Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent

Lan Zeng and Chun Lei Tang (Chongqing)

Abstract

We consider the following Kirchhoff type problem involving a critical nonlinearity: $$
\begin{cases}-\left[a+b\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{m}\right] \Delta u=f(x, u)+|u|^{2^{*}-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$ where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a smooth bounded domain with smooth boundary $\partial \Omega, a>0$, $b \geq 0$, and $0<m<2 /(N-2)$. Under appropriate assumptions on f, we show the

 existence of a positive ground state solution via the variational method.1. Introduction and main results. The purpose of this article is to investigate the existence of a ground state solution of the Kirchhoff type problem

$$
\begin{cases}-\left(a+b\|u\|^{2 m}\right) \Delta u=f(x, u)+|u|^{2^{*}-2} u & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a smooth bounded domain with smooth boundary $\partial \Omega$ and $0<m<2 /(N-2)$. Here $2^{*}=2 N /(N-2)$ is the critical Sobolev exponent for the embedding of $H_{0}^{1}(\Omega)$ into $L^{p}(\Omega)$ for every $p \in\left[1,2^{*}\right]$, where $H_{0}^{1}(\Omega)$ denotes the usual Sobolev space endowed with the norm $\|u\|^{2}=$ $\int_{\Omega}|\nabla u|^{2} d x$ and $L^{p}(\Omega)$ denotes the usual Lebesgue space with the norm $|u|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}$; and $f: \bar{\Omega} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a continuous function.

The Kirchhoff equation which included the nonlocal term $M\left(\|u\|^{2}\right)$ was proposed by Kirchhoff [9] in the following problem:

[^0]\[

$$
\begin{cases}u_{t t}-M\left(\|u\|^{2}\right) \Delta u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) ; & \end{cases}
$$
\]

the above equation as an extension of the classical d'Alembert wave equation for free vibrations of elastic strings. Those kinds of problems were also considered in nonlinear vibration theory [14, 15]. In mathematics, the Kirchhoff equation has also been extensively discussed, for example, in [2, 1, 12, 13, 6, 7, 10, 18, 19, 16].

In recent years, the Kirchhoff problem involving critical growth has attracted much attention:

$$
\begin{cases}-M\left(\|u\|^{2}\right) \Delta u=\lambda f(x, u)+|u|^{2^{*}-2} u & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$ is a parameter. Up to now, several existence results have been successfully obtained via the variational and topological methods. By letting the parameter λ be large enough, Alves et al. [1] have verified the existence of a positive solution for problem (1.2) with $N=3$, and Hamydy et al. [8] have extended their result to the p-Kirchhoff problem. On the basis of [1], Figueiredo et al. [6, 7] have obtained some interesting results by using an appropriate truncation of M.

In the case $N=3$ and $M(s)=a+b s,(1.2)$ has the following form:

$$
\begin{cases}-\left(a+b\|u\|^{2}\right) \Delta u=\lambda f(x, u)+u^{5} & \text { in } \Omega \tag{1.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

By using the Brézis-Lieb Lemma [4], Xie et al. [19] have obtained a positive solution for problem (1.3) with $\lambda=1$. D. Naimen has used the Second Concentration-Compactness Lemma of Lions [11] to obtain the following result:

Theorem A (see [12]) Let $a>0$ and $b \geq 0$. Suppose that f satisfies the following assumptions:
$\left(\mathrm{f}_{1}\right) f$ is continuous in $\bar{\Omega} \times \mathbb{R}, f(x, t) \geq 0$ for $t \geq 0$ and $f(x, t)=0$ for $t \leq 0$, for all $x \in \bar{\Omega}$.
$\left(\mathrm{f}_{2}^{\prime}\right) \lim _{t \rightarrow 0^{+}} f(x, t) / t=0$ and $\lim _{t \rightarrow \infty} f(x, t) / t^{5}=0$, uniformly for $x \in \bar{\Omega}$.
(f_{3}^{\prime}) There exists a constant $\theta>0$ such that $4<\theta<6$ and $f(x, t) t-$ $\theta F(x, t) \geq 0$ for all $x \in \Omega$ and $t \geq 0$, where $F(x, t)=\int_{0}^{t} f(x, s) s d s$.
$\left(\mathrm{f}_{4}\right)$ There exists a nonempty open set $\omega \subset \Omega$ such that $\lim _{t \rightarrow \infty} f(x, t) / t^{3}$ $=\infty$ uniformly for $x \in \omega$.
Then problem (1.3) has a positive solution for all $\lambda>0$.
In [13], D. Naimen attacks the Brézis-Nirenberg problem for a 4-dimensional Kirchhoff type problem with critical growth.

Motivated by the work mentioned above, in this paper we verify the existence of a ground state solution for problem (1.1). On the one hand, by giving a weaker assumption on f, we extend Theorem A. On the other hand, we encounter big problems in proving the local $(\mathrm{PS})_{c}$ condition and estimating the mountain pass value, and we use a new calculation method to overcome these problems.

To state our main results, we make the following assumptions on f.
$\left(\mathrm{f}_{1}\right) f$ is continuous in $\bar{\Omega} \times \mathbb{R}, f(x, t) \geq 0$ for $t \geq 0$ and $f(x, t)=0$ for $t \leq 0$, for all $x \in \bar{\Omega}$.
$\left(\mathrm{f}_{2}\right) \lim _{t \rightarrow 0^{+}} f(x, t) / t=0$ and $\lim _{t \rightarrow \infty} f(x, t) / t^{2^{*}-1}=0$, uniformly for $x \in \bar{\Omega}$.
$\left(\mathrm{f}_{3}\right) \frac{1}{2 m+2} f(x, t) t-F(x, t) \geq 0$ for all $x \in \bar{\Omega}$ and $t \geq 0$.
$\left(\mathrm{f}_{4}\right)$ There exists a nonempty open set $\omega \subset \Omega$ such that $\lim _{t \rightarrow \infty} f(x, t) / t^{3}$ $=\infty$ uniformly for $x \in \omega$.
$\left(\mathrm{f}_{5}\right)$ There exist constants $\eta, \mu>0$ such that $f(x, t) \geq \eta t$ for all $x \in \omega$ and $t \in[\mu, \infty)$, where ω is some nonempty open subset of Ω.
$\left(\mathrm{f}_{6}\right)$ There exists a constant $\eta>0$ such that $f(x, t) \geq \eta$ for all $x \in \omega$ and $t \in A$, where $A \subset(0, \infty)$ is a nonempty open interval and ω is a nonempty open subset of Ω.
The main results of this paper are the following theorems.
Theorem 1.1. Suppose $N=3, a>0, b \geq 0$ and $0<m<2$. If $\left(\mathrm{f}_{1}\right),\left(\mathrm{f}_{2}^{\prime}\right)$, $\left(\mathrm{f}_{3}\right)$ and $\left(\mathrm{f}_{4}\right)$ hold, then problem (1.1) has a positive ground state solution.

