Monge-Ampere equation.

REMARK 2.11. Note that if w is Gauduchon, and ¢ is a smooth function
on X such that wy 1= w +1i00¢ > 0, then wy is not Gauduchon in general.

LEMMA 2.12. Suppose w is a Hermitian form on X satisfying assump-
tion (x). Then for any smooth function ¢ on M, wy also satisfies (x).

Proof. It is a direct and easy computation. m

2.7. Finiteness of volume. The following two lemmas are small gen-
eralizations of those in [4]. The proofs are similar with minor modifications,
but we give them for completeness.

LEMMA 2.13. Let T be any closed (1, 1)-current on a compact Hermitian
manifold (X,w) with T > ~y, where w is the Gauduchon metric satisfying
assumption (%) and 7y is a continuous (1,1)-form on X. Then one can define
the Lelong number v(T,x) for T at x to be v(T + 3, x), where ( is a smooth
closed (1,1)-form near x such that T+ 3 > 0 and v(T,z) can be bounded by
a constant depending only on the 00-cohomology class of T.

Proof. By definition v(T 4 (,z) is (up to a constant depending on w
near x) the limit as r — 04 of

—1)!
v(T+ B,z,7) = ((7:&)“121 S (T + ) Aw™ L,
B(z,r)

which is known to be an increasing function of r. Since 8 is smooth, one
can see that the limit is independent of S, which means that v(T,x) is
well-defined. Choose a constant C such that Cw > —~; then T4+ Cw > 0
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on X. Thus if we choose 79 small enough to ensure that each ball B(x, 1)
is contained in a coordinate chart, we get

v(T,z) <v(T + Cw,z,19) < S(T—l—Cw) AW = S TAW 4 C S w".
X X X
But the last term is a quantity depending on the cohomology class {T'} since
w satisfies (x). m

LEMMA 2.14. Under the same assumption as in Lemma the inte-
grals § TE. A w"F are finite for all k = 0,1,...,n and can be bounded in

terms of w and the 00-cohomology class of T only.

Proof. Since 7 is continuous and X is compact, there exists a constant
C > 0 such that T' > —Cw, and thus T,c > —Cw. Let —C < X <--- <\
be the eigenvalues of Ty.. It is easy to observe that whenever A\ is negative
or positive, [\g| < A\; + 2C always holds. Thus

’ | 7k A w”"“) < | (T +20w)F A wmF,
X X

It suffices to prove that the right hand side is uniformly bounded. Choose
a sequence T} of smooth forms approximating T as in Theorem Since
Ty, > —Cw — CApw = —C(1 + \;)w for some constant C' > 0 depending on
(X,w) only and for some continuous functions Ag(z) decreasing to v(T, z),
we find, using Lemma |[2.13] a constant also denoted by C' and depending on
(X,w) and the cohomology class {T'} only such that T} + Cw > 0. But now
the quantity

| (T + Cw) Aw™ = [ ({1} + Cw)lw" ™!

X X
does not depend on k since w satisfies (), so the result follows by Fatou’s
lemma, as T} + Cw is a smooth form converging to T, + Cw a.e. =

2.8. Harder—Narasimhan filtrations on compact Hermitian
manifolds. In this subsection, we refer to Bruasse [5]. Let (X,w) be a
compact Hermitian manifold endowed with a Gauduchon metric w. Let L
be a holomorphic line bundle on X and A be a Hermitian metric on L. Let
Or. 5 be the Chern curvature form of L associated to h. Since it is indepen-
dent of h up to a d0-exact term, and w is Gauduchon, the w-degree of L
given by

deg, (L) = S Opn Aw"?
X
is a well-defined real number independent of h.

Now if F is a rankp coherent sheaf of Ox-modules, consider the holo-
morphic line bundle det F = (AP F)**.
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DEFINITION 2.15.

(i) The w-degree of F is deg,,(F) := deg,,(det F).
(ii) If F is nontrivial and torsion-free, then we define its slope (or w-
slope) by

deg,,(F)

F) = .

HF) rank(F)
DEFINITION 2.16. A torsion-free coherent sheaf &£ is called w-[semi]
stable if for every coherent subsheaf F C £ with 0 < rank F < ranké,

one has u(F) < [<] u(€).
DEFINITION 2.17. Let (X,w) be a compact complex manifold of dimen-

sion n endowed with a Gauduchon metric w. Let F be a torsion-free coherent
sheaf over X. A Harder—Narasimhan filtration for F is a flag

O:]:()C]:l C"'C.FSZF
of subsheaves of F with the following properties:
(1) Fi/Fi—1 is w-semistable for 1 <i <s—1,
(2) w(Fjs1/Fj) < plFj/Fj) for 1 <j<s—1.
In fact, F;/Fi—1 is the maximal w-semistable subsheaf of F/F;_1 for 1 <
1 <s—1.