Corollary 1.1. Let $a>0$ and $b \geq 0$. Assume that assumptions $\left(\mathrm{f}_{1}\right)$, $\left(\mathrm{f}_{2}^{\prime}\right),\left(\mathrm{f}_{4}\right)$ are satisfied and
$\left(\mathrm{f}_{3}^{\prime \prime}\right) \frac{1}{4} f(x, t) t-F(x, t) \geq 0$ for all $x \in \bar{\Omega}$ and $t \geq 0$.
Then problem (1.3) has a positive ground state solution.
Remark 1.1. Corollary 1.1 essentialy extends Theorem A. To see this, it suffices to compare condition $\left(\mathrm{f}_{3}^{\prime}\right)$ with $\left(\mathrm{f}_{3}^{\prime \prime}\right)$: obviously, the latter is weaker. Moreover, there are functions covered by our Corollary 1.1, but not by Theorem A, for example,

$$
f(x, t)=4 t^{3} \ln \left(1+t^{2}\right)+\frac{2 t^{5}}{1+t^{2}} \quad \text { for } x \in \bar{\Omega} \text { and } t \geq 0
$$

Theorem 1.2. Suppose $N=4, a>0, b \geq 0$ and $0<m<1$. If $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{3}\right)$ and $\left(\mathrm{f}_{5}\right)$ hold, then problem (1.1) has a positive ground state solution.

Theorem 1.3. Suppose $N \geq 5, a>0, b \geq 0$ and $0<m<2 /(N-2)$. If $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{3}\right)$ and $\left(\mathrm{f}_{6}\right)$ hold, then problem (1.1) has a positive ground state solution.

REmARK 1.2. In this paper, we have to overcome various difficulties. The lack of compactness of the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2^{*}}(\Omega)$ is
the most difficult one. Moreover, we have to estimate the critical value. In addition, because of the parameter m, we also encounter some calculational problems which will be solved by a new method.

Remark 1.3. As far as we know, results similar to Theorems 1.3 and 1.4 for high-dimensional Kirchhoff problems are rare.
2. Proofs of theorems. We make use of the following notation.

- Let S be the best Sobolev constant, that is,

$$
S:=\inf _{u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}},
$$

where $D^{1,2}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{N}\right) \mid \partial u / \partial x_{i} \in L^{2}\left(\mathbb{R}^{N}\right), i=1, \ldots, N\right\}$.

- $\left\{u_{n}\right\}$ is called a (PS) c_{c} sequence for a functional I if $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$ as $n \rightarrow \infty$; and I satisfies the $(\mathrm{PS})_{c}$ condition if any $(\mathrm{PS})_{c}$ sequence has a convergent subsequence.
- C denotes various positive constants.
- $B(x, r) \subset \mathbb{R}^{N}$ denotes an open ball with center at x and radius r.

We know that finding a solution of problem (1.1) is equivalent to finding a critical point of the C^{1} functional

$$
I(u)=\frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-\int_{\Omega} F(x, u) d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x,
$$

which implies that

$$
\left\langle I^{\prime}(u), v\right\rangle=\left(a+b\|u\|^{2 m}\right) \int_{\Omega}(\nabla u, \nabla v) d x-\int_{\Omega} f(x, u) v d x-\int_{\Omega}|u|^{2^{*}-1} v d x
$$

for all $u, v \in H_{0}^{1}(\Omega)$.
The following lemma plays an important role in proving Lemmas 2.2 and 2.4.

Lemma 2.1. Let $h(r)=a+b S^{m N / 2} r^{2 m}-r^{2^{*}-2}(r>0)$. Then:
(1) the equation $h(r)=0$ has a unique positive solution r_{0}, which satisfies

$$
\begin{equation*}
a+b S^{m N / 2} r_{0}^{2 m}=r_{0}^{2^{*}-2} \tag{2.1}
\end{equation*}
$$

(2) the set of solutions of $h(r) \leq 0$ is $\left\{r \mid r \geq r_{0}\right\}$.

Proof. (1) Firstly, we show the monotonicity of $h(r)$ on $(0, \infty)$. We have

$$
h^{\prime}(r)=2 m b S^{m N / 2} r^{2 m-1}-\left(2^{*}-2\right) r^{2^{*}-3} .
$$

The equation $h^{\prime}(r)=0$ has a unique positive solution

$$
r_{1}=\left(\frac{2 m b S^{m N / 2}}{2^{*}-2}\right)^{\frac{1}{2^{*}-2 m-2}}
$$

We easily see that $h(r)$ is increasing in $\left(0, r_{1}\right]$ and decreasing in $\left[r_{1}, \infty\right)$. For $h(0)=a>0$, one has $h\left(r_{1}\right)>0$. Since $h(r) \rightarrow-\infty$ as $r \rightarrow \infty$, we conclude that $h(r)=0$ has a unique solution r_{0} in $(0, \infty)$.
(2) Follows from (1) and the monotonicity of $h(r)$.

The infimum in the definition of the Sobolev constant S is achieved by the function

$$
U(x)=\frac{C}{\left(1+|x|^{2}\right)^{(N-2) / 2}}
$$

and U satisfies

$$
-\Delta U=U^{2^{*}-1} \quad \text { in } \mathbb{R}^{N}
$$

which implies (see [17])

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla U|^{2} d x=\int_{\mathbb{R}^{N}}|U|^{2^{*}} d x=S^{N / 2} \tag{2.2}
\end{equation*}
$$

Next, we consider the problem

$$
\left\{\begin{array}{l}
-\left[a+b\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x\right)^{m}\right] \Delta u=u^{2^{*}-1} \quad \text { in } \mathbb{R}^{N} \tag{2.3}\\
u(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

where $a, b>0$ and $0<m<2 /(N-2)$. Let $u=r U$, where $r \in(0, \infty)$, and insert it into (2.3); this yields

$$
-\left[a+b\left(\int_{\mathbb{R}^{N}}|\nabla U|^{2} d x\right)^{m} r^{2 m}\right] r \Delta U=r^{2^{*}-1} U^{2^{*}-1}
$$

According to 2.2, we have

$$
\begin{equation*}
a+b S^{m N / 2} r^{2 m}=r^{2^{*}-2} \tag{2.4}
\end{equation*}
$$

By Lemma 2.1(1), we conclude that $r_{0} U$ is a positive solution of (2.3), which implies

$$
\begin{equation*}
a S^{N / 2} r_{0}^{2}+b S^{(m+1) N / 2} r_{0}^{2 m+2}=S^{N / 2} r_{0}^{2^{*}} \tag{2.5}
\end{equation*}
$$

By taking full advantage of Lemma 2.1, we will verify that

$$
I(u)=\frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-\int_{\Omega} F(x, u) d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x
$$

satisfies the local $(\mathrm{PS})_{c}$ condition.

Lemma 2.2. Let f satisfy $\left(\mathrm{f}_{2}\right)$ and $\left(\mathrm{f}_{3}\right)$. Suppose that $c<\Lambda$, where

$$
\Lambda=a / 2 r_{0}^{2} S^{N / 2}+\frac{b}{2 m+2} r_{0}^{2 m+2} S^{N(m+1) / 2}-\frac{1}{2^{*}} r_{0}^{*} S^{N / 2} .
$$

Then I satisfies the $(\mathrm{PS})_{c}$ condition.
Proof. Let $\left\{u_{n}\right\}$ be a $(\mathrm{PS})_{c}$ sequence for I. We claim that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. In fact, since $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$, by (f_{3}) we have

$$
\begin{aligned}
1+c+o(1)\left\|u_{n}\right\| \geq & I\left(u_{n}\right)-\frac{1}{2 m+2}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \left(\frac{1}{2}-\frac{1}{2 m+2}\right) a\left\|u_{n}\right\|^{2}+\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) \int_{\Omega}\left|u_{n}\right|^{2^{*}} d x \\
& +\int_{\Omega}\left(\frac{1}{2 m+2} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x \\
\geq & \left(\frac{1}{2}-\frac{1}{2 m+2}\right) a\left\|u_{n}\right\|^{2} .
\end{aligned}
$$

Since $a>0$, we conclude $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. Hence there exist a subsequence (still denoted by $\left\{u_{n}\right\}$) and $u \in H_{0}^{1}(\Omega)$ such that

$$
\left\{\begin{array}{l}
u_{n} \rightharpoonup u \text { weakly in } H_{0}^{1}(\Omega), \\
u_{n} \rightarrow u \text { strongly in } L^{p}(\Omega) \text { for all } 1 \leq p<2^{*}, \\
u_{n}(x) \rightarrow u(x) \text { a.e. in } \Omega .
\end{array}\right.
$$

Set $w_{n}=u_{n}-u$. We claim that $\left\|w_{n}\right\| \rightarrow 0$. Otherwise, there exists a subsequence (still denoted by $\left\{w_{n}\right\}$) such that

$$
\lim _{n \rightarrow \infty}\left\|w_{n}\right\|=l
$$

where l is a positive constant. Then

$$
\begin{align*}
\left\|u_{n}\right\|^{2} & =\left\|w_{n}\right\|^{2}+\|u\|^{2}+o(1), \tag{2.6}\\
\left\|u_{n}\right\|^{2 m+2} & =\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1}+o(1) . \tag{2.7}
\end{align*}
$$

Furthermore, from the Brézis-Lieb Lemma [4],

$$
\begin{equation*}
\int_{\Omega}\left|u_{n}\right|^{2^{*}} d x=\int_{\Omega}\left|w_{n}\right|^{2^{*}} d x+\int_{\Omega}|u|^{2^{*}} d x+o(1) . \tag{2.8}
\end{equation*}
$$

From $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$ and 2.7, we get

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\langle I^{\prime}\left(u_{n}\right), u\right\rangle= & a\|u\|^{2}+b\left(l^{2}+\|u\|^{2}\right)^{m}\|u\|^{2} \tag{2.9}\\
& -\int_{\Omega} f(x, u) u d x-\int_{\Omega}|u|^{2^{*}} d x=0 .
\end{align*}
$$

From $\left(f_{3}\right)$ and 2.9 , we obtain

$$
\begin{align*}
I(u)= & \frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-\int_{\Omega} F(x, u) d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \tag{2.10}\\
= & \left(\frac{1}{2}-\frac{1}{2 m+2}\right) a\|u\|^{2}+\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) \int_{\Omega}|u|^{2^{*}} d x \\
& +\int_{\Omega}\left(\frac{1}{2 m+2} f(x, u) u-F(x, u)\right) d x \\
& -\frac{b}{2 m+2}\left(\left(l^{2}+\|u\|^{2}\right)^{m}-\|u\|^{2 m}\right)\|u\|^{2} \\
\geq & -\frac{b}{2 m+2}\left(\left(l^{2}+\|u\|^{2}\right)^{m}-\|u\|^{2 m}\right)\|u\|^{2}=: T
\end{align*}
$$

On the other hand, since $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$, we get

$$
\begin{align*}
\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle= & a\left\|u_{n}\right\|^{2}+b\left\|u_{n}\right\|^{2 m+2} \tag{2.11}\\
& -\int_{\Omega} f\left(x, u_{n}\right) u_{n} d x-\int_{\Omega}\left|u_{n}\right|^{2^{*}} d x=o(1) .
\end{align*}
$$

By $\left(\mathrm{f}_{2}\right)$, for any $\varepsilon>0$, there exist constants $C, d(\varepsilon)>0$ such that

$$
|f(x, t) t| \leq \frac{\varepsilon}{2 C} t^{2^{*}}+d(\varepsilon)
$$

Let $\xi=\varepsilon / 2 d(\varepsilon)>0$, and suppose $E \subseteq \Omega$ with meas $E<\xi$. Then

$$
\begin{aligned}
\left|\int_{E} f\left(x, u_{n}\right) u_{n} d x\right| & \leq \int_{E}\left|f\left(x, u_{n}\right) u_{n}\right| d x \\
& \leq \int_{E} d(\varepsilon) d x+\frac{\varepsilon}{2 C} \int_{E}\left|u_{n}\right|^{2^{*}} d x \\
& \leq \frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon
\end{aligned}
$$

where the last inequality follows from the Sobolev embedding and the boundedness of $\left\{u_{n}\right\}$ in $H_{0}^{1}(\Omega)$. Therefore, $\left\{\int_{\Omega} f\left(x, u_{n}\right) u_{n} d x: n \in \mathbb{N}\right\}$ is equiabsolutely continuous. By Vitali's convergence theorem,

$$
\begin{equation*}
\int_{\Omega} f\left(x, u_{n}\right) u_{n} d x \rightarrow \int_{\Omega} f(x, u) u d x \quad \text { as } n \rightarrow \infty \tag{2.12}
\end{equation*}
$$