THEOREM 2.18 ([5]). Let (X,w) be a compact complex manifold of di-
mension n endowed with a Gauduchon metric w. Let E be a holomorphic
vector bundle of rank r over X. Then E has a unique Harder—Narasimhan
filtration.

3. Volume of a nef class

THEOREM 3.1. Let (X,w) be a compact Hermitian manifold endowed
with a Gauduchon metric w satisfying assumption (x). If a € H;’gl (X,R) is
a nef class, then vol(a) = a™.

Proof. The proof is a small modification of that in [4]; we give it for
completeness. Firstly, we prove that for every positive T € «, we have

§x Tm. < ", which will certainly imply vol(a) < o™. Write T' = 0 + ddp
)

with 6 a smooth form. We consider a sequence T,f,l) = 0+dd°p,;~ of smooth
forms given by Theorem (1) Since « is nef, by definition, there ex-

. . 2 .
ists a sequence of smooth functions go,(c) and a sequence of positive num-

bers €, — 0 such that T,EQ) =0+ ddcgo,(f) satisfies T,EQ) > —gpw. Set
(pf’) = maxn(gof) — C’k,gog-i)), where Cy — o0 as k — oo and wg-i) is a

suitable subsequence of @,(cl) (cf. [4, p. 1050]). Then gol(cg) is a smooth func-
tion, and it is proved in [4, Lemma 4.2] that T,g?’) =0+ ddcgal(:’) is a smooth
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form such that T,§3) () = Tac(zx) a.e., and T,§3) > —dpw for some sequence

0 > 0 converging to 0. Since TIES) + drw also converges to T, a.e., Fatou’s
lemma gives

| 72 <limint {(77) + 60)",
X k—o0

and the latter integral depends only on the class « and dg, thus it converges
to o. That is, {, Ty < o™

Secondly, we want to show vol(a) > {a™. Normalize our Gauduchon
metric w in () so that {, w™ = 1. For € > 0, there exists a closed form
T € a such that T+ ew > 0. Using Theorem one can solve the equation

T = (S (T + aw)")w”,
X

where 7. =T + ew + ddp. > 0, and ¢ is normalized so that supy ¢ = 0.
Since the family 7. —ew € a represents a bounded set of cohomology classes, it
is bounded in mass, so we can extract some weak limit 7" = lim._,o(7. —ew) =
lim. o 7, where the second equality holds because lim._,gew = 0 in the
strong sense. By Lemma we get Tt > (§a™)w™, and integrating gives
vol(a) > a™. m

4. The Grauert—Riemenschneider criterion: Proof of Theorem
From the definition of vol(«), one can find a positive closed current
S € a such that {, SZ > vol(a)/2 > 0. By Theorem (ii), combined
with Fatou’s lemma, we can find a sequence T} of closed currents with
analytic singularities in « such that T, > —epw and SX T,:ac > ¢ for
some uniform lower bound ¢ > 0, where ¢, — 0 as k — oo. In fact,
0 < {4 St < liminfy, { (Thac + €xw)™, thus one can extract a subsequence
which is denoted by T}, ac + €xw such that XX(Tk,aC + exw)™ > C for some
uniform constant C. But

n
| (Tae + o) = | Tac + Dk (7) | T Ao
X X I=1 X

where the second term is uniformly bounded for k large enough (say 0 <
er < 1) by Lemma For each k, we choose a smooth proper modification
p » X — X such that T}, = 0+ Dy, with 6y, (> —eppjw) a smooth closed
form and Ej, a real effective divisor. Set (2, = eppyw. It is easy to see that
0<ec<{xTha = §x, (iTh)ie = S, O Select on each X}, a Gauduchon
metric wy which also satisfies (%) by the following

LEMMA 4.1 (cf. [I5]). Suppose that (X,w) is a compact complex manifold
satisfying assumption (). Let pi : X — X be a smooth modification (a tower

of blow-ups). Then there exists a Gauduchon metric {2 satisfying () on X.
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Proof. Suppose that X is obtained as a tower of blow-ups
(4.1) X=Xy—Xn_q—— X1 = Xo=X,

where X1 is the blow-up of X along a smooth center ¥; C X;. Denote by
Eji1 C X411 the exceptional divisor, and let p4; : X411 — X be the blow-up
map. The line bundle O(—Ej+1)|g;,, is equal to Op(y;)(1) where N; is the
normal bundle to Y} in X;. Pick an arbitrary smooth Hermitian metric on IV;,
use this metric to get an induced Fubini-Study metric on Op(y;(1), and
finally extend this metric as a smooth Hermitian metric on the line bundle
O(—FEj41). Such a metric has positive curvature along tangent vectors of
Xj+1 which are tangent to the fibers of Ej; = P(N;) — Y;. Assume further
that w; is a Gauduchon metric satisfying (*) on X;. Then