Applying the same method, we can also verify that

$$
\begin{equation*}
\int_{\Omega} F\left(x, u_{n}\right) d x \rightarrow \int_{\Omega} F(x, u) d x \quad \text { as } n \rightarrow \infty \tag{2.13}
\end{equation*}
$$

Combining (2.11) with (2.6)-2.8) and (2.12) yields

$$
\begin{align*}
a\left\|w_{n}\right\|^{2}+a\|u\|^{2}+ & b\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1} \tag{2.14}\\
& =\int_{\Omega} f(x, u) u d x+\int_{\Omega}\left|w_{n}\right|^{2^{*}} d x+\int_{\Omega}|u|^{2^{*}} d x+o(1) .
\end{align*}
$$

By (2.9) and (2.14), we obtain

$$
\begin{align*}
a\left\|w_{n}\right\|^{2}+b\left[\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1}-\left(l^{2}+\|u\|^{2}\right)^{m}\right. & \left.\|u\|^{2}\right] \tag{2.15}\\
& =\int_{\Omega}\left|w_{n}\right|^{2^{*}} d x+o(1) .
\end{align*}
$$

From (2.15) and $\int_{\Omega}\left|w_{n}\right|^{2^{*}} d x \leq\left\|w_{n}\right\|^{2^{*}} / S^{2^{*} / 2}$ we get

$$
a l^{2}+b l^{2 m+2} \leq a l^{2}+b\left[\left(l^{2}+\|u\|^{2}\right)^{m} l^{2}\right] \leq l^{2^{*}} / S^{2^{*} / 2}
$$

which implies that

$$
a+b S^{m N / 2}\left(l S^{-N / 4}\right)^{2 m} \leq\left(l S^{-N / 4}\right)^{2^{*}-2}
$$

By Lemma 2.1(2), we obtain $l S^{-N / 4} \geq r_{0}$, which implies that

$$
\begin{equation*}
l \geq r_{0} S^{N / 4} \tag{2.16}
\end{equation*}
$$

It follows from $(2.6)-(2.8)$ and 2.13 that

$$
\begin{aligned}
I\left(u_{n}\right)= & \frac{a}{2}\left\|w_{n}\right\|^{2}+\frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1}-\int_{\Omega} F\left(x, u_{n}\right) d x \\
& -\frac{1}{2^{*}} \int_{\Omega}\left|w_{n}\right|^{2^{*}} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x+o(1) \\
= & I(u)+\frac{a}{2}\left\|w_{n}\right\|^{2}+\frac{b}{2 m+2}\left[\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1}-\|u\|^{2 m+2}\right] \\
& +\frac{1}{2^{*}} \int_{\Omega}\left|w_{n}\right|^{2^{*}} d x+o(1)
\end{aligned}
$$

Therefore, by 2.15),

$$
\begin{aligned}
I(u)= & I\left(u_{n}\right)-\frac{a}{2}\left\|w_{n}\right\|^{2}-\frac{b}{2 m+2}\left[\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1}-\|u\|^{2 m+2}\right] \\
& -\frac{1}{2^{*}} \int_{\Omega}\left|w_{n}\right|^{2^{*}} d x+o(1) \\
= & I\left(u_{n}\right)-\left(\frac{1}{2}-\frac{1}{2^{*}}\right) a\left\|w_{n}\right\|^{2}-\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) b\left(\left\|w_{n}\right\|^{2}+\|u\|^{2}\right)^{m+1} \\
& +\frac{b}{2 m+2}\|u\|^{2 m+2}-\frac{b}{2^{*}}\left(l^{2}+\|u\|^{2}\right)^{m}\|u\|^{2}+o(1)
\end{aligned}
$$

Letting $n \rightarrow \infty$, by 2.5 and 2.16 we obtain

$$
\begin{aligned}
I(u)= & c-\left(\frac{1}{2}-\frac{1}{2^{*}}\right) a l^{2}-\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) b\left(l^{2}+\|u\|^{2}\right)^{m+1} \\
& +\frac{b}{2 m+2}\|u\|^{2 m+2}-\frac{b}{2^{*}}\left(l^{2}+\|u\|^{2}\right)^{m}\|u\|^{2} \\
\leq & c-\left(\frac{1}{2}-\frac{1}{2^{*}}\right) a l^{2}-\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) b l^{2 m+2}+T \\
\leq & c-\left(\frac{1}{2}-\frac{1}{2^{*}}\right) a r_{0}^{2} S^{N / 2}-\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) b r_{0}^{2 m+2} S^{N(m+1) / 2}+T \\
= & c-\frac{a}{2} r_{0}^{2} S^{N / 2}-\frac{b}{2 m+2} r_{0}^{2 m+2} S^{N(m+1) / 2}+\frac{1}{2^{*}} r_{0}^{2^{*}} S^{N / 2}+T \\
= & c-\Lambda+T<T
\end{aligned}
$$

which contradicts 2.10). Therefore, $u_{n} \rightarrow u$ in $H_{0}^{1}(\Omega)$.
Lemma 2.3. Suppose that $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{2}\right)$ hold. Then there exists $\rho>0$ such that:
(1) there exists $\alpha>0$ such that $I(u) \geq \alpha>0$ whenever $\|u\|=\rho$;
(2) there exists $e_{0} \in H_{0}^{1}(\Omega)$ such that $\left\|e_{0}\right\|>\rho$ and $I\left(e_{0}\right)<0$.

Proof. (1) By $\left(\mathrm{f}_{2}\right)$, for every ε there exists $C(\varepsilon)>0$ such that

$$
\begin{equation*}
F(x, t) \leq \varepsilon t^{2}+C(\varepsilon) t^{2^{*}} \tag{2.17}
\end{equation*}
$$

for all $t \geq 0$ and $x \in \bar{\Omega}$.
According to the Sobolev inequality and (2.17), we have

$$
\begin{aligned}
I(u) & =\frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-\int_{\Omega} F(x, u) d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \\
& \geq \frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-\varepsilon|u|_{2}^{2}-C(\varepsilon)|u|_{2^{*}}^{2^{*}}-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \\
& \geq \frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-C \varepsilon\|u\|^{2}-C C(\varepsilon)\|u\|^{2^{*}}-\frac{C}{2^{*}}\|u\|^{2^{*}}
\end{aligned}
$$

Hence there exist $\alpha>0$ and $\rho>0$ sufficiently small such that $I(u) \geq \alpha>0$ for all $\|u\|=\rho$ whenever ε small enough.
(2) Fix $v \in H_{0}^{1}(\Omega)$ and $v \neq 0$. By $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{2}\right)$, we have

$$
\begin{aligned}
I(t v) & =\frac{a}{2} t^{2}\|v\|^{2}+\frac{b}{2 m+2} t^{2 m+2}\|v\|^{2 m+2}-\int_{\Omega} F(x, t v) d x-\frac{t^{2^{*}}}{2^{*}} \int_{\Omega}|v|^{2^{*}} d x \\
& \leq \frac{a}{2} t^{2}\|v\|^{2}+\frac{b}{2 m+2} t^{2 m+2}\|v\|^{2 m+2}-\frac{t^{2^{*}}}{2^{*}} \int_{\Omega}|v|^{2^{*}} d x
\end{aligned}
$$

From the above, we see that $I(t v) \rightarrow-\infty$ as $t \rightarrow \infty$. Hence, we can choose $t_{0}>0$ large enough such that $\left\|t_{0} v\right\|>\rho$ and $I\left(t_{0} v\right)<0$. Setting $e_{0}=t_{0} v$ completes the proof.

The Mountain Pass Lemma of [3] yields a sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ satisfying

$$
I\left(u_{n}\right) \rightarrow c \geq \alpha>0 \quad \text { and } \quad I^{\prime}\left(u_{n}\right) \rightarrow 0
$$

where

$$
\begin{aligned}
c & =\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{0}(\gamma(u)) \\
\Gamma & =\left\{\gamma \in\left(C[0,1], H_{0}^{1}(\Omega)\right) \mid \gamma(0)=0, \gamma(1)=e_{0}\right\}
\end{aligned}
$$

We know that S is also attained by the functions

$$
y_{\varepsilon}(x)=\frac{C_{\varepsilon}}{\left(\varepsilon+|x|^{2}\right)^{(N-2) / 2}}
$$

for all $\varepsilon>0$. Let

$$
U_{\varepsilon}(x)=y_{\varepsilon}(x) / C_{\varepsilon}
$$

Without loss of generality, we may assume that $0 \in \omega$, where ω is some nonempty open set in Ω. Moreover, we choose a cut-off function $\phi \in C_{0}^{\infty}(\Omega)$ such that $0 \leq \phi \leq 1$ for all $x \in \Omega$ and

$$
\phi(x)= \begin{cases}1, & |x| \leq R \\ 0, & |x| \geq 2 R\end{cases}
$$

where $B_{2 R}(0) \subset \Omega$. Set

$$
\begin{align*}
u_{\varepsilon}(x) & =\phi(x) U_{\varepsilon}(x) \tag{2.18}\\
v_{\varepsilon}(x) & =\frac{u_{\varepsilon}(x)}{\left(\int_{\Omega}\left|u_{\varepsilon}\right|^{2^{*}} d x\right)^{1 / 2^{*}}} \tag{2.19}
\end{align*}
$$

Then

$$
\begin{gather*}
\int_{\Omega}\left|v_{\varepsilon}\right|^{2^{*}} d x=1 \tag{2.20}\\
\left\|v_{\varepsilon}\right\|^{2 m+2}=S^{m+1}+O\left(\varepsilon^{N-2 / 2}\right) \tag{2.21}\\
\int_{\Omega}\left|v_{\varepsilon}\right|^{q} d x= \begin{cases}O\left(\varepsilon^{q(N-2) / 4}\right), & 1<q<N /(N-2) \\
O\left(\varepsilon^{q(N-2) / 4}|\ln \varepsilon|\right), & q=N /(N-2) \\
O\left(\varepsilon^{2 N-q(N-2) / 4}\right), & N /(N-2)<q<2^{*} .\end{cases} \tag{2.22}
\end{gather*}
$$

Lemma 2.4. Let f satisfy $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{2}\right)$. Assume that there is a function $m(u)$ such that $f(x, u) \geq m(u) \geq 0$ for a.e. $x \in \omega$ and all $u \geq 0$, and the primitive $M(t)=\int_{0}^{t} m(s) d s$ satisfies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{0}^{\varepsilon^{-1 / 2}} M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{(N-2) / 2}\right] s^{N-1} d s=\infty \tag{2.23}
\end{equation*}
$$

Then there exists a constant $\varepsilon_{0}>0$ such that

$$
\max _{t \geq 0} I\left(t v_{\varepsilon}\right)<\Lambda \quad \text { for all } \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

Proof. We define the functions

$$
\begin{aligned}
& g(t)=I\left(t v_{\varepsilon}\right)=\frac{a}{2} t^{2}\left\|v_{\varepsilon}\right\|^{2}+\frac{b}{2 m+2} t^{2 m+2}\left\|v_{\varepsilon}\right\|^{2 m+2}-\frac{t^{2^{*}}}{2^{*}}-\int_{\Omega} F\left(x, t v_{\varepsilon}\right) d x \\
& \tilde{g}(t)=\frac{a}{2} t^{2}\left\|v_{\varepsilon}\right\|^{2}+\frac{b}{2 m+2} t^{2 m+2}\left\|v_{\varepsilon}\right\|^{2 m+2}-\frac{t^{2^{*}}}{2^{*}}
\end{aligned}
$$

Notice that $\lim _{t \rightarrow \infty} \tilde{g}(t)=-\infty, \tilde{g}(0)=0$, and $\tilde{g}(t)>0$ for $t>0$ small enough. Hence there exists $t_{\varepsilon} \in(0, \infty)$ such that

$$
\begin{aligned}
0=\tilde{g}^{\prime}\left(t_{\varepsilon}\right) & =t_{\varepsilon}\left(a\left\|v_{\varepsilon}\right\|^{2}+b\left\|v_{\varepsilon}\right\|^{2 m+2} t_{\varepsilon}^{2 m}-t_{\varepsilon}^{2^{*}-2}\right) \\
& =t_{\varepsilon}\left[a\left(S+O\left(\varepsilon^{(N-2) / 2}\right)\right)+b\left(S^{m+1}+O\left(\varepsilon^{(N-2) / 2}\right) t_{\varepsilon}^{2 m}-t_{\varepsilon}^{2^{*}-2}\right]\right. \\
& =t_{\varepsilon}\left[a S+b S^{m+1} t_{\varepsilon}^{2 m}-t_{\varepsilon}^{2^{*}-2}+O\left(\varepsilon^{(N-2) / 2}\right)\left(a+b t_{\varepsilon}^{2 m}\right)\right] \\
& =t_{\varepsilon}\left[a S+b S^{m+1} t_{\varepsilon}^{2 m}-t_{\varepsilon}^{2^{*}-2}+O\left(\varepsilon^{(N-2) / 2}\right)\right]
\end{aligned}
$$

which implies

$$
\begin{equation*}
a S+b S^{m+1} t_{\varepsilon}^{2 m}-t_{\varepsilon}^{2^{*}-2}+O\left(\varepsilon^{(N-2) / 2}\right)=0 \tag{2.24}
\end{equation*}
$$