(4.2) Qjr1 = pjwj — €j11uj41

where piw; is semipositive on X1, positive definite on X;1q \ Ejt1, and
also positive definite on tangent vectors of T'y,,|g, , which are not tangent
to the fibers of Ej11 — Yj. It is then easy to see that (2,11 > 0 by taking

€j+1 < 1. Thus our final candidate {2 on X has the form 2 = p*w — > €5y,
where @; = (un—10---0puj)*u;. Since every u; is a curvature term of a line
bundle, the term ) e;u; is d-closed. Now (2 satisfies (x) by Lemma ]

Now we want to show that the class {6} is big for k large. It suffices to
show that there exists £g > 0 and a distribution y such that 0p4+dd“y > eowy.
According to Lamari’s criterion [25] (cf. Section [2.5), this is equivalent to
showing that

Vorng"™ >eo {@eng™

X X
for any Gauduchon metric g on X. Here we use a theorem of Michelsohn
[27] which states that every strictly positive (n—1,n—1)-form § has a (1, 1)
root ¢ such that 8 = ¢"~!. Suppose to the contrary that for any m € N,
there exists a Gauduchon metric w,, on X} such that

1
-1 ~ -1
Sﬁk;/\w;‘1 §E8wk/\w" .
Xk Xk

We can assume that

S WE A w,’ﬁfl =1 and therefore S O A\ w
Xk Xk

From Theorem we can solve the equation

1 " -
(4.3) <9k + 2 + Ewk + ddcg0m> = mwfnfl N Wi
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for a function ¢,, € C*°(Xj, R) such that if we set

1 _
= O + (2, + Wk + ddppm,

then «,;, > 0. The constant C,, is given by

1 _ n
(4.4) Cp = S <0k + 2 + wk> > S (0 + Qk)n
Xk m Xk
= | 0 +0(e) | D TE A" P >C >0
The second inequality in (4.4) follows from Lemma for k sufficiently

large. Here C' is a uniform constant that depends only on the cohomology
class o and w. Now

~ ~ 1 _ ~ ~ \n—
S Ozgfl N wp = S Wi A (O + —wp + 26)" ! < S wi A (0 + i)™ L
But
V@A Ok + @)™ <O [ w A (Thae +w0)" 7
X X
since Wy = pjw + > e;u; and €; can be chosen sufficiently small, which
can be easily seen from Lemma and a similar argument to (4.4]). From
Lemma m Sx WA (Thac + w)"~ ! is bounded by a uniform constant which
depends only on the cohomology class o and the metric w on X. Therefore
we get,
S Wi N (Qk +&v)k)n71 <M,
X
where M is also a uniform constant which depends only on the cohomology
class « and the metric w on X.

Set
n—1 /\ ~
E= {M > 2M}.
m k
Then
_ 1
(4.5) Swg4Awk35.
E

Therefore on X \ E, we have a1 Awy, < 2Mw? 1 A@. By looking at the
eigenvalues of a,, with respect to w, from (4.3)) it follows that on Xy \ E we
have

Co
> .
Om = oMk
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Therefore
C ~
(4.6) S am AW > S am AW > # S Wi A wyy
Cm n—1 ~ n—1 ¢
- an(S T R P ) = inM
k E
On the other hand,
2 ¢ 3

(4.7) S am AWt < S Op N+ = S Op Awt< =

Xy Xy, X m

which is a contradiction for m > 0. Here the first inequality in holds
for k sufficiently large such that (2, = eppjw < %Uak Therefore 0, is big,
i.e. there exists a Kahler current © € {0} on Xj, hence a Kéhler current
(11%)+(© + Ey) (see Lemma[2.3)) on X. Thus it follows that X is in the Fujiki
class. Theorem 2.2 in [9] implies that a manifold in the Fujiki class and
which is strong Kihler with torsion (i.e. it supports a dd-closed Hermitian
metric) is in fact Kéhler. m

REMARK 4.2. In general, the pseudo-effective cone (even the big cone)
and the nef cone on a compact complex manifold are not the same. In gen-
eral, the nef cone is contained in the pseudo-effective cone. But the converse
is not true. For example, the exceptional divisor of a blowing-up along one
point in CP? is pseudo-effective but not nef. To characterize the pseudo-
effective cone is an important question in complex geometry.

REMARK 4.3. Recently, Tosatti [32] gave a proof of (b) using ideas very
close to our proof of Theorem

REMARK 4.4. In Demailly’s book [15], Demailly introduced the following
definition of volp(«) for a pseudo-effective class v on Kéhler manifolds.