Therefore,

$$
a+b S^{N m / 2}\left(\frac{t_{\varepsilon}}{S^{(N-2) / 2}}\right)^{2 m}=\left(\frac{t_{\varepsilon}}{S^{(N-2) / 2}}\right)^{2^{*}-2}+O\left(\varepsilon^{(N-2) / 2}\right)
$$

According to Lemma 2.1(1),

$$
\frac{t_{\varepsilon}}{S^{(N-2) / 2}}=r_{0}+O\left(\varepsilon^{(N-2) / 2}\right)
$$

and so

$$
\begin{equation*}
t_{\varepsilon}=r_{0} S^{(N-2) / 2}+O\left(\varepsilon^{(N-2) / 2}\right) \tag{2.25}
\end{equation*}
$$

The function $\tilde{g}(t)$, actually, attains its maximum at t_{ε} and is increasing in the interval $\left[0, t_{\varepsilon}\right]$.

Since $\lim _{t \rightarrow \infty} g(t)=-\infty, g(0)=0$, and $g(t)>0$ as t small enough, it follows that $\sup _{t \geq 0} g(t)$ is attained for some $t_{\varepsilon}^{0}>0$, and
$0=g^{\prime}\left(t_{\varepsilon}^{0}\right)=t_{\varepsilon}^{0}\left(a\left\|v_{\varepsilon}\right\|^{2}+b\left\|v_{\varepsilon}\right\|^{2 m+2}\left(t_{\varepsilon}^{0}\right)^{2 m}-\left(t_{\varepsilon}^{0}\right)^{2^{*}-2}-\frac{1}{t_{\varepsilon}^{0}} \int_{\Omega} f\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) v_{\varepsilon} d x\right)$.
This yields

$$
\begin{equation*}
a\left\|v_{\varepsilon}\right\|^{2}+b\left\|v_{\varepsilon}\right\|^{2 m+2}\left(t_{\varepsilon}^{0}\right)^{2 m}=\left(t_{\varepsilon}^{0}\right)^{2^{*}-2}+\frac{1}{t_{\varepsilon}^{0}} \int_{\Omega} f\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) v_{\varepsilon} d x \tag{2.26}
\end{equation*}
$$

By (f_{2}), for all δ, there exists $C>0$ such that

$$
|f(x, t) t| \leq \delta t^{2^{*}}+C t^{2}
$$

for all $t \geq 0$ and $x \in \bar{\Omega}$. Therefore,

$$
\left|\int_{\Omega} \frac{f\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) v_{\varepsilon}}{t_{\varepsilon}^{0}} d x\right| \leq \delta\left(t_{\varepsilon}^{0}\right)^{2^{*}-2} \int_{\Omega} v_{\varepsilon}^{2^{*}} d x+C \int_{\Omega} v_{\varepsilon}^{2} d x=\delta\left(t_{\varepsilon}^{0}\right)^{2^{*}-2}+C \int_{\Omega} v_{\varepsilon}^{2} d x
$$

for all δ. Connecting this with 2.22 , we obtain

$$
\left|\int_{\Omega} \frac{f\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) v_{\varepsilon}}{t_{\varepsilon}^{0}} d x\right| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Combining (2.24-2.26 with 2.21, we get

$$
\begin{equation*}
t_{\varepsilon}^{0} \rightarrow r_{0} S^{(N-2) / 2} \tag{2.27}
\end{equation*}
$$

By 2.21,

$$
\begin{align*}
g\left(t_{\varepsilon}^{0}\right) \leq & \tilde{g}\left(t_{\varepsilon}\right)-\int_{\Omega} F\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) d x \tag{2.28}\\
= & \frac{a}{2} t_{\varepsilon}^{2}\left\|v_{\varepsilon}\right\|^{2}+\frac{b}{2 m+2} t_{\varepsilon}^{2 m+2}\left\|v_{\varepsilon}\right\|^{2 m+2}-\frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \\
& +\int_{\Omega} F\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) d x \\
= & \frac{a}{2}\left(r_{0} S^{(N-2) / 2}\right)^{2}\left(S+O\left(\varepsilon^{(N-2) / 2}\right)\right)-\frac{1}{2^{*}}\left(r_{0} S^{(N-2) / 2}\right)^{2^{*}} \\
& +\frac{b}{2 m+2}\left(r_{0} S^{(N-2) / 2}\right)^{2 m+2}\left(S+O\left(\varepsilon^{(N-2) / 2}\right)\right)^{m+1} \\
& -\int_{\Omega} F\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) d x \\
= & \frac{a}{2} r_{0}^{2} S^{N / 2}+\frac{b}{2 m+2} r_{0}^{2 m+2} S^{N(m+1) / 2}-\frac{1}{2^{*}} r_{0}^{2^{*}} S^{N / 2} \\
& +O\left(\varepsilon^{(N-2) / 2}\right)-\int_{\Omega} F\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) d x \\
= & \Lambda+O\left(\varepsilon^{(N-2) / 2}\right)-\int_{\Omega} F\left(x, t_{\varepsilon}^{0} v_{\varepsilon}\right) d x .
\end{align*}
$$

According to 2.18), 2.19, (2.27) and the assumption on f, we have

$$
\int_{\Omega} F\left(x, t_{\varepsilon} v_{\varepsilon}\right) d x \geq \int_{|x|<\mathbb{R}} M\left(\frac{C \varepsilon^{(N-2) / 4}}{\left(\varepsilon+|x|^{2}\right)^{(N-2) / 4}}\right) d x
$$

for $\varepsilon>0$ small enough.
In the following, we will verify that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{(N-2) / 2}} \int_{|x|<R} M\left(\frac{C \varepsilon^{(N-2) / 4}}{\left(\varepsilon+|x|^{2}\right)^{(N-2) / 4}}\right) d x=\infty \tag{2.29}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
& \frac{1}{\varepsilon^{(N-2) / 2}} \int_{|x|<R} M\left(\frac{C \varepsilon^{(N-2) / 4}}{\left(\varepsilon+|x|^{2}\right)^{(N-2) / 4}}\right) d x \\
&=\frac{C}{\varepsilon^{(N-2) / 2}} \int_{0}^{R} M\left(\frac{C \varepsilon^{(N-2) / 4}}{\left(\varepsilon+r^{2}\right)^{(N-2) / 4}}\right) r^{N-1} d r \\
&=C \varepsilon \int_{0}^{R \varepsilon^{-1 / 2}} M\left[C\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{(N-2) / 2}\right] s^{N-1} d s
\end{aligned}
$$

When $R \leq 1$,

$$
\varepsilon \int_{R \varepsilon^{-1 / 2}}^{\varepsilon^{-1 / 2}} M\left[C\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{(N-2) / 2}\right] s^{N-1} d s \leq C \varepsilon M\left(C \varepsilon^{(N-2) / 4}\right) \varepsilon^{-N / 2}
$$

which is bounded as $\varepsilon \rightarrow 0$. Combining this with 2.23), we get 2.29 .
On the other hand, when $R \geq 1$, according to 2.23, we have 2.29) obviously. This implies that $\max _{t \geq 0} I\left(t v_{\varepsilon}\right)<\Lambda$ for ε small enough.

The following lemma is based on [5, proof of Corollary 2.3].
Lemma 2.5. Suppose $N=3$, and f satisfies $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{4}\right)$. Then the assumption of Lemma 2.4 holds.

Proof. We define $m(u)=\inf _{x \in \omega} f(x, u)$. According to $\left(\mathrm{f}_{4}\right)$, for all $Q>0$, there exists a constant $G>0$ such that $M(u) \geq Q u^{4}$ for all $u \geq G$. It follows that

$$
\varepsilon \int_{0}^{\varepsilon^{-1 / 2}} M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{1 / 2}\right] s^{2} d s \geq Q \varepsilon \int_{0}^{C \varepsilon^{-1 / 4}} \frac{\varepsilon^{-1}}{\left(1+s^{2}\right)^{2}} s^{2} d s
$$

Therefore,

$$
\liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{0}^{\varepsilon^{-1 / 2}} M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{1 / 2}\right] s^{2} d s \geq Q \int_{0}^{\infty} \frac{s^{2}}{\left(1+s^{2}\right)^{2}} d s
$$

for all $Q>0$, which completes the proof.
Proof of Theorem 1.1. Applying Lemma 2.3, we find that I has a mountain pass geometry. Then from the Mountain Pass Lemma, there is a sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ satisfying $I\left(u_{n}\right) \rightarrow c \geq \alpha>0$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$. Moreover, $c<\Lambda$ by Lemmas 2.4 and 2.5. It follows from Lemma 2.2 that $\left\{u_{n}\right\}$ has a convergent subsequence (still denoted by $\left\{u_{n}\right\}$). Suppose that $u_{n} \rightarrow u_{0}$ in $H_{0}^{1}(\Omega)$. By the continuity of I^{\prime}, u_{0} is a solution of problem (1.1). Furthermore, $u_{0} \neq 0$ for $c>0$.

For the existence of a ground state solution, we define

$$
E=\left\{I(u) \mid I^{\prime}(u)=0, u \neq 0\right\} .
$$

Then $E \neq \emptyset$ since $u_{0} \neq 0$ and $I^{\prime}\left(u_{0}\right)=0$. Now, we claim that E has an infimum. In fact, for any $u \in E$,

$$
\begin{equation*}
\left\langle I^{\prime}(u), u\right\rangle=a\|u\|^{2}+b\|u\|^{2 m+2}-\int_{\Omega} f(x, u) u d x-\int_{\Omega}|u|^{2^{*}} d x=0 . \tag{2.30}
\end{equation*}
$$

According to 2.30) and (f_{3}),

$$
\begin{aligned}
I(u)= & \frac{a}{2}\|u\|^{2}+\frac{b}{2 m+2}\|u\|^{2 m+2}-\int_{\Omega} F(x, u) d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \\
= & \left(\frac{1}{2}-\frac{1}{2 m+2}\right) a\|u\|^{2}+\left(\frac{1}{2 m+2}-\frac{1}{2^{*}}\right) \int_{\Omega}|u|^{2^{*}} d x \\
& +\int_{\Omega}\left(\frac{1}{2 m+2} f(x, u) u-F(x, u)\right) d x \\
\geq & \left(\frac{1}{2}-\frac{1}{2 m+2}\right) a\|u\|^{2} \geq 0 .
\end{aligned}
$$

Therefore, we can define

$$
E_{0}=\inf \left\{I(u) \mid I^{\prime}(u)=0, u \neq 0\right\} .
$$

We get $\left\{v_{n}\right\}$ such that $I\left(v_{n}\right) \in E$ and $I\left(v_{n}\right) \rightarrow E_{0}$. Since we know $I^{\prime}\left(u_{0}\right)=0$ and $I\left(u_{0}\right)=c$, we have $E_{0} \leq c<\Lambda$. By Lemma 2.2, $\left\{v_{n}\right\}$ has a strongly convergent subsequence (still denoted by $\left\{v_{n}\right\}$). Hence, there exists $v_{0} \in$ $H_{0}^{1}(\Omega)$ such that $v_{n} \rightarrow v_{0}$ in $H_{0}^{1}(\Omega)$. Then $I\left(v_{0}\right)=E_{0}$ and $I^{\prime}\left(v_{0}\right)=0$.