DEFINITION 4.5 (cf. [I5]). Let X be a compact K&hler manifold. The
volume, or mobile self-intersection, of a class o € H!'(X,R) is defined to
be

volp(a)) = sup S T" = sup S 8" >0
Tea X\sing(T) TEa;{
where the supremum is taken over all Kéhler currents 7' € o with logarithmic
poles, and p*T = [E] + [ with respect to some modification p : X — X.
Correspondingly, we set volp(a) =0 if o & E°.

It is almost trivial that volp(a) < vol(a). From Theorem one can

now see that if the compact Hermitian manifold (X,w) satisfies assump-

tion (%) and vol(a) > 0, then « is big and X is Ké&hler. Thus it is natural
to ask whether volp(a) = vol(a) on a Kéhler manifold.
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Firstly, it is easy to see that volp () = supre,, §y Tae, where the supre-

mum is taken over all Kahler currents 7' € a with logarithmic poles. In
particular, volp(a) < vol(a).

Secondly, vol(a) < volp(«). In fact, it is trivial that vol(a) = 0 <

volp(a)) = 0. Otherwise it is a direct consequence of the following version of
Fujita’s theorem due to Boucksom.

THEOREM 4.6 (cf. [4]). Let X be a compact Kdhler manifold, and let
a € HYY (X, R) be a big class on X. Then for every € > 0, there erists a

modification p : X — X, a Kdhler class w and an effective real divisor D
on X such that

o p*a=w+ {D} as cohomology classes,
e |vol(a) — vol(w)| < e.

To conclude, we have proved the following

PROPOSITION 4.7. Let X be a compact Kdihler manifold. Then vol(a) =
volp(a) for any a in HY'(X,R).

5. A characterization of the nef anti-canonical bundle on X:
Proof of Theorem Let (X,w) be a compact complex manifold with
a Hermitian metric w. Denote by Ricci(w) the Chern Ricci curvature of
(X,w), i.e. the Chern curvature of K)_{l corresponding to the Hermitian
metric induced by the Hermitian metric w of X.

Firstly, we prove that (i) implies (ii). Suppose L := K;(l is nef, that is,
for any € > 0, there is a smooth Hermitian metric h. of L, such that Or, ;_ >
—ew. Since Oy, p,_ is the Chern Ricci curvature of X, it is a representative of
the first Chern class of X. One asks for a ¢ such that w, := w + i99¢ > 0
and Ricci(w:) > —ew,. Let us find the equation such a ¢ should satisfy. Let
Ue := O . > —ew. Then u. = Ricci(w) + i00F.. It thus suffices to find a ¢
such that

(5.1) Ricci(we) = —ew: + ew + ue,
which is equivalent to equation . In fact,
i001og w! — i001og w™ = Ricci(w) — Ricci(we)
= ¢(ws — w) + Ricci(w) — ue
=i00(sp — F.).

From Theorem for any £ > 0, there is a smooth function ¢ such that
We :=w +199¢ > 0 and Ricei(we) > —ew..

Conversely, since Ricci(w.) > —ew. and w. = w + i00¢ > 0, one can
easily conclude that Ricci(w.) + i09(e¢) > —ew. But Ricci(w.) + i00(c9)
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is precisely the curvature form associated to a Hermitian metric on K)_(l.
Thus one gets the nefness of K)_(l.

6. A semipositive property of the Harder—Narasimhan filtration
of T'x: Proof of Theorem The proof follows the lines of the proof in
Demailly [16]. First consider the case where the filtration is regular, i.e. all
sheaves F; and their quotients F;/F;_1 are vector bundles. By the stability
condition, it is sufficient to prove that

| er(Tx /7)) nw™™t >0

X
for all 7. From Theorem for each € > 0, there is a smooth function ¢,
such that w. := w 4 i00¢. > 0 and Ricci(w:) > —ew,. This is equivalent to
the pointwise estimate

iO7y . AWt > —e Ty, Wl

Taking the induced metric on T'x/F; (which we also denote by w.), the
second fundamental form contributes nonnegative terms on the quotient,
hence the w.-trace yields

Trace(iOry /7, w. N Wl > —erank(Tx /Fi)w™.

Therefore, setting r; = rank(7Tx /F;), since for a line bundle, the curvatures
differ by 00-exact terms for different choices of the Hermitian metric, and
both w and w. satisfy (), we get

S ca1(Tx | F;) AW = S ca(Tx/F;) /\w?_1 > —er; S wl = —er; S w”,
X X X X

and we are done. In case there are singularities, from the construction in [5]
they occur only on some analytic subset S C X of codimension 2. The first
Chern forms calculated on X \ S extend as locally integrable currents on X
and do not contribute any mass on S. The above calculations are still valid.
Thus we have completed the proof of Theorem [I.4]
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