Finally, we prove $v_{0} \neq 0$. By $\left(\mathrm{f}_{2}\right)$, there exists a constant $C>0$ such that

$$
f(x, t) t \leq \frac{a}{2} \lambda_{1} t^{2}+C t^{2^{*}}
$$

for all $t \geq 0$ and $x \in \bar{\Omega}$, where $\lambda_{1}=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}}\|u\|^{2} /|u|^{2}$. From $\left\langle I^{\prime}\left(v_{n}\right), v_{n}\right\rangle$ $=0$ and the Sobolev inequality, it follows that

$$
\begin{aligned}
a\left\|v_{n}\right\|^{2} & \leq a\left\|v_{n}\right\|^{2}+b\left\|v_{n}\right\|^{2 m+2}=\int_{\Omega} f\left(x, v_{n}\right) v_{n} d x+\int_{\Omega}\left|v_{n}\right|^{2^{*}} d x \\
& \leq \frac{a}{2} \lambda_{1} \int_{\Omega}\left|v_{n}\right|^{2} d x+(C+1) \int_{\Omega}\left|v_{n}\right|^{2^{*}} d x \leq \frac{a}{2}\left\|v_{n}\right\|^{2}+C\left\|v_{n}\right\|^{2^{*}} .
\end{aligned}
$$

Therefore,

$$
\frac{a}{2}\left\|v_{n}\right\|^{2} \leq C\left\|v_{n}\right\|^{2^{*}}
$$

which implies $0<C \leq\left\|v_{n}\right\|$ for all n. Hence, $v_{0} \neq 0$. Furthermore, $\left\langle I^{\prime}\left(v_{0}\right), v_{0}^{-}\right\rangle$ $=0$, where $v_{0}^{-}=\max \left\{-v_{0}, 0\right\}$. Hence, $v_{0} \geq 0$. According to the strong
maximum principle, v_{0} is a positive solution of problem (1.1), completing the proof of Theorem 1.1.

Proof of Corollary 1.1. Because $\left(\mathrm{f}_{3}\right)$ is $\left(\mathrm{f}_{3}^{\prime \prime}\right)$ in the case $m=1$, Corollary 1.1 is a special case of Theorem 1.1.

The following lemma is based on [5, proof of Corollary 2.2].
Lemma 2.6. Suppose $N=4$, and f satisfies $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{5}\right)$. Then the assumption of Lemma 2.4 holds.

Proof. By $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{5}\right)$, we obtain

$$
f(x, u) \geq \eta u \chi_{[\mu, \infty)}(u)=m(u)
$$

for all $x \in \omega$, and $u \geq 0$, where $\chi_{[\mu, \infty)}$ is the characteristic function of $[\mu, \infty)$. Thus,

$$
M(u)=\frac{1}{2} \eta\left(u^{2}-\mu^{2}\right) \quad \text { for } u \geq \mu
$$

Therefore,

$$
\varepsilon \int_{0}^{\varepsilon^{-1 / 2}} M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)\right] s^{3} d s \geq \frac{1}{4} \eta \varepsilon \int_{0}^{C \varepsilon^{-1 / 4}} \frac{\varepsilon^{-1}}{\left(1+s^{2}\right)^{2}} s^{3} d s=C|\ln \varepsilon|
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{0}^{\varepsilon^{-1 / 2}} M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{(N-2) / 2}\right] s^{N-1} d s=\infty
$$

Proof of Theorem 1.2. By using Lemmas 2.1-2.4 and 2.6, much as in the proof of Theorem 1.1, we can easily show that problem (1.1) has a positive ground state solution.

The following lemma is based on [5, proof of Corollary 2.1].
Lemma 2.7. Suppose $N \geq 5$, and f satisfies $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{6}\right)$. Then the assumption of Lemma 2.4 holds.

Proof. By $\left(\mathrm{f}_{1}\right)$ and (f_{6}), we have

$$
f(x, u) \geq \eta \chi_{A}(u)=m(u)
$$

for all $x \in \omega$ and $u \geq 0$. Since A is nonempty, there exist constants $d \in A$ and $\xi>0$ such that

$$
M(u) \geq \xi>0 \quad \text { for all } u \geq a
$$

If $\frac{\varepsilon^{-1 / 2}}{1+s^{2}} \geq a^{2 /(N-2)}$, then

$$
M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{(N-2) / 2}\right] \geq \xi \quad \text { as } s \leq C \varepsilon^{-1 / 4}
$$

Therefore,

$$
\varepsilon \int_{0}^{\varepsilon^{-1 / 2}} M\left[\left(\frac{\varepsilon^{-1 / 2}}{1+s^{2}}\right)^{(N-2) / 2}\right] s^{N-1} d s \geq \xi \varepsilon \int_{0}^{C \varepsilon^{-1 / 4}} s^{N-1} d s=C \varepsilon^{1-N / 4}
$$

Since $N \geq 5$, we get $1-N / 4<0$. Hence $C \varepsilon^{1-N / 4} \rightarrow \infty$ as $\varepsilon \rightarrow 0$.
Proof of Theorem 1.3. By using Lemmas 2.1-2.4 and 2.7, and reasoning as in the proof of Theorem 1.1, we can easily prove that problem (1.1) has a positive ground state solution.

Acknowledgements. The authors thank anonymous referees for a careful reading and some helpful comments, which greatly improved the manuscript.

References

[1] C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differential Equations Appl. 23 (2010), 409-417.
[2] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solution for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
[3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 41 (1973), 349-381.
[4] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[5] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[6] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), 706-713.
[7] G. M. Figueiredo and J. R. Santos Jr., Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations 25 (2012), 853-868.
[8] A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems with critical exponent, Electron. J. Differential Equations 2011, no. 105, 8 pp.
[9] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
[10] S. Liang and S. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in \mathbb{R}^{N}, Nonlinear Anal. 81 (2013), 31-41.
[11] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamer. 1 (1985), 145-201.
[12] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, Nonlinear Differential Equations Appl. 21 (2014), 885-914.
[13] D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations 257 (2014), 1168-1193.
[14] R. Narasimha, Non-linear vibration of an elastic string, J. Sound Vibration 8 (1968), 134-146.
[15] D. W. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer. 32 (1960), 1529-1538.
[16] Y. Sun and X. Liu, Existence of positive solutions for Kirchhoff type problems with critical exponent, J. Partial Differential Equations 25 (2012), 187-198.
[17] G. Talenti, Best constant in Sobolev inequality, Ann. of Math. 110 (1976), 353-372.
[18] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), 2314-2351.
[19] Q.-L. Xie, X.-P. Wu and C.-L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Comm. Pure Appl. Anal. 12 (2013), 2773-2786.

Lan Zeng, Chun Lei Tang (corresponding author)
School of Mathematics and Statistics
Southwest University
400715 Chongqing, People's Republic of China
E-mail: zenglan1206@126.com
tangcl@swu.edu.cn

[^0]: 2010 Mathematics Subject Classification: Primary 35A15; Secondary 35B09.
 Key words and phrases: Kirchhoff type problem, critical growth, mountain pass lemma, Brézis-Lieb lemma, ground state solution.
 Received 29 July 2015; revised 12 January 2016.
 Published online 16 May 2016.

